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Abstract. In this work we develop an adaptive algorithm for solving elliptic
optimal control problems with simultaneously appearing state and control
constraints. Building upon the concept proposed in [9] the algorithm applies
a Moreau-Yosida regularization technique for handling state constraints. The
state and co-state variables are discretized using continuous piecewise linear
finite elements while a variational discretization concept is applied for the
control. To perform the adaptive mesh refinement cycle we derive local error
representations which extend the goal-oriented error approach to our setting.
The performance of the overall adaptive solver is demonstrated by a numerical
example.
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1. Introduction

Optimal control problems with state constraints have been the topic of an in-
creasing number of theoretical and numerical studies. The challenging character
of these problems has its origin in the fact that state constraints feature Lagrange
multipliers of low regularity only [4, 7]. In the presence of additional control con-
straints, the solution may exhibit subsets where both control and state are active
simultaneously. In this case, the Lagrange multipliers associated to the control
and state constraints may not be unique [20]. To overcome this difficulty several
techniques in the literature have been proposed. Very popular are relaxation con-
cepts for state constraints such as Lavrentiev, interior point and Moreau-Yosida
regularization. The former one is investigated in [21] and [17]. Barrier methods
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in function space [24] applied to state constrained optimal control problems are
considered in [18]. Relaxation by Moreau-Yosida regularization is considered for
the fully discrete case in [3, 5], and in function space in [13]. Residual-type a poste-
riori error estimators for mixed control-state constrained problems are derived in
[16]. The dual weighted residual method proposed in [1] is investigated in [11, 22]
the presence of control constraints and for state constraints in [2, 9]. Within the
framework of goal-oriented adaptive function space algorithms a Lavrentiev regu-
larization approach is considered in [16], and an adaptive interior point method is
proposed in [19, 25].

In this note we combine results from [9] and [10] to design an adaptive finite
element algorithm for solving elliptic optimal control problems with pointwise
control and state constraints. Following [14], our algorithm combines a Moreau-
Yosida regularization approach with a semi-smooth Newton solver [12]. We apply
variational discretization [8, 15] to the regularized optimal control problem. For
a fixed regularization parameter, we develop a goal-oriented a posteriori error
estimate by extending the error representation obtained in [9] to the control and
state constrained case. Let us note that in this work we are not interested in
controlling the error contribution stemming from the regularization.

The rest of this paper is organized as follows: In the next section we present
the optimal control problem under consideration and recall its first order necessary
optimality system. Section 3 is devoted to the purely state-constrained case and
collects results from [9] which in Section 4 are extended to simultaneously appear-
ing control and state constraints. We introduce a regularized version of the original
problem and derive an error representation in terms of the objective functional.
Finally, a numerical experiment is reported in Section 5.

2. Optimal Control Problem

Let Ω be a bounded polygonal and convex domain in R
d (d = 2, 3) with boundary

∂Ω. We consider the general elliptic partial differential operator A : H1(Ω) −→
H1(Ω)∗ defined by

Ay :=

d
∑

i,j=1

∂xj
(aijyxi

) +

d
∑

i=1

biyxi
+ cy

along with its formal adjoint operator A∗

A∗y =

d
∑

i=1

∂xi

(

d
∑

j=1

aijyxj
+ biy

)

+ cy.

We subsequently assume the coefficients aij , bi and c (i, j = 1, . . . , d) to be suffi-
ciently smooth functions on Ω̄. Moreover we suppose that there exists c0 > 0 such

that
∑d

i,j=1 aij(x)ξiξj ≥ c0 for almost all x in Ω and all ξ in R
d. Corresponding to
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the operator A we associate the bilinear form a(·, ·) : H1(Ω)×H1(Ω) −→ R with

a(y, v) :=

∫

Ω

(

d
∑

i,j=1

aijyxi
vxj

+

d
∑

i=1

biyxi
v + cyv

)

.

Suppose that the form a is coercive on H1(Ω), i.e. there exists c1 > 0 such that
a(v, v) ≥ c1‖v‖

2
H1(Ω) for all v in H1(Ω). This follows for instance if

inf essx∈Ω

(

c−
1

2

d
∑

i=1

∂xi
bi

)

> 0 and inf essx∈∂Ω

(

d
∑

i=1

biνi

)

≥ 0

holds. Here ν denotes the unit outward normal at ∂Ω.

