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Solutions to optimization problems with pde constraints inherit special properties; the asso-
ciated state solves the pde which in the optimization problem takes the role of a equality
constraint, and this state together with the associated control solves an optimization problem,
i.e. together with multipliers satisfies first and second order necessary optimality conditions.
In this note we review the state of the art in designing discrete concepts for optimization
problems with pde constraints with emphasis on structure conservation of solutions on the
discrete level, and on error analysis for the discrete variables involved. As model problem
for the state we consider an elliptic pde which is well understood from the analytical point of
view. This allows to focus on structural aspects in discretization. We discuss the approaches
First discretize, then optimizeandFirst optimize, then discretize, and consider in detail two
variants of theFirst discretize, then optimizeapproach, namely variational discretization, a
discrete concept which avoids explicit discretization of the controls, and piecewise constant
control approximations. We consider general constraints on the control, and also consider
pointwise bounds on the state. We outline the basic ideas forproviding optimal error analysis
and accomplish our analytical findings with numerical examples which confirm our analytical
results.

Copyright line will be provided by the publisher

1 Introduction

In PDE-constrained optimization, we have usually a pde as state equation and constraints on
control and/or state. Let us write the pde for the statey ∈ Y with the controlu ∈ U in the
form e(y, u) = 0 in Z. Assuming smoothness, we are then lead to optimization problems of
the form

min
(y,u)∈Y ×U

J(y, u) s.t. e(y, u) = 0, c(y) ∈ K, u ∈ Uad, (1)
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4 M. Hinze and F. Tröltzsch: Discrete concepts

wheree : Y × U → Z andc : Y → R are continuously Fréchet differentiable,K ⊂ R
is a closed convex cone representing the state constraints,andUad ⊂ U is a closed convex
set representing the control constraints. We are interested in illuminating discrete approaches
to problem (1), where we place particular emphasis on structure preservation on the discrete
level, and also on analysing the contributions to the total error of the discretization errors in
the variables and multipliers involved.

To approach an optimal control problem of the form (1) numerically one may either dis-
cretize this problem by substituting all appearing function spaces by finite dimensional spaces,
and all appearing operators by suitable approximate counterparts which allow their numerical
evaluation on a computer, say. Denoting byh the discretization parameter, one ends up with
the problem

min
(yh,uh)∈Yh×Uh

Jh(yh, uh) s.teh(yh, uh) = 0 andch(yh) ∈ Kh, uh ∈ Uh
ad, (2)

whereJh : Yh × Uh → R, eh : Yh × Uh → Z, andch : Yh → R with Kh ⊂ Rh. For the
finite dimensional subspaces one may requireYh ⊂ Y, Uh ⊂ U , say, andKh ⊆ Rh a closed
and convex cone,Uh

ad ⊆ Uh closed and convex. This approach in general is referred to asfirst
discretize, then optimize.

On the other hand one may switch to the Karush-Kuhn-Tucker system associated to (1)

e(ȳ, ū) = 0, c(ȳ) ∈ K, (3)

λ̄ ∈ K◦, 〈λ̄, c(ȳ)〉R∗,R = 0, (4)

Ly(ȳ, ū, p̄) + c′(ȳ)∗λ̄ = 0, (5)

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u − ū〉U∗,U ≥ 0 ∀ u ∈ Uad. (6)

and substitute all appearing function spaces and operatorsaccordingly, whereL(y, u, p) :=
J(y, u) − 〈p, e(y, u)〉Z∗,Z denotes the Lagrangian associated to (1). This leads to solving

eh(yh, uh) = 0, ch(yh) ∈ Kh, (7)

λh ∈ Kh
◦, 〈λh, ch(yh)〉R∗, R = 0, (8)

Lhy
(yh, uh, ph) + c′h(yh)∗λh = 0, (9)

ūh ∈ Uh
ad, 〈Lhu

(yh, uh, ph), u − uh〉U∗,U ≥ 0 ∀ u ∈ Uh
ad (10)

for ȳh, ūh, p̄h, λ̄h. This approach in general is referred to as first optimize, then discretize,
since it builds the discretization upon the first order necessary optimality conditions.

