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Solutions to optimization problems with pde constraintseirit special properties; the asso-
ciated state solves the pde which in the optimization probiakes the role of a equality
constraint, and this state together with the associatettal@olves an optimization problem,
i.e. together with multipliers satisfies first and seconceortecessary optimality conditions.
In this note we review the state of the art in designing discewncepts for optimization
problems with pde constraints with emphasis on structursewation of solutions on the
discrete level, and on error analysis for the discrete béginvolved. As model problem
for the state we consider an elliptic pde which is well untterd from the analytical point of
view. This allows to focus on structural aspects in diszegidon. We discuss the approaches
First discretize, then optimizand First optimize, then discretizend consider in detail two
variants of theFirst discretize, then optimizapproach, namely variational discretization, a
discrete concept which avoids explicit discretizationha# tontrols, and piecewise constant
control approximations. We consider general constraintshe control, and also consider
pointwise bounds on the state. We outline the basic idegzéwiding optimal error analysis
and accomplish our analytical findings with numerical exE®mgvhich confirm our analytical
results.
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1 Introduction

In PDE-constrained optimization, we have usually a pdeate gtquation and constraints on
control and/or state. Let us write the pde for the sgate Y with the controlu € U in the
forme(y,u) = 0in Z. Assuming smoothness, we are then lead to optimizationlgmebof
the form

min  J(y,u)ste(y,u) =0, cly) €K, u€ U, (1)
(y,u)€Y xU

* The material presented in this chapter in parts is based iohork with Klaus Deckelnick (Universitat
Magdeburg), Andreas Giinther (Freie Universitat Berliyich Matthes (Universitat Hamburg) and Morten Viedin
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4 M. Hinze and F. Troltzsch: Discrete concepts

wheree : Y x U — Z ande : Y — R are continuously Fréchet differentiable, C R

is a closed convex cone representing the state constramd$/,;, C U is a closed convex
set representing the control constraints. We are intet@stduminating discrete approaches
to problem (1), where we place particular emphasis on stragireservation on the discrete
level, and also on analysing the contributions to the tatalreof the discretization errors in
the variables and multipliers involved.

To approach an optimal control problem of the form (1) nueedly one may either dis-
cretize this problem by substituting all appearing funttpaces by finite dimensional spaces,
and all appearing operators by suitable approximate cqpantes which allow their numerical
evaluation on a computer, say. Denoting/bthe discretization parameter, one ends up with
the problem

min Tn(yn, un) sten(yn, un) = 0 andey, (yn) € Kn, un € UL, 2
(Yh,un)EYnxUp

whereJ, : Y, x U, — R, e, : Yy x U, — Z,andey, : Y, — R with K, C Ry,. For the
finite dimensional subspaces one may reqijye_ Y, U, C U, say, andC,, C R a closed
and convex conel/’jd C Uy, closed and convex. This approach in general is referredficsas
discretize, then optimize.

On the other hand one may switch to the Karush-Kuhn-Tuclstesy associated to (1)

e(y,u) =0, c(y) €K, 3)
rek’, (Ne@)rr =0, (4)
Ly(5,4,p) + ()" A =0, (5)
W€ Upd, (Lu(¥,0,0),u —wy-u >0 YuéeUy. (6)

and substitute all appearing function spaces and operatoadingly, wherd. (y, u, p) =
J(y,u) — (p,e(y,u))z+ z denotes the Lagrangian associated to (1). This leads tmsolv

en(Yn,un) =0, cn(yn) € Ka, (7)
An € KL%, (Anyen(yn))R*,R =0, (8)
L, (Y, wn, pr) + ¢ (yn)*An = 0, 9)
a, € UM Ly, (Y, un, pn)su — up)y-p >0 Yue UL, (10)

for 4, @n, pn, A\n. This approach in general is referred to as first optimizen ttiscretize,
since it builds the discretization upon the first order neagsoptimality conditions.

