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Abstract We present a nested multigrid method to op-
timize time-periodic, parabolic, partial differential equa-

tions (PDE). We consider a quadratic tracking objec-

tive with a linear parabolic PDE constraint. The first

order optimality conditions, given by a coupled sys-

tem of boundary value problems can be rewritten as an
Fredholm integral equation of the second kind, which is

solved by a multigrid of the second kind. The evaluation

of the integral operator consists of solving sequentially

a boundary value problem for respectively the state and
the adjoints. Both problems are solved efficiently by a

time-periodic space-time multigrid method.

1 Introduction

We consider optimal control problems constrained by

a time-periodic parabolic partial differential equation

(PDE). Applications of such problems include the de-

sign of reverse flow reactors (Logist et al., 2007), cycli-
cally steered (bio-) reactors (Houska et al., 2009) and

energy-producing kites (Houska and Diehl, 2010).

The goal of the optimization is to find the opti-

mal control which minimizes the objective over a set
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of admissible controls and in addition induces a pre-
scribed cyclic state with the correct period. More pre-

cisely the state of the system at a certain instance of

time should be identical to the one a fixed period of

time later. In this paper we do not assume the existence

of autonomous periodic behavior of the PDE and as a
consequence the time-periodicity should be enforced by

the applied control. Our problem differs from the ini-

tial value problem, where the goal is to find the optimal

control to steer the system from a given state to a final
state.

The proposed method relies on the reduction of the

first order optimality conditions to a Fredholm integral

equation of the second kind. The resulting equation will

be solved by a multigrid method of the second kind, as
proposed in (Hemker and Schippers, 1981; Hackbusch,

1985). The cost of this method is dominated by the

evaluation of the kernel of the integral, which involves

solving the linearized state and the corresponding ad-

joint equation. For the evaluation of these two subprob-
lems a space-time multigrid approach of the first kind

will be applied, as proposed in (Janssen and Vande-

walle, 1993, 1996). Combining both multigrid methods

results in a nested multigrid algorithm where an outer
method is used for solving the integral equation and an

inner method to evaluate the integral kernel.

Multigrid has proved highly successful for a vari-

ety of problems (Hackbusch, 1985; Trottenberg et al.,

2001). Multigrid algorithms of the first and the second
kind for solving time-periodic parabolic boundary value

problems have been developed in (Horton and Vande-

walle, 1995; Vandewalle and Piessens, 1993; Hackbusch,

1981). For their use towards PDE-constrained optimiza-
tion we refer to the review in (Borźı and Schulz, 2009).

Often the multigrid strategy is designed to exploit the

structure of the underlying PDE-system as in the one
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shot approach presented in (Borźı, 2003), but not spe-

cific the structure of the optimality system. The nested

technique we propose here is based on the technique

described in (Hackbusch, 1979) and does exploit the

structure of both the PDE and the optimization prob-
lem.

In the next section we introduce the optimization
problem. Its optimality conditions are derived and trans-

formed into an integral equation in §3. Afterwards, we
discretize the problem in §4. Next, the nested multigrid

algorithm is presented in §5 and we illustrate the nu-

merical performance of the nested multigrid method on
two examples in §6.

2 Model Problem

We shall adhere to the optimal control notation, i.e.

the state and control of the system are respectively de-

noted by y and u. The spatial domain is given by an
open, bounded domain Ω ⊂ R

d where ∂Ω = Γ de-

notes its boundary. Due to the periodicity, the time

domain can be represented by only considering the ref-

erence interval [0, T ] where T is a predefined constant,

called the period. The state y is a function of space and
time. The domain of the control depends on the ap-

plication. Here, we focus on distributed control, which

makes u space and time dependent. The function spaces

to which the state and the control belong are denoted
by Y and U , respectively. These spaces will be defined

more precisely further on. In this notational framework

our model problem is given by,{
miny,u J (y) + α

2 ‖u‖
2
U

s.t. e(y, u) = F.
(1)

Here, J(y) is a cost functional, α is a positive constant

weighting the control cost and equation e(y, u) = F

is an abstract representation of the time-periodic PDE
constraint.