For given u ∈ L2(Ω) and fixed f ∈ L2(Ω) the homogeneous Neumann bound-
ary value problem

Ay = u+ f in Ω

∂νA
y :=

∑d
i,j=1 aijyxi

νj = 0 on ∂Ω
(2.1)

has a unique solution y =: G(u) ∈ H2(Ω). Moreover, there exists a constant C
depending on the domain Ω such that

‖G(u)‖H2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω)).

The weak form of (2.1) is given by

a(y, v) = (u+ f, v) ∀ v ∈ H1(Ω), (2.2)

where ( ·, · ) denotes the standard inner product in L2(Ω).

For given ud, yd ∈ L2(Ω), α > 0, ua, ub ∈ R with ua < ub, ya and yb ∈ C(Ω)
with ya < yb we focus on the optimal control problem

J(y, u) := 1
2‖y − yd‖

2
L2(Ω) +

α
2 ‖u− ud‖

2
L2(Ω) → min

s.t. y = G(u), u ∈ Uad, and ya ≤ y ≤ yb a.e. in Ω̄,
(2.3)

where Uad is the set of admissible controls given by

Uad =
{

u ∈ L2(Ω) : ua ≤ u ≤ ub in Ω
}

.

We require the Slater condition

∃us ∈ Uad : ya < G(us) < yb in Ω.

The proof of the following theorem follows from [6, 7].

Theorem 2.1. The optimal control problem (2.3) has a unique solution (y, u) ∈
H2(Ω) × Uad. Moreover there exist p ∈ W 1,s(Ω) for all 1 ≤ s < d/(d − 1), λa,
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λb ∈ L2(Ω) and µa, µb ∈ M(Ω̄) satisfying the optimality system

y = G(u),

(p,Av) = (y − yd, v) + 〈µa + µb, v〉 ∀ v ∈ W 1,1− 1
s (Ω) with ∂νA

v|∂Ω = 0,
α(u− ud) + p+ λa + λb = 0,

λa ≤ 0, u ≥ ua, (λa, u− ua) = 0,
λb ≥ 0, u ≤ ub, (λb, u− ub) = 0,
µa ≤ 0, y ≥ ya, 〈µa, y − ya〉 = 0,
µb ≥ 0, y ≤ yb, 〈µb, y − yb〉 = 0.

(2.4)

3. The Purely State-constrained Case

First let us consider problem (2.3) without control constraints, i.e. Uad = U =
L2(Ω). Then clearly λa = λb = 0, p = −α(u− ud) ans µa, µb in (2.4) are uniquely
determined.

3.1. Finite Element Discretization

In the sequel we consider a shape-regular simplicial triangulation Th of Ω. Since
Ω is assumed to be a polyhedral, the boundary ∂Ω is exactly represented by the
boundaries of simplices T ∈ Th. We refer to Nh = ∪np

i=1{xi} as the set of nodes of
Th. The overall mesh size is defined by h := maxT∈Th

diamT . Further, we associate
with Th the continuous piecewise linear finite element space

Vh = {v ∈ C0(Ω̄) : v|T ∈ P1(T ), ∀T ∈ Th},

where P1(T ) is the space of first-order polynomials on T. The standard nodal
basis of Vh denoted by {φi}

np
i=1 satisfies φi(xj) = δij for all xj in Nh and i, j ∈

{1, . . . , np}. Furthermore for all v ∈ C0(Ω̄) we denote by Ihv :=
∑np

i=1 v(xi)φi the
Lagrange interpolation of v. In analogy to (2.2) we define for given u ∈ L2(Ω) the
discrete solution operator Gh by

yh =: Gh(u) ⇐⇒ yh ∈ Vh and a(yh, vh) = (u+ f, vh) ∀ vh ∈ Vh.