Instead of applying discrete concepts to problem (1) o(§3directly we may first apply
an SQP approach on the continuous level and then apply féstedize, then optimize to the
related linear quadratic constrained subproblems, ordpBmize, then discretize to the SQP
systems appearing in each iteration of the Newton methoth@imfinite dimensional level.
This motivates us to illustrate the discrete approach famneal model pde which is well un-
derstood w.r.t. analysis and discretization concepts ahalcus the presentation on structural
aspects inherent to optimal control problems with pde cairds. However, error analysis for
optimization problems with nonlinear state equations i phesence of constraints on con-
trols and/or state is not straightforward and requiresigp&gchniques such as extensions of
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Newton-Kantorovich-type theorems, and second order giffioptimaltiy conditions. This
complex of questions also will be discussed briefly.

The outline of this note is as follows. In Section 2, we coasiah elliptic model optimal
control problem containing all relevant features whichdh&ebe resolved by a numerical ap-
proach. We use the finite element element method for thealization of the state equation
and propose two different approximation approaches ofirst discretize, then optimiz®
the optimal control problem, including numerical analy$isSection 3, we discuss improve-
ments of the approximation properties of discrete statdscantrols if the constraints on the
state and/or the control obey special structures. Let uByfinate that the structural aspects
discussed in the present note also carry over to optimata@qgmboblems with parabolic pdes
in a straightforward manner.

2 A model problem

To explain the main results that can be expected in numeajpgaioximation, let us discuss a
simple model problem with pointwise bounds on control aatestWe consider the Neumann
problem

ming ey xv,q J U ) =5 [o 1y —vol* + $llullf

s.t.
Ay = Bu inQ, | . _
(S) oy — 0 onT, }.(:}y—g(Bu) (11)
and

y € Yaq:= {y € Y,y(z) < b(z) a.e. inQ}.

Here,Y := H!'(Q), A denotes a uniformly elliptic operator, for example = —Ay +

y, andQ C R? (d = 2,3) denotes an open, bounded sufficiently smooth (or polyhgdral
domain. Furthermore, we suppose that- 0 and thaty, € L?*(Q), andb € W2>(Q)

are given. (U, (-,-)y) denotes a Hilbert space aii®l: U — L*(Q) c H'(Q)* the linear,
continuous control operator. By : U* — U we denote the inverse of the Riesz isomorphism.
Furthermore, we associate tothe continuous, coercive bilinear fora-, -).

Example 2.1 There are several examples for the choic&aindU.
(i) Distributed controlU = L?(Q), B = Id : L*(Q) — Y.

(i) Boundary control:U = L?(99), Bu(-) = [uvo(-)dx : L*(Q) — Y, wherevy, is the
boundary trace operator .

(iii) Linear combinations of input fields/ = R", Bu =Y. uf;, fi € Y.

If not stated otherwise we from here onwards consider thatin (i) of the previous
example. In view ofv > 0, it is standard to prove that problem (11) admits a uniquet&oi
(y,u) € Yaq X Uyq. In pde constrained optimization, the pde for given datgudemntly is
uniguely solvable. In equation (11) this is also the casehabfor every control € U,y
we have a unique state= G(Bu) € H'(Q) N C°(Q). We needy € C°(Q) to satisfy the
Slater condition required below. Problem (11) thereforeggivalent to the so called reduced
optimization problem

min J(v) :== J(G(Bv),v) s.t.G(Bv) € Yaqu. (12)
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6 M. Hinze and F. Troltzsch: Discrete concepts

The key to the proper numerical treatment of problems (1#)(42) can be found in the
first order necessary optimality conditions associatetiésé control problems. To formulate
them properly we require the following constraint qualifica, often referred to aSlater
condition It requires the existence of a state in the interior of theYsg considered as a
subset ofC°((2) and ensures the existence of a Lagrange multiplier in thecated dual
space. Moreover, it is useful for deriving error estimates.

Assumption 2.2 3a € U,q  G(B1)(z) < b(z) forall z € Q.