Instead of applying discrete concepts to problem (1) or (3)-(6) directly we may first apply
an SQP approach on the continuous level and then apply first discretize, then optimize to the
related linear quadratic constrained subproblems, or firstoptimize, then discretize to the SQP
systems appearing in each iteration of the Newton method on the infinite dimensional level.
This motivates us to illustrate the discrete approach for a linear model pde which is well un-
derstood w.r.t. analysis and discretization concepts and to focus the presentation on structural
aspects inherent to optimal control problems with pde constraints. However, error analysis for
optimization problems with nonlinear state equations in the presence of constraints on con-
trols and/or state is not straightforward and requires special techniques such as extensions of
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Newton-Kantorovich-type theorems, and second order sufficient optimaltiy conditions. This
complex of questions also will be discussed briefly.

The outline of this note is as follows. In Section 2, we consider an elliptic model optimal
control problem containing all relevant features which need to be resolved by a numerical ap-
proach. We use the finite element element method for the discretization of the state equation
and propose two different approximation approaches of theFirst discretize, then optimizeto
the optimal control problem, including numerical analysis. In Section 3, we discuss improve-
ments of the approximation properties of discrete states and controls if the constraints on the
state and/or the control obey special structures. Let us finally note that the structural aspects
discussed in the present note also carry over to optimal control problems with parabolic pdes
in a straightforward manner.

2 A model problem

To explain the main results that can be expected in numericalapproximation, let us discuss a
simple model problem with pointwise bounds on control and state. We consider the Neumann
problem

(S)































min(y,u)∈Y ×Uad
J(y, u) := 1

2

∫

Ω |y − y0|2 + α
2 ‖u‖2

U

s.t.
Ay = Bu in Ω,
∂ηy = 0 onΓ,

}

:⇐⇒ y = G(Bu)

and
y ∈ Yad := {y ∈ Y, y(x) ≤ b(x) a.e. inΩ}.

(11)

Here,Y := H1(Ω), A denotes a uniformly elliptic operator, for exampleAy = −∆y +
y, andΩ ⊂ Rd (d = 2, 3) denotes an open, bounded sufficiently smooth (or polyhedral)
domain. Furthermore, we suppose thatα > 0 and thaty0 ∈ L2(Ω), andb ∈ W 2,∞(Ω)
are given.(U, (·, ·)U ) denotes a Hilbert space andB : U → L2(Ω) ⊂ H1(Ω)∗ the linear,
continuous control operator. ByR : U∗ → U we denote the inverse of the Riesz isomorphism.
Furthermore, we associate toA the continuous, coercive bilinear forma(·, ·).

Example 2.1 There are several examples for the choice ofB andU .

(i) Distributed control:U = L2(Ω), B = Id : L2(Ω) → Y ′.

(ii) Boundary control:U = L2(∂Ω), Bu(·) =
∫

uγ0(·) dx : L2(Ω) → Y ′, whereγ0 is the
boundary trace operator inY .

(iii) Linear combinations of input fields:U = Rn, Bu =
∑n

i=1 uifi, fi ∈ Y ′.

If not stated otherwise we from here onwards consider the situation (i) of the previous
example. In view ofα > 0, it is standard to prove that problem (11) admits a unique solution
(y, u) ∈ Yad × Uad. In pde constrained optimization, the pde for given data frequently is
uniquely solvable. In equation (11) this is also the case, sothat for every controlu ∈ Uad

we have a unique statey = G(Bu) ∈ H1(Ω) ∩ C0(Ω̄). We needy ∈ C0(Ω̄) to satisfy the
Slater condition required below. Problem (11) therefore isequivalent to the so called reduced
optimization problem

min
v∈Uad

Ĵ(v) := J(G(Bv), v) s.t.G(Bv) ∈ Yad. (12)
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6 M. Hinze and F. Tröltzsch: Discrete concepts

The key to the proper numerical treatment of problems (11) and (12) can be found in the
first order necessary optimality conditions associated to these control problems. To formulate
them properly we require the following constraint qualification, often referred to asSlater
condition. It requires the existence of a state in the interior of the set Yad considered as a
subset ofC0(Ω̄) and ensures the existence of a Lagrange multiplier in the associated dual
space. Moreover, it is useful for deriving error estimates.

Assumption 2.2 ∃ũ ∈ Uad G(Bũ)(x) < b(x) for all x ∈ Ω̄.