2.1 The PDE-constraint

We consider the linear, parabolic PDE constraint,

∂ty −�y − u = f in Ω × (0, T ) ,

where � denotes the Laplacian. On ∂Ω × (0, T ) we

either set Robin boundary conditions or homogeneous

Dirichlet boundary conditions. The periodicity of the
problem is imposed by equating the states at the be-

ginning and the end of the reference interval, i.e.

y|t=T = y|t=0 on Ω.

The operator e corresponds to the weak formula-

tion of the PDE, the spatial boundary conditions and

the time-periodicity constraint. For a proper setting we

introduce the following Gelfand triple of spatial func-

tion spaces,

H(Ω) ↪→ L2(Ω) ↪→ H∗(Ω),

where the space H (Ω) equals H1
0 (Ω) or H1 (Ω) for

respectively Dirichlet and Robin boundary conditions.

For brevity reasons, the Ω-dependency will be dropped

from our notation. The symbol ↪→ denotes a continuous
embedding and H∗ denotes the dual space of H with

duality pairing 〈 ·, ·〉H∗,H . The inner product on L2(Ω)

is given by ( ·, ·)L.
The state space is

Y =
{
v | v ∈ L2 ((0, T ) , H) , ∂tv ∈ L2 ((0, T ), H∗)

}
.

Note that we do not include the periodicity in the state
space, but leave it as a separate constraint. This will

result in a separate multiplier in the optimality condi-

tions later on. Thanks to the continuous embedding,

Y ↪→ C
(
[0, T ] ;L2(Ω)

)
,

the evaluation of y at a given instance of time is well

defined. This is necessary to make the time-periodicity
constraint meaningful. We require f ∈ L2

(
(0, T );L2(Ω)

)
,

u ∈ L2
(
(0, T );L2(Ω)

)
. We also define the space P =

L2 ((0, T );H∗(Ω))×L2(Ω), where the first and second

component are used for testing respectively the PDE
and the time-periodicity constraint. The exact formu-

lation of the operator e is then given by,

e : Y × U → P : (y, u)→ e (y, u) , (2)

with e(y, u) given by,

[∫ T
0

(
〈∂ty, ·〉H∗,H + a (t, y, ·)− (u, ·)L

)
dt

(y(0)− y(T ), ·)L

]T
(3)

and

a (t, y, φ) = (∇y,∇φ)L + boundary terms.

The right-hand side F in (1) is defined as,

F =

[∫ T
0
(f, ·)L dt+ boundary terms

0

]T
.

This completes the weak formulation of the PDE-constraint.
We assume for every u a unique corresponding solution

y to e(y, u) = F , which leads us to define the solution

operator,

y = S(u).
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2.2 The objective

We consider objective functionals of the form,

J(y) =
1

2
‖y−z‖2L2((0,T );L2(Ω))+

ν

2
‖y(T )−zΩ‖2L2(Ω) (4)

where z ∈ L2
(
(0, T ) ;L2(Ω)

)
and zΩ ∈ L2(Ω) are spec-

ified target functions, and ν ≥ 0. The parameter α

in the model problem (1) allows tuning the trade-off
between the conflicting objectives of both minimizing

the tracking error and the control cost. For example,

decreasing the value of α results in improved tracking

performance at the cost of an increased control effort.

2.3 The reduced model problem

We use the solution operator S to transform problem

(1) into the reduced problem,

min
u

Ĵ(u) := J (S(u)) +
α

2
‖u‖2U (5)

where Ĵ is the reduced cost functional. In this way we

obtain an unconstrained optimization problem for the

control variable u.

3 Reformulation of the optimality conditions as
an integral equation.

We formally derive the optimality conditions of prob-

lem (1) with the Lagrangian technique. For details see

(Tröltzsch, 2010; Hinze et al., 2009).

3.1 The Lagrangian

The Lagrangian associated to problem (1) is given by,

L : Y × U × P ∗ → R : (y, u, p)→ L (y, u, p)

with

L (y, u, p) = J (y) +
α

2
‖u‖2U − 〈p, e (y, u)− F 〉P∗,P .

The function p is called the adjoint variable. Note that p

has two components, one related to the PDE-constraint

and another one to the periodicity constraint.