Following Casas [7, Theorem 5.2] for the problem under atersition we now have the
following theorem, which specifies the KKT system (3)-(6) floe setting of problem (11).

Theorem 2.3 Letu € U,q denote the unique solution (@1). Then there exist a Lagrange
multiplier € M (£2) and an adjoint state € L?(2) such that, withy = G(Bu), there holds

/ pAv = / (y —yo)v +/ vdp Vv € H?(2) with 9,v = 0 on 0, (13)
Q Q Q
(RB*p+ au,v—u)y; >0 Vv € Uqd, (14)

>0, y(xr) < b(xr)inQand /Q(b —y)du = 0. (15)

Here,(M(Q), ||- | m(e)) denotes the space of Radon measures which is defined as the dua

space of2%(12). Since.J'(v) = B*p+ a(-, u)y, a short calculation shows that the variational
(14) is equivalent to

uw= Py, (u—ocRJ'(u)) (o >0),

whereP,, denotes the orthogonal projectionlinontoU,4. This nonsmooth operator equa-
tion constitutes a relation between the optimal contr@nd its associated adjoint staie
In the present situation, when we consider the special cébewt control constraints, i.e.
U.q = L?(Q), this relation boils down to

au+p=0in L*(Q),

o > 0. This relation already gives a hint to the discretizatiomhef state; and the control,
in problem (11), if one wishes to conserve the structure isfalgebraic relation also on the
discrete level.

2.1 Finite element discretization

For the convenience of the reader we recall the finite elersetting. To begin with, let

75, be a triangulation of? with maximum mesh sizé := maxypc7, diam(T") and vertices

x1,...,2,. We suppose thdl is the union of the elements @, so that element edges
lying on the boundary are possibly curved. In addition, weuage that the triangulation is
quasi-uniformin the sense that there exists a constant) (independent of) such that each

T € Ty, is contained in a ball of radius~'h and contains a ball of radius.... Let us define

the space of linear finite elements,

X, .= {vn, € C°(Q) | vy, is alinear polynomial on each € 7;,}
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with the appropriate modification for boundary elementswhat follows it is convenient to
introduce a discrete approximation of the operatorFor a given functionr € L?(Q), we
denote byz, = G, (v) € X}, the solution of the discrete Neumann problem

G(Z}“Uh) = / VU, for all vp € Xy,
Q

2.1.1 Variational discretization

From the point of view of numerical analysis, variationaatetization allows the easiest
analysis of the discretization error and in general yiefgsraximation errors of higher order
than the other approaches discussed below. Problem (1dyvispproximated by the follow-
ing sequence of so calledriational discretecontrol problems [26] depending on the mesh
parameteh:

o 1 o
min Jp(u) = 3 /Q lyn — yol® + 5||u||2U

u€Uqq

subject toyy, = G (Bu) andyy,(z;) < b(z;) forj=1,...,m.

(16)

Notice that the integem is not fixed and tends to infinity @ — 0, so that the number of
state constraints in this optimal control problem increasih decreasing mesh size of un-
derlying finite element approximation of the state spaces dscretization approach can be
understood as a generalization of fiest discretize, then optimiz#pproach in that it avoids
discretization of the control spacé. It leads to a convex infinite-dimensional optimization
problem of similar structure as problem (11), but with onhitély many equality and in-
equality constraints for the state, which form a convex adible set. So we are again in
the setting of (1) withY” replaced by the finite element spakg (compare also the analysis
of Casas presented in [8]). Sin€g(Bu) — G(Ba) in L>(Q)), a Slater condition for (16)
automatically is satisfied, f is small enough. We thus have

Lemma 2.4 Problem (16) has a unique solutian, € U,q4. There exisjuy, ..., tm € R
andpy, € X}, such that withyy, = Gy (Buy) anduy, = Z'J’.”:l 10, We have

a(vn, pn) = /(yh — Yo)Uh +[ vpdpn Yo, € Xy, (17)
Q Q
(RB*pp + aup,v —up),; > 0 Yo € Ugg, (18)
i >0, yn(z;) < b(zj),7=1,...,m, and [ (Ihb — yh)duh =0. (29)
Q