Following Casas [7, Theorem 5.2] for the problem under consideration we now have the
following theorem, which specifies the KKT system (3)-(6) for the setting of problem (11).

Theorem 2.3 Letu ∈ Uad denote the unique solution to(11). Then there exist a Lagrange
multiplier µ ∈ M(Ω̄) and an adjoint statep ∈ L2(Ω) such that, withy = G(Bu), there holds

∫

Ω

pAv =

∫

Ω

(y − y0)v +

∫

Ω̄

vdµ ∀v ∈ H2(Ω) with ∂ηv = 0 on∂Ω, (13)

(RB∗p + αu, v − u)U ≥ 0 ∀v ∈ Uad, (14)

µ ≥ 0, y(x) ≤ b(x) in Ω and
∫

Ω̄

(b − y)dµ = 0. (15)

Here,(M(Ω̄), ‖·‖M(Ω̄)) denotes the space of Radon measures which is defined as the dual

space ofC0(Ω̄). SinceĴ ′(v) = B∗p+α(·, u)U , a short calculation shows that the variational
(14) is equivalent to

u = PUad
(u − σRĴ ′(u)) (σ > 0),

wherePUad
denotes the orthogonal projection inU ontoUad. This nonsmooth operator equa-

tion constitutes a relation between the optimal controlu and its associated adjoint statep.
In the present situation, when we consider the special case without control constraints, i.e.
Uad ≡ L2(Ω), this relation boils down to

αu + p = 0 in L2(Ω),

σ > 0. This relation already gives a hint to the discretization ofthe statey and the controlu
in problem (11), if one wishes to conserve the structure of this algebraic relation also on the
discrete level.

2.1 Finite element discretization

For the convenience of the reader we recall the finite elementsetting. To begin with, let
Th be a triangulation ofΩ with maximum mesh sizeh := maxT∈Th

diam(T ) and vertices
x1, . . . , xm. We suppose that̄Ω is the union of the elements ofTh so that element edges
lying on the boundary are possibly curved. In addition, we assume that the triangulation is
quasi-uniform in the sense that there exists a constantκ > 0 (independent ofh) such that each
T ∈ Th is contained in a ball of radiusκ−1h and contains a ball of radiusκh... Let us define
the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on eachT ∈ Th}
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with the appropriate modification for boundary elements. Inwhat follows it is convenient to
introduce a discrete approximation of the operatorG. For a given functionv ∈ L2(Ω), we
denote byzh = Gh(v) ∈ Xh the solution of the discrete Neumann problem

a(zh, vh) =

∫

Ω

vvh for all vh ∈ Xh.

2.1.1 Variational discretization

From the point of view of numerical analysis, variational discretization allows the easiest
analysis of the discretization error and in general yields approximation errors of higher order
than the other approaches discussed below. Problem (11) is now approximated by the follow-
ing sequence of so calledvariational discretecontrol problems [26] depending on the mesh
parameterh:

min
u∈Uad

Ĵh(u) :=
1

2

∫

Ω

|yh − y0|2 +
α

2
‖u‖2

U

subject toyh = Gh(Bu) andyh(xj) ≤ b(xj) for j = 1, . . . , m.
(16)

Notice that the integerm is not fixed and tends to infinity ash → 0, so that the number of
state constraints in this optimal control problem increases with decreasing mesh size of un-
derlying finite element approximation of the state space. This discretization approach can be
understood as a generalization of theFirst discretize, then optimizeapproach in that it avoids
discretization of the control spaceU . It leads to a convex infinite-dimensional optimization
problem of similar structure as problem (11), but with only finitely many equality and in-
equality constraints for the state, which form a convex admissible set. So we are again in
the setting of (1) withY replaced by the finite element spaceXh (compare also the analysis
of Casas presented in [8]). SinceGh(Bũ) → G(Bũ) in L∞(Ω), a Slater condition for (16)
automatically is satisfied, ifh is small enough. We thus have

Lemma 2.4 Problem (16) has a unique solutionuh ∈ Uad. There existµ1, . . . , µm ∈ R

andph ∈ Xh such that withyh = Gh(Buh) andµh =
∑m

j=1 µjδxj
we have

a(vh, ph) =

∫

Ω

(yh − y0)vh +

∫

Ω̄

vhdµh ∀vh ∈ Xh, (17)

(RB∗ph + αuh, v − uh)U ≥ 0 ∀v ∈ Uad, (18)

µj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . , m, and
∫

Ω̄

(

Ihb − yh

)

dµh = 0. (19)

Here,δx denotes the Dirac measure concentrated atx andIh is the usual Lagrange in-
terpolation operator. We havêJ ′

h(v) = B∗ph + α(·, uh)U , so that the considerations after
Theorem 2.3 also apply in the present setting, but withp replaced by the discrete functionph.
Consequently, there holds

uh = PUad
(uh − σRĴ ′

h(uh)) (σ > 0).