3.2 The optimality conditions

The first order optimality conditions are sufficient con-

ditions and are given by,

⎡
⎢⎢⎣
〈Ly (y, u, p) , φ〉Y ∗,Y
〈Lu (y, u, p) , ψ〉U∗,U
〈Lp (y, u, p) , ϕ〉P,P∗

⎤
⎥⎥⎦ = 0,

for all (φ, ψ, ϕ) ∈ Y×U×P ∗. The equivalent expressions
in terms of the operators and functionals appearing in

our model problem, are deduced as follows,

〈Ly (y, u, p) , φ〉Y ∗,Y
= 〈Jy(y), φ〉Y ∗,Y − 〈p, ey(y, u)φ〉P∗,P
= 〈Jy(y), φ〉Y ∗,Y −

〈
e∗y(y, u)p, φ

〉
Y ∗,Y

=
〈
Jy(y)− e∗y(y, u)p, φ

〉
Y ∗,Y

〈Lu (y, u, p) , ψ〉U∗,U
= (αu, ψ)U − 〈p, eu(y, u)ψ〉P∗,P
= (αu, ψ)U − 〈e∗u(y, u)p, ψ〉U∗,U
= 〈(αu, ·)U − e∗u(y, u)p, ψ〉U∗,U

〈Lp (y, u, p) , ϕ〉P,P∗
= −〈e(y, u)− F, ϕ〉P,P∗

Summarizing we obtain,

⎧⎪⎪⎨
⎪⎪⎩

e∗y (y, u) p = Jy (y) in Y ∗

e∗u (y, u) p = (αu, ·)L in U∗

e (y, u) = F in P.

(6)

These three equations are often referred to as the ad-
joint, design and state equation, respectively. The first

and last of these equations are boundary value prob-

lems in space and time. This is obvious for the state

equation, while for the adjoint equation we refer to the
derivation in the appendix.

Since U = L2
(
(0, T ) ;L2 (Ω)

)
which is equal to U∗,

the second condition is equivalent to

∇Ĵ(u) = αu− e∗u(y, u)p = 0, (7)

where we have identified e∗u(y, u)p with its Riesz rep-

resentator. This expresses then the optimality of the

solution.
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3.3 The integral equation

The PDE-constraint in (1) can be rewritten as

e(y, u) = Ay +Bu = F.

where A and B are linear operators. After reordering

of (6), this results in the following symmetric system,⎧⎨
⎩
Jy(y) −A∗p = 0
−Ay −Bu = −F

−B∗p +αu = 0,

representing the first order optimality conditions. This

symmetric problem can be reduced to a Fredholm inte-

gral equation of the second kind for the control variable.

This is done by solving the first and the second equation
for respectively the adjoint and the state, i.e.,

p = A−∗Jy(y) and y = A−1 (F −Bu) ,

and substituting these expressions in the last condition,

B∗A−∗Jy
(
A−1Bu

)
+ αu = B∗A−∗Jy

(
A−1F

)
.

This integral equation is the infinite dimensional exten-

sion of the well known Schur-complement.

3.4 Conclusion

In this section we showed the equivalence of finding a

minimizer of (1) and solving an integral equation for
the control, of the form,

αu+Ku = d. (8)

Because finding an analytical solution of (8) is gener-

ally not possible, we will focus further on on numerical

methods. In the next section, we first discuss the dis-

cretization of the integral equation.

4 Discretization

Due to the dense nature of the integral equation, we

do not intend to discretize it directly. In stead, we will

discretize it implicitly by performing the numerical ana-

logue of the reduction process, given in §3.3. More pre-

cisely, we only discretize the non-reduced system of
PDEs (6) and evaluate every application of the inte-

gral operator by solving for the different equations as

explained in the reduction process. In this setting it is

necessary to preserve the adjoint properties of the dif-
ferent operators also on the discrete level. If one fails

to do so, the approximation of the reduced Hessian will

be insufficiently accurate.

In addition, our approach will lead to a discretiza-

tion that commutes with the optimization. More pre-

cisely, both the first optimize then discretize (OD) strat-

egy and the first discretize then optimize (DO) strategy

will produce identical results.
In order to archieve our goals, we adhere to Galerkin

methods in space and time (Becker et al., 2007; Meid-

ner and Vexler, 2007, 2008). More precisely, we choose

a continuous Galerkin method of degree one ( cg-1 )
in space, and a discontinuous Galerkin method of zero

degree ( dg-0 ) in time. This allows to use the inner

product of the space L2((0, T );L2(Ω)) on both the con-

tinuous and the discrete level.