Problem (2.3) is now approximated by the following sequence of variational discrete
control problems depending on the mesh parameter h:

min
u∈U

Jh(yh, u) :=
1

2
‖yh − yd‖

2
L2(Ω) +

α

2
‖u− ud,h‖

2
U

subject to yh = Gh(u) and ya(xj) ≤ yh(xj) ≤ yb(xj) for j = 1, . . . , np.
(3.1)

Here, ud,h denotes an approximation to ud which is assumed to satisfy

‖ud − ud,h‖ ≤ Ch.

Problem (3.1) represents a convex infinite-dimensional optimization problem
of similar structure as problem (2.3), but with only finitely many equality and
inequality constraints for the state, which define a convex set of admissible func-
tions. Since for h > 0 small enough we have ya < Gh(us) < yb such that [6, 7] can
again be applied to obtain
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Lemma 3.1. Problem (3.1) has a unique solution uh ∈ U . There exist unique

µa
1 , . . . , µ

a
np, µ

b
1, . . . , µ

b
np ∈ R and a unique function ph ∈ Vh such that with yh =

Gh(uh), µa,h =
∑np

j=1 µ
a
j δxj

and µb,h =
∑np

j=1 µ
b
jδxj

we have

a(vh, ph) =

∫

Ω

(yh − yd)vh +

∫

Ω̄

vh d(µa,h + µb,h) ∀ vh ∈ Vh, (3.2)

ph + α(uh − ud,h) = 0, (3.3)

µa
j ≤ 0, yh(xj) ≥ ya(xj), j = 1, . . . , np and

∫

Ω̄

(

yh − Ihya
)

dµa,h = 0, (3.4)

µb
j ≥ 0, yh(xj) ≤ yb(xj), j = 1, . . . , np and

∫

Ω̄

(

yh − Ihyb
)

dµb,h = 0. (3.5)

Here, δx denotes the Dirac measure concentrated at x.

Remark 3.2. Problem (3.1) is still an infinite–dimensional optimization problem,
but with finitely many state constraints. By (3.3) it follows that uh ∈ Vh, i.e. the
optimal discrete solution is discretized implicitly through the optimality condition
of the discrete problem. Hence in (3.1) U may be replaced by Vh to obtain the same
discrete solution uh, which results in a finite–dimensional discrete optimization
problem instead.

3.2. Local error indicators

From here onwards we assume ud = ud,h, so that J = Jh holds. This assumption
is fulfilled by affine linear functions ud. Including more general desired controls ud

would lead to additional weighted data oscillation contributions (ud − ud,h, ·) in
the error representation (4.5). For their treatment in the context of residual type
a posteriori estimators we refer to [16].

Let us abbreviate

µ := µa + µb, µh := µa,h + µb,h.

Following [1] we introduce the dual, control and primal residual functionals deter-
mined by the discrete solution yh, uh, ph, µ

a
h and µb

h of (3.2)-(3.5) by

ρp(·) := Jy(yh, uh)(·)− a(·, ph) + 〈µh, ·〉,

ρu(·) := Ju(yh, uh)(·) + (·, ph) and

ρy(·) := −a(yh, ·) + (uh + f, ·).

In addition we set
eµ(y) := 〈µ+ µh, yh − y〉.

It follows from (3.3) that ρu(·) ≡ 0. This is due to variational discretization, i.e.
we do not discretize the control, so that the discrete structure of the solution uh

of problem (3.1) is induced by the optimality condition (3.3).
The proof of the following theorem can be found in [9].

Theorem 3.3. There hold the error representations

2(J(y, u)− J(yh, uh)) = ρp(y − ihy) + ρy(p− ihp) + eµ(y), (3.6)
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and

2(J(y, u)− J(yh, uh)) = Jy(yh, uh)(y − yh)− a(y − yh, ph)

−a(yh, p− ihp) + (uh + f, p− ihp)

+(y − yd, y − yh)− a(y − yh, p) (3.7)

with arbitrary quasi–interpolants ihy and ihp ∈ Vh.