Forσ = 1
α we obtain

u = PUad

(

− 1

α
RB∗p

)

anduh = PUad

(

− 1

α
RB∗ph

)

. (20)
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8 M. Hinze and F. Tröltzsch: Discrete concepts

It follows from this relation that the variational discreteoptimal controluh can be understood
as a discrete object which is automatically discretized through (20). Its structure depends on
the discrete adjointph and the properties of the orthogonal projectionPUad

, the Riesz isomor-
phismR, and the control operatorB. Let us clarify the situation for the caseU = L2(Ω), B =
IdL2→(H1)∗ , andUad = {v ∈ U ; al ≤ v ≤ ar} with constant boundsal < ar. Due to the
presence ofPUad, in variational discretization the functionuh = PUad

(− 1
αph) ∈ Uad will

in general not belong toXh. However, in many practical situations it can be calculatedon
the computer, see for instance [26, 30, 31]. In the case of a purely state constrained problem,
we havePUad

≡ Id, so thatuh = − 1
αph ∈ Xh by (20). This means that the optimal vari-

ational discrete optimal controluh automatically is a discrete function. Therefore, the space
U = L2(Ω) in (16) may be replaced byXh to obtain the same discrete solutionuh, which
results in a finite–dimensional discrete optimization problem instead. However, we empha-
size that the infinite–dimensional formulation of (16) is very useful in numerical analysis [28,
Chap. 3].

2.1.2 Piecewise constant controls

In this section, we consider the special caseU = L2(Ω), so thatB denotes the injection
of L2(Ω) into H1(Ω)∗ with box constraintsal ≤ u ≤ ar on the control. Controls are
approximated by element-wise constant functions. For details we refer to [17]. We define the
space of piecewise constant functions

Yh := {vh ∈ L2(Ω) | vh is constant on eachT ∈ Th}.

and denote byQh : L2(Ω) → Yh the orthogonal projection ontoYh so that

(Qhv)(x) :=
1

T

∫

T

v, x ∈ T, T ∈ Th,

In order to approximate (11) we introduce a discrete counterpart ofUad,

Uh
ad := {vh ∈ Yh | al ≤ vh ≤ au in Ω}. (21)

Problem (11) is now approximated by the following sequence of control problems depend-
ing on the mesh parameterh:

min
u∈Uh

ad

Jh(u) :=
1

2

∫

Ω

|yh − y0|2 +
α

2

∫

Ω

|u|2

subject toyh = Gh(u) andyh(xj) ≤ b(xj) for j = 1, . . . , m.
(22)

Problem (22), as problem (16), represents a convex finite-dimensional optimization prob-
lem of similar structure as problem (11), but with only finitely many equality and inequality
constraints for state and control, which form a convex admissible set. Note thatUh

ad ⊂ Uad

and thatQhv ∈ Uh
ad for v ∈ Uad. SinceGh(Qhũ) → G(ũ) in L∞(Ω), again a Slater condition

is satisfied for problem (22) below so that the following optimality conditions can be argued
as those given in (2.4) for problem (16).
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Lemma 2.5 Problem (22) has a unique solutionuh ∈ Uh
ad. There existµ1, . . . , µm ∈ R

andph ∈ Xh such that withyh = Gh(uh) andµh =
∑m

j=1 µjδxj
we have

a(vh, ph) =

∫

Ω

(yh − y0)vh +

∫

Ω̄

vhdµh ∀vh ∈ Xh, (23)
∫

Ω

(ph + αuh)(vh − uh) ≥ 0 ∀vh ∈ Uh
ad, (24)

µj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . , m and
∫

Ω̄

(

Ihb − yh

)

dµh = 0. (25)

Here,δx denotes the Dirac measure concentrated atx andIh is the usual Lagrange inter-
polation operator.