4.1 A continuous Galerkin method in space

For simplicity, we consider a rectangular spatial domain
Ω with boundaries parallel to the coordinate axes. We

assume a coarse, regular partitioning of the spatial do-

main into Ne open quadrilaterals

T = {Kn}Ne

n=1 with Ω̄ =
⋃
K∈T

K̄.

From this coarse mesh T , which we refer to as T1,
we define a hierarchy of finer spatial meshes denoted

by, { Tl }Ll=1, where Tl+1 is recursively obtained from
Tl by a uniform refinement, i.e. every quadrilateral is

split into four new quadrilaterals by bisecting every

edge. The index l is called the level, and indicates the

fineness of the mesh. With xi (i = 1 . . .Nl) we de-

note the vertices of the partition Tl. For every level l,
we define a finite dimensional approximation of H (Ω),

i.e., Hl(Ω), the space of piecewise bilinear finite ele-

ments on Tl. By construction the above hierarchy of

discrete function spaces is conformal to H and nested,
i.e. H1 ⊂ H2 ⊂ . . . ⊂ HL ⊂ H. The nesting implic-

itly defines canonical interpolation operators between

the different meshes. More precisely, the identity oper-

ator is the natural choice for the interpolation operator.

As a basis for the discrete spaces, we choose the stan-
dard Lagrangian finite elements. With Nl the number

of nodes in the mesh Tl and xi the coordinate of the

i-th node, these are defined as,

φi (xj) =

{
1 if i = j

0 if i �= j
∀ i, j : 1 ≤ i, j ≤ Nl

with φi ∈ Hl.

4.2 A discontinuous Galerkin method in time

For discretizing the time dimension we consider the fol-

lowing set of time points,

0 = t0 < t1 < . . . < tM−1 < tM = T
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with a corresponding partitioning of the time interval,

[0, T ] = {0}∪I1∪ . . .∪IM where Im = (tm−1, tm] .

The PDE will be discretized on each interval Im, while

the singleton {0} is used for specifying the initial value

or the time-periodicity constraint.

We create a hierarchy of refined time meshes by

dividing every interval into four subintervals of equal

length. The level of refinement is denoted by k, where

k = 1 is the initial level. The number of intervals on

level k will be denoted as Mk =M4k. On every refine-
ment level k we define a fully discrete function space,

Wk ([0, T ] ;Hl) =
{
v ∈ L2((0, T ) ;Hl) |

v|Im ∈ P
r(Im;Hl) with 1 ≤ m ≤Mk and v(0) ∈ Hl

}
.

where P
r(Im;Hl) is the set of Hl-valued polynomials

with maximal degree r. In short, this space contains the
piecewise polynomials on the time partitioning, aug-

mented with a value at the point t = 0. By setting

r = 0, we obtain the necessary function spaces for the

desired dg(0)-cg(1)-discretization. The fully discretized

state, control and test spaces are defined as,

Ykl = Wk ([0, T ] ;Hl (Ω)) ,

Ukl = Wk ([0, T ] ;Hl (Ω)) ,

Pkl = Wk ([0, T ] ;Hl (Ω))×Hl (Ω) ,

respectively. We also define the notation,

y−m := lim
t→0−

y(tm + t) and y+m := lim
t→0+

y(tm + t).

with v−0 = v(0) as a special case. The weak partial time

derivative of a function y ∈ Ykl applied to a function

(λ, μ) ∈ Pkl is then given by,

Mk∑
m=1

∫
Im

〈∂ty, λ〉H∗,H dt+
(
y+m−1 − y−m−1, λ

+
m−1

)
L
. (9)

When r = 0, the first terms vanishes, leaving only the

terms taking into account the jump from one interval

to the next. The basis functions ψm for the dg(0) dis-

cretization are the piecewise constant functions, i.e.

ψm(t) =

{
1 t ∈ Im
0 else

and ψ0(t) =

{
1 t = 0

0 else

The elements of the state space Ykl are then of the form,

y =

Nl∑
n=1

Mk∑
m=0

ynm φnψm with ynm ∈ R. (10)

4.3 The full discretization

In order to obtain a discrete version of the operator e,
we substitute the time derivative in (2) by expression

(9) and, in addition we replace all function spaces by

their discrete analogues. The discrete first order condi-

tions (6) for (y, u, p) ∈ Ykl × Ukl × P ∗kl are then given

by,

⎧⎪⎪⎨
⎪⎪⎩

ẽ∗y (y, u) p = Jy (y) in Ykl

ẽ∗u (y, u) p = (αu, ·)L in Ukl

ẽ (y, u) = F in Pkl .