Following the lines of Remark 3.5 in [1] we split the above equation into a
cellwise representation and integrate by parts. This gives rise to define

Ryh

|T = uh + f −Ayh

Rph

|T = yh − yd −A∗ph

Rp

|T = y − yd −A∗p

ryh

|Γ =

{

1
2ν · [∇yh · (aij)] for Γ ⊂ ∂T \ ∂Ω
ν · (∇yh · (aij)) for Γ ⊂ ∂Ω

rph

|Γ =

{

1
2ν · [(aij)∇ph] for Γ ⊂ ∂T \ ∂Ω
ν · ((aij)∇ph + phb) for Γ ⊂ ∂Ω

rp|Γ =

{

1
2ν · [(aij)∇p] for Γ ⊂ ∂T \ ∂Ω
ν · ((aij)∇p+ pb) for Γ ⊂ ∂Ω

,

where [·] defines the jump across the inter-element edge Γ. Now (3.7) can be
rewritten in the form

2(J(y, u)− J(yh, uh)) =
∑

T∈Th

(y − yh, R
ph

|T )T − (y − yh, r
ph

|∂T )∂T

+ (Ryh

|T , p− ihp)T − (ryh

|∂T , p− ihp)∂T

+ (y − yh, R
p

|T )T − (y − yh, r
p

|∂T )∂T .

Since this localized sum still contains unknown quantities, we make use of local
higher order approximation ([1, Sec. 5.1]) which has shown to be a successful
heuristic technique for a posteriori error estimation. More precisely we take the

local higher order quadratic interpolant operator i
(2)
2h : Vh → P2(T ) for some

T ∈ Th. In detail for d = 2 the local interpolant i
(2)
2h vh for an arbitrary function

vh ∈ Vh on a triangle T is defined by

(i
(2)
2h vh)(x1, x2) := a+ bx1 + cx2 + dx1x2 + ex2

1 + fx2
2, (x1, x2)

T ∈ Ω,

where the coefficients a, b, c, d, e, f ∈ R are obtained by the solution of a linear
system demanding the exact interpolation in the sampling nodes shown in Figure 1.

The technique for computing i
(2)
2h vh for some vh ∈ Vh can easily be carried over to

three space dimensions.
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Figure 1. Used sampling nodes for i
(2)
2h , d = 2.

We substitute Rp

|T and rp|Γ by

R
i
(2)
2h ph

|T = i
(2)
2h yh − yd −A∗i

(2)
2h ph

r
i
(2)
2h ph

|Γ =

{

0 for Γ ⊂ ∂T \ ∂Ω

ν · ((aij)∇i
(2)
2h ph + i

(2)
2h phb) for Γ ⊂ ∂Ω

and define

η :=
1

2

∑

T∈Th

(i
(2)
2h yh − yh, R

ph

|T )T − (i
(2)
2h yh − yh, r

ph

|∂T )∂T

+ (Ryh

|T , i
(2)
2h ph − ph)T − (ryh

|∂T , i
(2)
2h ph − ph)∂T

+ (i
(2)
2h yh − yh, R

i
(2)
2h ph

|T )T − (i
(2)
2h yh − yh, r

i
(2)
2h ph

|∂T )∂T .

For numerical experiments we refer to [9] and Section 5.

4. The Control- and State-constrained Case

Let us now consider problem (2.3) with control and state constraints. The situation
then becomes more involved due to the fact that Lagrange multipliers may not
be unique if control and state active sets intersect [20]. To overcome difficulties
arising from this fact we consider

4.1. Moreau-Yosida Regularization

In Moreau-Yosida regularization the state constraints ya ≤ y ≤ yb are substituted
by appropriate regularization terms which are added to the objective functional
J . The corresponding regularized optimal control problem reads

Jγ(y, u) := J(y, u) + γ
2 ‖min(0, y − ya)‖

2 + γ
2 ‖max(0, y − yb)‖

2 → min

s.t. y = G(u) and u ∈ Uad,
(4.1)

where γ > 0 denotes a regularization parameter tending to +∞ later on. The
max- and min-expressions in the regularized objective functional Jγ arise from
regularizing the indicator function corresponding to the set of admissible states.
Notice that (4.1) is a purely control constrained optimal control problem that has
a unique solution (yγ , uγ) ∈ H2(Ω)×Uad. Furthermore, we can prove the existence
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of Lagrange multipliers (pγ , λγ
a, λ