Here, §, denotes the Dirac measure concentrated ahd I, is the usual Lagrange in-
terpolation operator. We ha\zél(v) = B*pp + a(-,un)y, so that the considerations after
Theorem 2.3 also apply in the present setting, but witbplaced by the discrete functipp.
Consequently, there holds

up = Py,,(un, — R, (up)) (o> 0).
Foro = 1 we obtain
1 * 1 *
u= Py, (_ERB p) andu;, = Py, (_ERB ph) . (20)
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8 M. Hinze and F. Troltzsch: Discrete concepts

It follows from this relation that the variational discretptimal controk:;, can be understood
as a discrete object which is automatically discretizedupgh (20). Its structure depends on
the discrete adjoint;, and the properties of the orthogonal projectidn ,, the Riesz isomor-
phismR, and the control operatds. Let us clarify the situation for the cage= L?(Q2), B =
Idp>—(gry«, andUyq = {v € U;a; < v < a,} with constant bounds; < a,. Due to the
presence ofy .4, in variational discretization the functian, = PUad(féph) € Ugq Will

in general not belong t&;. However, in many practical situations it can be calculaird
the computer, see for instance [26, 30, 31]. In the case ofeypstate constrained problem,
we havePy,, = Id, so thatu;, = —éph € Xy, by (20). This means that the optimal vari-
ational discrete optimal contral;, automatically is a discrete function. Therefore, the space
U = L*(Q) in (16) may be replaced b}, to obtain the same discrete solutiap, which
results in a finite—dimensional discrete optimization peabinstead. However, we empha-
size that the infinite—dimensional formulation of (16) isywaseful in numerical analysis [28,
Chap. 3].

2.1.2 Piecewise constant controls

In this section, we consider the special cése= L?(Q2), so thatB denotes the injection
of L?(Q) into H'(Q)* with box constraints;; < u < a, on the control. Controls are
approximated by element-wise constant functions. Forildete refer to [17]. We define the
space of piecewise constant functions

Yy, := {v, € L*(Q) | vy, is constant on each € 7;,}.
and denote by);, : L?(Q2) — Y, the orthogonal projection onfg, so that

1

@) =7 [ v aeTTeT,

In order to approximate (11) we introduce a discrete copaiiofU,,

Ul o= {vn € Vi lag <o < ay in Q. (21)
Problem (11) is now approximated by the following sequerfamatrol problems depend-
ing on the mesh parameter

1 «
in J == —yo|*+ = 2
e, Tn) 2/9"% vl /QM (22)
subject toyy, = Gy, (u) andyy, (z;) < b(z;) forj=1,...,m.

Problem (22), as problem (16), represents a convex finiteedsional optimization prob-
lem of similar structure as problem (11), but with only fihjtenany equality and inequality
constraints for state and control, which form a convex adifie set. Note that/"; C U4
and that),v € Ujd forv € U,q. SinceGy, (Qna) — G(a) in L°(£2), again a Slater condition
is satisfied for problem (22) below so that the following amiity conditions can be argued
as those given in (2.4) for problem (16).
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Lemma 2.5 Problem (22) has a unique solutian, € U(ﬁd. There exispy, ..., ptm € R
andp;, € X, such that withy;, = Gy, (up) and iy, = Z;”:l 1105, We have

a(vh,pn) = / (yn — yo)vn + [ Undpin Yoy, € X, (23)
Q Q
/(ph + auh)(vh — uh) >0 Yy, € U:d, (24)
Q

(Ihb - yh)duh =0. (25)

iy 2 0, (e) < bay)j = Loo.omand [
Q

Here,d, denotes the Dirac measure concentratecd ahnd I, is the usual Lagrange inter-
polation operator.