(11)

with ẽ a discrete approximation to e. Next we rewrite

the discrete operators in (11) in terms of the representa-

tion (10). The variables ynm will be stacked in a vector
y ∈ R

MkNl ,

y = [y11, . . . , y1Mk
, y21, . . . yNlMk

]T

Note that we drop the terms yn0 as they will be elim-

inated later on. A similar vector notation is selected

for the discrete control u. As for the discretization of

the adjoint p = (λ, μ), we will use the notation p for
the discretization of λ. We are now ready to rewrite the

discrete optimality conditions in matrix-vector notation

using the vectors y, u and p.

First, we consider the weak formulation of the time

derivative combined with the periodicity constraint in

(2), i.e.

∫ T

0

〈∂ty, λ〉H∗,H dt+ (y(0)− y(T ), μ)L . (12)

Substituting the discrete time derivative (9) and the
representation (10) of the discrete state y, yields,

∑Mk

m=1

∫
Im
〈∂ty, λ〉H∗,H dt

+
∑Mk

m=1

(
y+m−1 − y−m−1, λ

+
m−1

)
L
+

(
y−0 − y−M , μ

)
L

=
∑N
n,i=1

∑M
m,j=1 ynmλij (φn, φi)L

∫ T
0

dψm

dt ψj dt

+
∑N
n,i=1

∑M
m=1 (ynm − ynm−1)λim (φn, φi)L

+
∑N
n,i=1 (yn0 − ynM )μi (φn, φi)L .

(13)

We will eliminate the terms yn0 by using the discretized

weak periodicity constraint in (2). Testing this condi-

tion with different discrete μ yields,

N∑
n=1

yn0 (φn, φi)L =

N∑
n=1

ynM (φn, φi)L .
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After substituting the above condition in (13) and sim-

plifying we obtain the following discrete representation

for (12):

λT (As ⊗Bt)y,

where ⊗ is the Kronecker product, and As and Bt are

matrices defined as,

Asij = (φi, φj)L , and Bt =

⎡
⎢⎢⎢⎢⎣

1 −1
−1 . . .

. . . 1

−1 1

⎤
⎥⎥⎥⎥⎦ .

The remaining terms in (2) are discretized as follows,∫ T
0
(u, λ)L dt = λT (As ⊗At)u,∫ T

0
a (t, y, λ) dt = (∇y,∇λ)L + boundary terms

= λT (Bs ⊗At)y.

Here, we used the matrices At and Bs defined as

Atij =

∫ T

0

ψi ψj dt for 1 ≤ i, j ≤M,

Bsij = (∇φi,∇φj)L + boundary terms.

Collecting all terms yields the following representation

of the discrete operator ẽ in (11),

(As ⊗Bt +Bs ⊗At)y − (As ⊗At)u.

In order to derive the adjoint operator ẽ∗ and find the
discretization of the first equation in (11), we start from

the first expression in (13), i.e.∑M
m=1

∫
Im
〈∂ty, λ〉H∗,H dt

+
∑M
m=1

(
y+m−1 − y−m−1, λ

+
m−1

)
L
+

(
y−0 − y−M , μ

)
L
.

Applying integration by parts and reordering, results in

−∑M
m=1

∫
Im
〈∂tλ, y〉H∗,H dt

+
(
y−M , λ

−
M

)
L
+

∑M−1
m=1 (y−m, λ

−
m − λ+m)L

+
(
y−0 , λ

+
0

)
L
+

(
y−0 , μ

)
L
−

(
y−M , μ

)
L
.

Elimination of y−0 , reduces this to,

−∑M
m=1

∫
Im
〈∂tλ, y〉H∗,H dt

+
∑M−1
m=1 (y−m, λ

−
m − λ+m)L

+
(
y−M , λ

−
M − λ+0

)
L
.

In our discrete framework this is equivalent to,

yT
(
As ⊗BTt

)
λ.

Note that matrix As is symmetric.