γ
b ) ∈ L2(Ω)×L2(Ω)×L2(Ω) using standard theory

of mathematical programming in Banach spaces such that

yγ = G(uγ)
(pγ ,Av) = (yγ − yd, v) + (µγ

a + µγ
b , v) ∀ v ∈ H2(Ω) with ∂νA

v|∂Ω = 0,
α(uγ − ud) + pγ + λγ

a + λγ
b = 0,

λγ
a ≤ 0, uγ ≥ ua, (λγ

a, u
γ − ua) = 0,

λγ
b ≥ 0, uγ ≤ ub, (λγ

b , u
γ − ub) = 0

(4.2)
holds, where

µγ
a = γmin(0, yγ − ya) and µγ

b = γmax(0, yγ − yb).

For the convergence of the solutions of the regularized problems to the solution
of the limit problem (2.3) we refer the reader to [10, Thm. 3.1]. To recover the
solution of the optimal control problem (2.3) an overall algorithm can be designed
by solving (4.1) for a sequence γ → ∞. For (4.1) with γ fixed, a locally superlinear
semi-smooth Newton method can be applied (see [14]).

4.2. Finite Element Discretization

For the convenience of the reader we assume ya and yb to be real numbers. Again
we apply variational discretization [15], but now to problem (4.1). We therefore
consider

Jγ
h (yh, uh) := Jh(yh, uh) +

γ
2 ‖min(0, yh − ya)‖

2 + γ
2 ‖max(0, yh − yb)‖

2 → min

s.t. yh = Gh(uh) and uh ∈ Uad.
(4.3)

The existence of a solution of (4.3) as well as of Lagrange multipliers again fol-
lows from standard arguments. The corresponding first order optimality system
associated to (4.3) leads to the variationally discretized counterpart of (4.2)

yγh = Gh(u
γ
h),

a(vh, p
γ
h) = (vh, y

γ
h − yd + µγ

a,h + µγ
b,h) ∀ vh ∈ Vh,

α(uγ
h − ud,h) + pγh + λγ

a,h + λγ
b,h = 0,

λγ
a,h ≤ 0, uγ

h ≥ ua, (λγ
a,h, u

γ
h − ua) = 0,

λγ
b,h ≥ 0, uγ

h ≤ ub, (λγ
b,h, u

γ
h − ub) = 0,

(4.4)

where yγh, p
γ
h ∈ Vh and uγ

h, λ
γ
a,h, λ

γ
b,h ∈ L2(Ω). The multipliers corresponding to

the regularized state constraints µγ
a,h and µγ

b,h are given by

µγ
a,h = γmin(0, yγh − ya) and µγ

b,h = γmax(0, yγh − yb).

We mention here that (4.3) is a function space optimization problem and the opti-
mal control uγ

h is not necessarily an element of the finite element space. However,
regarding (4.4), uγ

h corresponds to the projection of a finite element function onto
the admissible set Uad, namely

uγ
h = Π[ua,ub]

(

−
1

α
pγh + ud,h

)

,
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where Π[ua,ub] is the orthogonal projection onto Uad.

4.3. Error Representation and Estimator

For a fixed regularization parameter γ we now derive an error representation in J
for the solutions of (4.1) and (4.3) respectively.

Similar as before we define the following residuals

ρp
γ

(·) := Jy(y
γ
h, u

γ
h)(·)− a(·, pγh) + (µγ

h, ·), and

ρy
γ

(·) := −a(yγh, ·) + (uγ
h + f, ·)

with

µγ := γmin(0, yγ − ya) + γmax(0, yγ − yb), and

µγ
h := γmin(0, yγh − ya) + γmax(0, yγh − yb).

The functions µγ and µγ
h play the role of the Lagrange multipliers µ, µh corre-

sponding to state constraints in the limit problem (2.3) (compare with [9, Thm.
4.1, Rem. 4.1]). Furthermore we abbreviate

λγ := λγ
a + λγ

b and λγ
h := λγ

a,h + λγ
b,h.