Similar considerations hold for control approximations dpntinuous, piecewise poly-
nomial functions. Discrete approaches to problem (11)imglyn control approximations
directly lead to fully discrete optimization problems likB2). These approaches lead to
large-scale finite-dimensional optimization problemsgcsithe discretization of the pde in
general introduces a large number of degrees of freedom. eNoah implementation then
is easy, which certainly is an important advantage of cdajpproximations over variational
discretization, whose numerical implementation is mowelved. The use of classical NLP
solvers for the numerical solution of the underlying disieel problems only is feasible, if
the solver allows to exploit the underlying problem struete.g. by providing user interfaces
for first- and second-order derivatives.

On the other hand, the numerical implementation of vanietidiscretization is not straight-
forward. The great advantage of variational discretizatiowever is its property of optimal
approximation accuracy, which is completely determinedhat of the related state and ad-
joint state. Fig. 3.3 compares active sets obtained by tianial discretization and piecewise
linear control approximations in the presence of box camsts. One clearly observes that
the active sets are resolved much more accurate when usiiajioaal discretization. In
particular, the boundary of the active set is in generaédéifit from finite element edges.

The error analysis for problem (11) relies on the regularitthe involved variables, which
is reflected by the optimality system presented in (13)-(16pnly control constraints are
present, neither the multiplierin (13) nor the complementarity condition (15) appear. Then
the variational inequality (14) restricts the regularifytioe controlu, and thus also that of
the statey. If the desired statg, is regular enough, the adjoint variahl@dmits the highest
regularity properties among all variables involved in tipdimality system. Error analysis in
this case then should involve the adjoint variglhknd exploit its regularity properties.

If pointwise state constraints, are present, the situdaiaompletely different. Now the
adjoint variable only admits low regularity due to the prese of the multipliery, which
in general is only a measure. The state now admits the higagstarity in the optimality
system. This fact should be exploited in the error analysiswever, the presence of the
complementarity system (15) require&°-error estimates for the state. In the next two sec-
tions, we present error estimates for problems with statloarcontrol constraints. Details
can be found in [28, Chap. 3]. We consider variational diszagion, and piecewise constant,
and also piecewise linear control approximations. Foratemal discretization, the approx-
imation properties are determined by the& -error of the state approximation. In the latter
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10 M. Hinze and F. Troltzsch: Discrete concepts
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Fig. 1 Numerical comparison of active sets obtained by variatidiszretization, and those obtained
by a conventional approach with piecewise linear, contiisumntrolsh = % anda = 0.1 (left), h = i
anda = 0.01 (right). The red line depicts the boarder of the active sehéconventional approach,
the cyan line the exact boarder, the black and green linspeatively the boarders of the active set in
variational discretization.

case, the approximation properties depend in addition eetior induced by the orthogonal
projection on the set of piecewise constant controls.

2.1.3 Error bounds

For the approximation error of variational discretizatie have the following theorem,
whose proof can be found in [28, Chap. 3].

Theorem 2.6 Letw anduy, be the solutions of (11) and (16) respectively. Then
_4d
allu—upllv + [ly = yallze, |y —ynllm < ChRI7E.
If in addition Bu € W'#(Q) for somes € (1, ;%) then

d

3_d
allu—wnllo + lly = yallze ly = vl < ChE=% /Tloghl

If Bu, Buy, € L*(£2) with (Buy,);, uniformly bounded ir.>° (©2) also

allu—=unllu + Iy = yallrz, ly = ynllm < Chlloghl,

where the latter estimate is valid fdr= 2, 3.

For piecewise constant control approximations and thengetf Section 2.1.2 the follow-
ing theorem is proved in [17].