Similar considerations hold for control approximations bycontinuous, piecewise poly-
nomial functions. Discrete approaches to problem (11) relying on control approximations
directly lead to fully discrete optimization problems like(22). These approaches lead to
large-scale finite-dimensional optimization problems, since the discretization of the pde in
general introduces a large number of degrees of freedom. Numerical implementation then
is easy, which certainly is an important advantage of control approximations over variational
discretization, whose numerical implementation is more involved. The use of classical NLP
solvers for the numerical solution of the underlying discretized problems only is feasible, if
the solver allows to exploit the underlying problem structure e.g. by providing user interfaces
for first- and second-order derivatives.

On the other hand, the numerical implementation of variational discretization is not straight-
forward. The great advantage of variational discretization however is its property of optimal
approximation accuracy, which is completely determined bythat of the related state and ad-
joint state. Fig. 3.3 compares active sets obtained by variational discretization and piecewise
linear control approximations in the presence of box constraints. One clearly observes that
the active sets are resolved much more accurate when using variational discretization. In
particular, the boundary of the active set is in general different from finite element edges.

The error analysis for problem (11) relies on the regularityof the involved variables, which
is reflected by the optimality system presented in (13)-(15). If only control constraints are
present, neither the multiplierµ in (13) nor the complementarity condition (15) appear. Then
the variational inequality (14) restricts the regularity of the controlu, and thus also that of
the statey. If the desired statey0 is regular enough, the adjoint variablep admits the highest
regularity properties among all variables involved in the optimality system. Error analysis in
this case then should involve the adjoint variablep and exploit its regularity properties.

If pointwise state constraints, are present, the situationis completely different. Now the
adjoint variable only admits low regularity due to the presence of the multiplierµ, which
in general is only a measure. The state now admits the highestregularity in the optimality
system. This fact should be exploited in the error analysis.However, the presence of the
complementarity system (15) requiresL∞-error estimates for the state. In the next two sec-
tions, we present error estimates for problems with state and/or control constraints. Details
can be found in [28, Chap. 3]. We consider variational discretization, and piecewise constant,
and also piecewise linear control approximations. For variational discretization, the approx-
imation properties are determined by theL∞-error of the state approximation. In the latter
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10 M. Hinze and F. Tröltzsch: Discrete concepts

Fig. 1 Numerical comparison of active sets obtained by variational discretization, and those obtained
by a conventional approach with piecewise linear, continuous controls:h =

1

8
andα = 0.1 (left), h =

1

4

andα = 0.01 (right). The red line depicts the boarder of the active set inthe conventional approach,
the cyan line the exact boarder, the black and green lines, respectively the boarders of the active set in
variational discretization.

case, the approximation properties depend in addition on the error induced by the orthogonal
projection on the set of piecewise constant controls.

2.1.3 Error bounds

For the approximation error of variational discretizationwe have the following theorem,
whose proof can be found in [28, Chap. 3].

Theorem 2.6 Letu anduh be the solutions of (11) and (16) respectively. Then

α‖u − uh‖U + ‖y − yh‖L2 , ‖y − yh‖H1 ≤ Ch1− d
4 .

If in additionBu ∈ W 1,s(Ω) for somes ∈ (1, d
d−1 ) then

α‖u − uh‖U + ‖y − yh‖L2 , ‖y − yh‖H1 ≤ Ch
3

2
− d

2s

√

| log h|.

If Bu, Buh ∈ L∞(Ω) with (Buh)h uniformly bounded inL∞(Ω) also

α‖u − uh‖U + ‖y − yh‖L2, ‖y − yh‖H1 ≤ Ch| log h|,

where the latter estimate is valid ford = 2, 3.

For piecewise constant control approximations and the setting of Section 2.1.2 the follow-
ing theorem is proved in [17].