Theorem 4.1. Let (uγ , yγ) and (uγ
h, y

γ
h) be the solutions of the optimal control

problems (4.1) and (4.3) with corresponding adjoint states pγ , pγh and multipliers

λγ , λγ
h, µ

γ , µγ
h associated to control and state constraints respectively. Then

2(J(yγ , uγ)− Jh(y
γ
h, u

γ
h)) =

ρp
γ

(yγ − ihy
γ) + ρy

γ

(pγ − ihp
γ) + (µγ + µγ

h, y
γ
h − yγ) + (λγ + λγ

h, u
γ
h − uγ).

(4.5)

For the proof we refer the reader to [10]. Applying integration by parts the
error representation (4.5) can be localized as follows,

2(J(yγ , uγ)− Jh(y
γ
h, u

γ
h)) =

∑

T∈Th

(yγ − yγh, R
p
γ

h

|T )T − (yγ − yγh, r
p
γ

h

∂T )∂T

+ (R
y
γ

h

|T , p
γ − ihp

γ)T − (r
y
γ

h

|∂T , p
γ − ihp

γ)∂T

+ (yγ − yγh, R
pγ

|T )T − (yγ − yγh, r
pγ

|∂T )∂T

+ (λγ + λγ
h, u

γ
h − uγ)T .

Here the interior and edge residuals R•
|T , r

•
|∂T are similarly defined as in the

purely state constrained case. In order to derive a computable estimator we again

replace the unknown functions yγ and pγ in (4.5) by i
(2)
2h y

γ
h and i

(2)
2h p

γ
h. Since

uγ = Π[ua,ub]

(

− 1
α
pγ + ud

)

holds, a reasonable locally computable approximation
then is given by

ũγ = Π[ua,ub]

(

−
1

α
i
(2)
2h p

γ
h + ud

)

,
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Figure 2. ua active set: blue by uγ
h, green by ũγ (left), integrand

(λ̃γ +λγ
h)(u

γ
h− ũγ) with support on symmetric difference of active

sets (right).

as is already suggested in [22]. Similarly for λγ = −pγ − α(uγ − ud) we locally
compute

λ̃γ = −i
(2)
2h p

γ
h − α (ũγ − ud)

instead. The estimator ηγ now reads

ηγ =
∑

T∈Th

ηγT ,

where

2ηγT =(i
(2)
2h y

γ
h − yγh, R

p
γ

h

|T )T − (i
(2)
2h y

γ
h − yγh, r

p
γ

h

|∂T )∂T

+ (R
y
γ

h

|T , i
(2)
2h p

γ
h − pγh)T − (r

y
γ

h

|∂T , i
(2)
2h p

γ
h − pγh)∂T

+ (i
(2)
2h y

γ
h − yγh, R

i
(2)
2h p

γ

h

|T )T − (i
(2)
2h y

γ
h − yγh, r

i
(2)
2h p

γ

h

|∂T )∂T

+ (λ̃γ + λγ
h, u

γ
h − ũγ)T .

While for most quantities in ηγT quadrature rules of moderate order are well suited,
one has to take care for the last term

(λ̃γ + λγ
h, u

γ
h − ũγ)T =

∫

T

(λ̃γ + λγ
h)(u

γ
h − ũγ). (4.6)

The integrand is continuous but has a support within the symmetric difference of
the control active set of the variational discrete solution and the locally improved
quantities. Such a situation is depicted in Figure 2. One recognizes that ũγ captures
the activity structure of uγ

h but smoothes out the control active boundary towards
the exact control active boundary. The kidney-shaped green area resolves the true
control active set from the example of Section 5 already very well even on a coarse
mesh (compare also Figure 3 (right)). Finally for computing (4.6) we just provide
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the integrand and a desired tolerance and apply the adaptive quadrature routine
of [23, Algo. 31] for triangles containing the boundary of the control active set.

In order to study the effectivity of our implemented estimator, we define

Ieff :=
J(yγ , uγ)− Jh(y

γ
h, u

γ
h)

ηγ
.