Theorem 2.7 Letu andu;, be the solutions of (11) and (22) respectively Wil ), C
L>(§2) uniformly bounded. Then we have fox h < h

= unll + Iy — yall < Chllogh|, ifd=2
U IR = o/, if d = 3.
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The two theorems above have in common that a control errona& is only available
for « > 0. However, the appearance afin these estimates indicates that in theng-
bangcasen = 0 an error estimate fofy — yx |2 still is available, whereas no information
for the control error|u — wuy ||y seems to remain. In [18] a refined analysis of bang-bang
controls without state constraints also provides estiméte the control error on inactive
regions in theL!-norm. We further observe that piecewise constant conppt@imations
in 2 space dimensions deliver the same approximation gueivariational discrete controls.
Only in 3 space dimensions variational discretization iles a better error estimate. This is
caused by the fact that state constraints limit the regylafithe adjoint state, so that optimal
error estimates can be expected by techniques which agoi@. Currently the analysis for
piecewise constant control approximations involves arrisw estimate fojtpy, || :, which
explains the lower approximation order in the cdse 3.

Let us mention that the bottleneck in the analysis here i$anoted by control constraints,
but by the state constraints. In fact, if one usgg = U, then variational discretization (16)
delivers the same numerical solution as the approach (2B)pi@cewise linear, continuous
control approximations. Variational discretization teglays off if only control contraints are
present and the adjoint variable is smooth, compare [Z8]Thap.. 3].

For the numerical solution of problem (16), (22) severalrapphes exist in the literature.
Common are so called regularization methods which relaxsthte constraints in (11) by
either substituting it by a mixed control-state constréliravrentiev relaxation [41]), or by
adding suitable penalty terms to the cost functional irstessjuiring the state constraints
(barrier methods [29, 44], penalty methods [23, 25].

3 Improvement of error estimates for special classes of corul
problems

3.1 The control-constrained case

The numerical analysis ofS) is well developed in the case without the pointwise state-
constraintsy(z) < b(x) and simple bound constraints on the control. Let us consfuer
special casé/ = L?(Q2), whereB is the injection ofL?(Q2) into H!(Q)*. With real numbers

a; < a,, we consider the box constraints

Ui ={u €U, a <u(zx) <a, a.e.inQ}.

Here, Theorem 2.3 holds with = 0, the adjoint state belongs taf/?(©2) and the pointwise
projection formula

u(r) = Plg; 0, (—ép(m)) a.e. inQ (26)

holds for the optimal controk, wherelP|,, , ; is the projection fronR onto [a;, a,]. We
consider now the approximated control constrained problem

. 1 a
min Jp,(u) = 3 /Q lyn — yol® + 0) /Q |ul? (27)

uelUh,

with the admissible sdt’, of piecewise constant controls defined by (21).
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12 M. Hinze and F. Troltzsch: Discrete concepts

¢Fromp € H%(Q) and (26) we obtaim € H' (). The numerical approximation af by
up, in L%(2) cannot be better than that ofoy 11,4, its projection inUy,. If u € H(Q), then
|lu — Mpul| is of orderh. The same order might be expected ffar— u||. Indeed, this
can be shown even for semilinear elliptic equations andfalsboundary control problems,
[1], [11].

Can an approximation of the contrelby continuous piecewise linear functions improve
the estimate? The optimal contrelis not regular, where it switches between activity and
inactivity (u is called active i if u(z) = a; oru(z) = a,). Inbetweeny is as smooth as €
H?(€). If the measure of the union of all trianglésof the triangulation withu, ¢ H?(T')
can be estimated by h, then for piecewise linear approximationwthe error||u — uy, ||y is
of orderh3/2, [9]. These control estimates of ordeandh?3/2, respectively, are sharp and are
usually observed numerically.

What about the variational discretization, where the agritmctionw is not discretized?
Here, there is no approximation errorirso that only the FEM causes an error. In view of the
reasoning aboveu — uy || should then have the order of the finite element approximatio
Therefore, the expected ordet can indeed be proven, and is also observed numerically [26].
Summarizing, under natural assumptions we have

Ch for piecewise constanty,
allu—unllu+ly—ynllL: < { Ch3? forcontinuous and piecewise lineay  (28)
C h? for variational discretization

These estimates are also true for Neumann boundary comtrblgons under associated as-
sumptions. Here, the discussionmé&cewise lineacontrols is more difficult. We refer only
to [10], [30] for Neumann and to [12], and [48]. Moreover, wemtion [19], where the error
is estimated for Dirichlet boundary control problems unegiational discretization.