Theorem 2.7 Let u anduh be the solutions of (11) and (22) respectively with(uh)h ⊂
L∞(Ω) uniformly bounded. Then we have for0 < h ≤ h̄

α‖u − uh‖ + ‖y − yh‖H1 ≤
{

Ch| log h|, if d = 2

C
√

h, if d = 3.
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The two theorems above have in common that a control error estimate is only available
for α > 0. However, the appearance ofα in these estimates indicates that in thebang-
bang-caseα = 0 an error estimate for‖y − yh‖L2 still is available, whereas no information
for the control error‖u − uh‖U seems to remain. In [18] a refined analysis of bang-bang
controls without state constraints also provides estimates for the control error on inactive
regions in theL1-norm. We further observe that piecewise constant control approximations
in 2 space dimensions deliver the same approximation quality as variational discrete controls.
Only in 3 space dimensions variational discretization provides a better error estimate. This is
caused by the fact that state constraints limit the regularity of the adjoint state, so that optimal
error estimates can be expected by techniques which avoid its use. Currently the analysis for
piecewise constant control approximations involves an inverse estimate for‖ph‖H1 , which
explains the lower approximation order in the cased = 3.

Let us mention that the bottleneck in the analysis here is notformed by control constraints,
but by the state constraints. In fact, if one usesUad = U , then variational discretization (16)
delivers the same numerical solution as the approach (22) with piecewise linear, continuous
control approximations. Variational discretization really pays off if only control contraints are
present and the adjoint variable is smooth, compare [26],[28, Chap.. 3].

For the numerical solution of problem (16), (22) several approaches exist in the literature.
Common are so called regularization methods which relax thestate constraints in (11) by
either substituting it by a mixed control-state constraint(Lavrentiev relaxation [41]), or by
adding suitable penalty terms to the cost functional instead requiring the state constraints
(barrier methods [29, 44], penalty methods [23, 25].

3 Improvement of error estimates for special classes of control
problems

3.1 The control-constrained case

The numerical analysis of(S) is well developed in the case without the pointwise state-
constraintsy(x) ≤ b(x) and simple bound constraints on the control. Let us considerthe
special caseU = L2(Ω), whereB is the injection ofL2(Ω) into H1(Ω)∗. With real numbers
al < ar, we consider the box constraints

Uad = {u ∈ U, al ≤ u(x) ≤ ar a.e. inΩ}.

Here, Theorem 2.3 holds withµ = 0, the adjoint statep belongs toH2(Ω) and the pointwise
projection formula

u(x) = P[al,ar]

(

− 1

α
p(x)

)

a.e. inΩ (26)

holds for the optimal controlu, whereP[al,ar] is the projection fromR onto [al, ar]. We
consider now the approximated control constrained problem

min
u∈Uh

ad

Jh(u) :=
1

2

∫

Ω

|yh − y0|2 +
α

2

∫

Ω

|u|2 (27)

with the admissible setUh
ad of piecewise constant controls defined by (21).
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12 M. Hinze and F. Tröltzsch: Discrete concepts

¿Fromp ∈ H2(Ω) and (26) we obtainu ∈ H1(Ω). The numerical approximation ofu by
uh in L2(Ω) cannot be better than that ofu by Πhu, its projection inUh. If u ∈ H1(Ω), then
‖u − Πhu‖U is of orderh. The same order might be expected for‖u − uh‖U . Indeed, this
can be shown even for semilinear elliptic equations and alsofor boundary control problems,
[1], [11].

Can an approximation of the controlu by continuous piecewise linear functions improve
the estimate? The optimal controlu is not regular, where it switches between activity and
inactivity (u is called active inx if u(x) = al oru(x) = ar). In between,u is as smooth asp ∈
H2(Ω). If the measure of the union of all trianglesT of the triangulation withuh /∈ H2(T )
can be estimated byC h, then for piecewise linear approximation ofu the error‖u− uh‖U is
of orderh3/2, [9]. These control estimates of orderh andh3/2, respectively, are sharp and are
usually observed numerically.

What about the variational discretization, where the control functionu is not discretized?
Here, there is no approximation error inu so that only the FEM causes an error. In view of the
reasoning above,‖u − uh‖U should then have the order of the finite element approximation.
Therefore, the expected orderh2 can indeed be proven, and is also observed numerically [26].
Summarizing, under natural assumptions we have

α‖u−uh‖U +‖y−yh‖L2 ≤







C h for piecewise constantuh

C h3/2 for continuous and piecewise linearuh

C h2 for variational discretization.
(28)

These estimates are also true for Neumann boundary control problems under associated as-
sumptions. Here, the discussion ofpiecewise linearcontrols is more difficult. We refer only
to [10], [30] for Neumann and to [12], and [48]. Moreover, we mention [19], where the error
is estimated for Dirichlet boundary control problems undervariational discretization.