Remark 4.2. The adjoint variable p admits less regularity at state active sets so
that higher order interpolation with regard to the adjoint variable is not completely
satisfying. However this circumstance only leads to local higher weights in the es-
timator and therefore reasonably suggests to refine the corresponding regions. The
effectivity of the estimator is not affected as we are going to see in the numerical
experiment. Another possible technique to derive a computable approximation for
pγ − ihp

γ is to substitute pγh for pγ and compute pγh − pγh(xT ), where xT denotes
the barycenter of the element T .

5. Numerical Experiment

We consider problem (2.3) with data

Ω = (0, 1)2, A = −∆+ Id, yd = sin(2πx1) sin(2πx2), f = ud = 0,

ua = −30, ub = 30, ya = −0.55, yb = 0.55, α = 10−4.

Its analytic solution is not known, so for obtaining the effectivity index we compute
a reference solution on a uniform grid (level l = 14, np = 525313, h = 0.00195)
which delivers an approximation of J(yγ , uγ). The numerical solution in terms
of − 1

α
pγh as well as the optimal state yγh is displayed in Figure 3 for γ = 1014

on the mesh l = 14. The projection of − 1
α
pγh onto [ua, ub] corresponds to the

optimal control uγ
h which together with yγh represents our best approximation to

the solution of (4.1). The boundaries of the control active sets are depicted as
solid lines, while the state active sets are displayed as star and cross markers.
The color blue corresponds to the lower bound while the color red highlights the
upper bound. We numerically approximate J(yγ , uγ) by 0.0375586175. In Table 1
we depict the effectivity coefficient and the convergence history of the goal. Notice
that the values of the effectivity coefficient are close to 1 which illustrates the
good performance of our error estimator. A comparison between our adaptive
finite element algorithm and a uniform mesh refinement in terms of number of
degrees of freedom Ndof := np is reported in Figure 4. The adaptive refinement
process performs well even though the benefit in this example is not big since the
characteristic features of the optimal solution already occupy a considerable area
of the computational domain, as is illustrated by the adapted grid in Figure 4. Our
motivation for including this example is to illustrate the variational discretization
effect on the mesh refinement process. If variational discretization for the control
would not have been used, also some refinement at the boundary of the control
active set would be expected. For the details in terms of our marking strategy,
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Figure 3. ua,−
1
α
pγh, ub (left), ya ≤ yγh ≤ yb (middle) and active

sets (right) for l = 14.

k np J(yγ , uγ)− Jh(y
γ
h, u

γ
h) Ieff

1 81 4.275 · 10−3 1.622
10 3123 7.148 · 10−5 1.144
18 63389 3.996 · 10−6 1.290

Table 1. Adaptive refinement.

stopping criterion of the adaptive finite element algorithm and one more example
we refer the reader to [10].
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Figure 4. Adaptive mesh for k = 10 (left), comparison of error
decrease in the goal (right).
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wandten Mathematik, Universtität Hamburg, Preprint No. HBAM2007-01 (2007).

[9] A. Günther and M. Hinze, A posteriori error control of a state constrained elliptic

control problem. J. Numer. Math. 16(2008), 307–322.

[10] A. Günther and M.H. Tber, A goal-oriented adaptive Moreau-Yosida algorithm for

control- and state-constrained elliptic control problems. DFG Schwerpunktprogramm
1253, Preprint No. SPP1253-089 (2009).

[11] M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in control constrained

optimal control of partial differential equations. SIAM J. Control Optim. 47(2008),
1721–1743.

[12] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a

semismooth Newton method. SIAM J. Optim. 13(2003), 865–888.

[13] M. Hintermüller and K. Kunisch, Feasible and noninterior path-following in con-

strained minimization with low multiplier regularity. SIAM J. Control Optim.
45(2006), 1198–1221.

[14] M. Hintermüller and K. Kunisch, Pde-constrained optimization subject to pointwise

constraints on the control, the state and its derivative. SIAM J. Optim. 20(2009),
1133–1156.

[15] M. Hinze, A variational discretization concept in control constrained optimization:

the linear-quadratic case. Comput Optim Appl 30(2005), 45–63.

[16] R.H.W. Hoppe and M. Kieweg, Adaptive finite element methods for mixed control-

state constrained optimal control problems for elliptic boundary value problems. Com-
put Optim Appl, DOI 10.1007/s10589-008-9195-4 (2008).
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