As observed e.g. by [11], the errow — yx | .2 () for the state may exhibit the higher order
h?, as it is the case for variational discretization. This bétrawas explained and proven
in [39] under the assumption on the measure of "trianglesrefjularity” mentioned above.
For piecewise constant control approximation, this orefeican be obtained by a simple
postprocessing step: After having computed the optimadf (22), substitute the associated
discrete adjoint statg, for p in (26) and denote the resultingoy ;. Then|lu—as|| < ¢ h?
holds andi;, has the same discrete structure as the optimal controlreutdiy variational
discretization. Howevef;;, no longer is numerical solution to an optimal control proble

The case of a semilinear elliptic equatidfithe pde or the associated boundary condition
is of semilinear type, say

Ay +3(y) =, (29)

where® : R — R is monotone non-decreasing and sufficiently smooth, themitbation is
more delicate.

Here, the choice o/ = L*°(Q2) is often needed to guarantee the existence of first- and
second-order Fréchet derivatives of the mapgingu — y from L>°(Q2) to C(Q). We also
should expect locally optimal controls rather than a unigpgmal control. Moreover, the
reduced objective functional should be locally convex around the selected local referenc
solutionu. Therefore, the reference solutianis usually required to satisfy a second-order
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sufficient optimality condition. To formulate it, we firstthoduce forr > 0 the strongly active
set

I (u) ={x € Q, |au(z) + p(x)| > 7}.
Moreover, we define the-critical coneC'- (u) by the set of alb € L>°(€2) with the property

=0, ifzel(u)
v(x)s >0, ifulx)=a andz ¢ I (u)
<0, ifu(z)=a,andz ¢ I (u).

In almost all pointse with |au(z) + p(x)| > 0, by the first order condition (26), the control
u(z) admits either the valug; or a,.. Here, we do not need additional second-order informa-
tion. This motivates the choice 6f. (u).

The second-order sufficient optimality condition requitest, in addition to the first-order
necessary optimality conditions, there exist 0 andd > 0 such that

J" v, v] > Svllfzqy Vo€ Cr(u).

The smallerr > 0 can be taken, the smaller is the g&t(u) and the weaker is the second-
order requirement. Unfortunately, the choice= 0 is not allowed. If the second-order
sufficient condition is satisfied, thenis locally optimal in an open ball of£*°(2) centered
atu. For a detailed discussion of second-order sufficient daomdi and the computation of
J"[v,v], we refer to [1] or to the detailed exposition in [45] and teéerences cited therein.
We have the error estimate

Hu — uh”Loo(Q) § Ch
for the selected locally optimal contre| whereuy, is the related piecewise constant optimal
solution of (22) without state constraints, [1], [11].

3.2 Finite-dimensional controls

Let us now return to the pointwise state constrajits) < b with some real number, but
under the simplification thaBw has the form (i) of Example 2.1,

(Bu)(x) = > u; fi(x) (30)
=1
with Holder continuous functiong; : 2 — R, i = 1,...,n. Then problem (12) is of semi-

infinite type. Still, we have pointwise state constraintwneasures as associated Lagrange
multipliers. Therefore, the adjoint state exhibits the sdow regularity ap in Theorem 2.3.
On the other hand, the control= (uy,...,u,) is a vector. As for variational discretization,
there is no need to discretize it, hence the discretizatimr eomes only from the FEM and
the discretization of the state constraints. Does this@ase the order of the errpr — uy, |?