As observed e.g. by [11], the error‖y−yh‖L2(Ω) for the state may exhibit the higher order
h2, as it is the case for variational discretization. This behavior was explained and proven
in [39] under the assumption on the measure of ”triangles of irregularity” mentioned above.
For piecewise constant control approximation, this orderh2 can be obtained by a simple
postprocessing step: After having computed the optimaluh of (22), substitute the associated
discrete adjoint stateph for p in (26) and denote the resultingu by ũh. Then‖u−ũh‖U ≤ c h2

holds andũh has the same discrete structure as the optimal control obtained by variational
discretization. However,̃uh no longer is numerical solution to an optimal control problem.

The case of a semilinear elliptic equation:If the pde or the associated boundary condition
is of semilinear type, say

Ay + Φ(y) = u, (29)

whereΦ : R → R is monotone non-decreasing and sufficiently smooth, then the situation is
more delicate.

Here, the choice ofU = L∞(Ω) is often needed to guarantee the existence of first- and
second-order Fréchet derivatives of the mappingG : u → y from L∞(Ω) to C(Ω̄). We also
should expect locally optimal controls rather than a uniqueoptimal control. Moreover, the
reduced objective functional̂J should be locally convex around the selected local reference
solutionu. Therefore, the reference solutionu is usually required to satisfy a second-order
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sufficient optimality condition. To formulate it, we first introduce forτ ≥ 0 the strongly active
set

Iτ (u) = {x ∈ Ω, |α u(x) + p(x)| ≥ τ}.

Moreover, we define theτ -critical coneCτ (u) by the set of allv ∈ L∞(Ω) with the property

v(x)







= 0, if x ∈ Iτ (u)
≥ 0, if u(x) = al andx /∈ Iτ (u)
≤ 0, if u(x) = ar andx /∈ Iτ (u).

In almost all pointsx with |α u(x) + p(x)| > 0, by the first order condition (26), the control
u(x) admits either the valueal or ar. Here, we do not need additional second-order informa-
tion. This motivates the choice ofCτ (u).

The second-order sufficient optimality condition requiresthat, in addition to the first-order
necessary optimality conditions, there existτ > 0 andδ > 0 such that

Ĵ ′′[v, v] ≥ δ‖v‖2
L2(Ω) ∀v ∈ Cτ (u).

The smallerτ > 0 can be taken, the smaller is the setCτ (u) and the weaker is the second-
order requirement. Unfortunately, the choiceτ = 0 is not allowed. If the second-order
sufficient condition is satisfied, thenu is locally optimal in an open ball ofL∞(Ω) centered
at u. For a detailed discussion of second-order sufficient conditions and the computation of
J ′′[v, v], we refer to [1] or to the detailed exposition in [45] and the references cited therein.
We have the error estimate

‖u − uh‖L∞(Ω) ≤ c h

for the selected locally optimal controlu, whereuh is the related piecewise constant optimal
solution of (22) without state constraints, [1], [11].

3.2 Finite-dimensional controls

Let us now return to the pointwise state constraintsy(x) ≤ b with some real numberb, but
under the simplification thatBu has the form (iii) of Example 2.1,

(Bu)(x) =
∑

i=1

ui fi(x) (30)

with Hölder continuous functionsfi : Ω → R, i = 1, . . . , n. Then problem (12) is of semi-
infinite type. Still, we have pointwise state constraints with measures as associated Lagrange
multipliers. Therefore, the adjoint state exhibits the same low regularity asp in Theorem 2.3.
On the other hand, the controlu = (u1, . . . , un) is a vector. As for variational discretization,
there is no need to discretize it, hence the discretization error comes only from the FEM and
the discretization of the state constraints. Does this increase the order of the error|u − uh|?

An answer given in [37] ford = 2, which depends on the form of the active set ofy.
Counter examples confirm that, in general, we can only expectthe orderh

√

| log h| being
close to the one in Theorem 2.6. Under additional assumptions, a higher order can be shown.
To simplify the formulation of the next result, we assumeUad = Rn. Moreover, we denote
by yi the state associated to the controlu with entriesuj = δij , j = 1, . . . , n.
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Theorem 3.1 Let u anduh be the solutions of(12) with Uad = R
n in the setting(30).

Assume that the optimal statey has exactlyn active pointsx1, . . . , xn in Ω, the Slater As-
sumption 2.2 is fulfilled, the Hessian matricesy′′(x1), . . . , y

′′(xn) are negative definit, and
the matrix(yi(xj))i,j=1,...,n has full rank. Then the following error estimate is fulfilled:

|u − uh| ≤ C h2| log h|.

This estimate is confirmed by associated numerical examples, [37]. In the semi-infinite
case, one of the main difficulties is that number and locationof active points ofyh vary with
h. The situation simplifies considerably, if the state constraints are required only in finitely
many fixed interior points as it is pointed out next.

3.3 Finite-dimensional control and state constraints in finitely many points

Here, we consider problem (12), whereB : R
n → H1(Ω)∗ has the form (30) and the setYad

of state constraints is given by

Yad = {y ∈ C(Ω̄), y(xj) ≤ b, j = 1, ..., m}

with m ∈ N andxj ∈ Ω, j = 1, ..., m, given fixed. Let us allow also a semilinear equation
of the form (29). Now, the mappingŝJ andgj : u 7→ y(xj) = y(G(Bu))(xj) are real-valued
and smooth functions depending onu ∈ Rn so that this optimal control problem is equivalent
to a finite-dimensional nonlinear programming problem. Theapproximation error comes only
from the FEM. In view of the pointwise state constraints, we again needy ∈ C(Ω̄). In the
maximum norm, the associated error has the orderh2| log h|, [38]. Also here, the Lagrange
multiplier µ is a measure. However, it is a linear combination of Dirac measures concentrated
in the pointsxj so thatµ can be identified with the vector of associated nonnegative real
coefficients.

This and the equivalence to finite-dimensional programmingpermits to estimate‖µ −
µh‖M(Ω̄) by ch2| log h| under natural assumptions. The next result is taken from [38].

Theorem 3.2 Let u and uh be the solutions of the optimal control problem with finite-
dimensional control and state constraints in finitely many points. Let a locally optimalu
satisfy a linearized Slater condition. Assume further that, in the formulation of a nonlinear
programming problem, the strong second-order sufficient optimality condition and the linear
independence condition of active gradients are satisfied. Then there is aC > 0 independent
of h such that, for all sufficiently smallh > 0, it holds

|u − uh| + ‖µ − µh‖M(Ω̄) ≤ C h2| log h|.

Example 3.3([38]) We consider the state equation (29) inΩ = (−1, 1) × (−1, 1) with
A = −∆, Φ(y) = y(15 + |y|), homogeneous Dirichlet boundary conditions and the ansatz
(30) for the control. The problem is

min
u∈R5

J(y, u) =
1

2
‖y − y0‖2

U +
1

2
|u − ud|2

subject to the elliptic equation (29) and the constraints

y(xi) ≤ 8/27, i = 1, . . . , 4, y(x5) > 0,
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Fig. 2 Optimal state and adjoint state of Example 3.3

wherex1, . . . , x4 are defined by the 4 possible selections of(±
√

1/3,±
√

1/3), x5 = (0, 0),
and the ansatz functions aref1(x) = 12x2

1x
2
2 − 2(x4

1 + x4
2), f2(x) = x2

1 + x2
2, f3(x) =

1, f4(x) = (x2
1 − 1)(x2

2 − 1)(x2
1 + x2

2), f5(x) = (x2
1 − 1)2(x2

2 − 1)2(x2
1 + x2

2)
2. Further, we

definey0(x) = (x2
1 − 1)(x2

2 − 1)(x2
1 + x2

2) andud = (−2, 16,−4, 15, 1)⊤.
Thenu = ud is the optimal control with statey = y0, which is active inx1, . . . , x5.

The computed statey and the adjoint state are shown in Figure 3.3. The Lagrange mul-
tipliers are Dirac measures concentrated on the pointsxi, hence the associated adjoint state
exhibits singularities in these points. Computations withan initial mesh containingx1, . . . , x5

confirmed the predicted error estimate, [38].
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[38] P. Merino, F. Tröltzsch, and B. Vexler. Error estimates for the finite element approximation of
a semilinear elliptic control problem with state constraints and finite dimensional control space.
ESAIM: M2AN, to appear 2009.
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