An answer given in [37] ford = 2, which depends on the form of the active setyof
Counter examples confirm that, in general, we can only exihecorderh+/|logh| being
close to the one in Theorem 2.6. Under additional assumgtahigher order can be shown.
To simplify the formulation of the next result, we assubig; = R™. Moreover, we denote
by y; the state associated to the contrakith entriesu; = 0;5, j =1,...,n.
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Theorem 3.1 Let u andu;, be the solutions o{12) with U,; = R"™ in the setting(30).
Assume that the optimal stagehas exactlyn active pointsey, ..., x, in Q, the Slater As-
sumption 2.2 is fulfilled, the Hessian matricg§x1),...,y"(z,) are negative definit, and
the matrix(y; («;))i j=1,...,» has full rank. Then the following error estimate is fulfilled

lu — up| < C h?|logh.

This estimate is confirmed by associated numerical examf3&§ In the semi-infinite
case, one of the main difficulties is that number and locatfcearctive points ofy, vary with
h. The situation simplifies considerably, if the state caists are required only in finitely
many fixed interior points as it is pointed out next.

3.3 Finite-dimensional control and state constraints in fiitely many points

Here, we consider problem (12), whee: R — H'(Q)* has the form (30) and the SE},
of state constraints is given by

Yoa = {y € C(Q>a y(Z]) < ba j=1, 7m}

with m € Nandz; € Q, j = 1,...,m, given fixed. Let us allow also a semilinear equation
of the form (29). Now, the mappingéandg; : u — y(z;) = y(G(Bu))(z;) are real-valued
and smooth functions dependingere R™ so that this optimal control problem is equivalent
to a finite-dimensional nonlinear programming problem. &pproximation error comes only
from the FEM. In view of the pointwise state constraints, \geia needy € C(Q). In the
maximum norm, the associated error has the ohdélog 1|, [38]. Also here, the Lagrange
multiplier i is a measure. However, it is a linear combination of Diracsneas concentrated
in the pointsz; so thaty can be identified with the vector of associated nonnegataé r
coefficients.

This and the equivalence to finite-dimensional programngpiagnits to estimaté|y —
ol ar(e) DY ch?|log h| under natural assumptions. The next result is taken frof [38

Theorem 3.2 Let w and u;, be the solutions of the optimal control problem with finite-
dimensional control and state constraints in finitely mamyngs. Let a locally optimak
satisfy a linearized Slater condition. Assume further tivathe formulation of a nonlinear
programming problem, the strong second-order sufficietinegdity condition and the linear
independence condition of active gradients are satisfié@nThere is aC > 0 independent
of h such that, for all sufficiently smal > 0, it holds

= un| + [l = pnll () < € h?|loghl.

Example 3.3([38]) We consider the state equation (29Xin= (—1,1) x (—1,1) with
A = —A, ®(y) = y(15 + |y|), homogeneous Dirichlet boundary conditions and the ansatz
(30) for the control. The problemis

. 1 1
min J (y,u) = S|y = yollf + 5lu — ual®

u€ER

subject to the elliptic equation (29) and the constraints
y(xl) S 8/275 1= 17"'547 y(x5) 2 Oa
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Fig. 2 Optimal state and adjoint state of Example 3.3

wherez,, . .., z, are defined by the 4 possible selectiong-bf/1/3, ++/1/3), 25 = (0,0),
and the ansatz functions afg(r) = 122323 — 2(2f + 23), fo(z) = 23 + 22, f3(2) =
1, fa(z) = (22 —1)(22 — 1)(2? +22), f5(z) = (22 — 1)%(2% — 1)2(2? + 22)2. Further, we
defineyo(z) = (22 — 1)(23 — 1)(2? + 23) anduy = (—2,16,—4,15,1) 7.

Thenu = uy is the optimal control with state = yo, which is active inzq, ..., x5.

The computed statg and the adjoint state are shown in Figure 3.3. The Lagrande mu
tipliers are Dirac measures concentrated on the paintBence the associated adjoint state
exhibits singularities in these points. Computations &ithinitial mesh containingy , . . . , x5
confirmed the predicted error estimate, [38].
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