The remaining terms in (11) can be discretized in

a similar way. This eventually results in the following

system of discrete first order conditions corresponding

to (11),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
As ⊗BTt +BTs ⊗ATt

)
p

− (As ⊗ (At + νEt))y = Zst

α (As ⊗At)u+ (As ⊗At)p = 0

(As ⊗Bt +Bs ⊗At)y

− (As ⊗At)u = Fst,

(14)

where the matrix Et is defined as Etij = δi,Mδj,M with

δk,l the Kronecker delta. Furthermore, the vectors Fst

and Zst are given by,

Fst (nMk+m) = F (φnψm) ,

Zst (nMk+m) =

∫ T

0

(−z, φnψm)L dt

+ νδm,M (−zΩ, φn)L .

5 The nested multigrid solver

We shall present a nested multigrid algorithm for solv-

ing the integral equation (8). The outer iteration is a

multigrid method of the second kind and solves the in-

tegral equation, while the inner iteration is a multigrid
method of the first kind, and is used to evaluate the

various components of the integral kernel.

As is well known, the multigrid strategy involves
two complementary components, a smoothing step and

a coarse grid correction step. In a multigrid method of

the second kind the smoothing step may sometimes be

discarded, when the integral operator possesses inher-

ent smoothing properties. Examples of such operators
are the inverse parabolic PDE operator and its adjoint.

Also the kernel K of the integral operator (8) has this

property.

5.1 A multigrid method of the first kind for evaluating

the integral kernel.

As already mentioned the kernel of the integral oper-

ator in (8) is evaluated by performing the numerical
analogue of the reduction process given in §3.3. More

precisely, in order to evaluate the discretized integral

equation for a given control u, we first solve the third

equation of (14) for the state y, i.e.

y = A−1 ((As ⊗At)u+ Fst) ,
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whereA = (As ⊗Bt +Bs ⊗At). Then we solve the first

equation of (14) for the adjoint p, i.e.

p = A−∗ ((As ⊗ (At + νEt))y + Zst) ,

and finally, evaluating the left-hand side of the second

equation of (14) yields an evaluation of the discretized
integral equation, i.e.

α (As ⊗At)u+ (As ⊗At)p.

The computational cost of this evaluation is dom-

inated by sequentially solving the state and adjoint
equation. These problems are time-periodic boundary

value problems corresponding to a parabolic PDE. Here,

both problems are solved with the space-time multigrid

method first presented in (Vandewalle and Piessens,

1993), and later on extended towards finite element
methods in (Janssen and Vandewalle, 1996) and (Janssen

and Vandewalle, 1993). The algorithm is an accelera-

tion of the dynamic iteration method with a multigrid

strategy in the space dimension.

The multigrid method uses a series of operators

A(kl) and A∗(kl), where the parameters k and l refer

to the underlying discrete function spaces, as explained
in §4.3. To solve the model problem on a given grid with

parameters K and L, the method considers a hierarchy

of semi-coarsened discrete problems. More precisely the

method uses semi-coarsening in space, i.e. a hierarchy
of discrete problems where k remains equal to K and l

varies from L to 1. An outline of the method is given

in Algorithm 1, where the parameter γ determines the

cycle type.

Algorithm 1: mgm1st(k, l, A(kl), f (kl), y(kl))

if l = 1 then1

Solve on coarsest grid2

A(k1)y(k1) = f (k1)3

else4

Perform μ1 smoothing iterations5

A(kl)y(kl) = f (kl)6

Compute the residual7

r(kl) ← f (kl) −A(kl)y(kl)8

Restrict the residual to the lower level9

f (kl−1) ←R(kl)r(kl) and y(kl−1) ← 010

Perform recursion11

for γ times do12

mgm1st(k, l − 1, A(kl−1), f (kl−1), y(kl−1))13

end14

Interpolate the correction and correct15

y(kl) ← y(kl) + P(kl)y(kl−1)16

Perform μ2 smoothing iterations17

A(kl)y(kl) = f (kl)18

end19

In order to fully characterize our implementation we

shall specify the different multigrid components in the

remaining of this section. First, the coarse grid opera-

tors are selected to be rediscretizations of the original

problem on the coarser meshes. As direct solver on the
coarsest grid we used an optimized sparse direct solver.

As a smoother we choose a four color timeline Gauss-

Seidel method. This method is derived from the corre-

sponding four color Gauss-Seidel iteration by grouping
all degrees of freedom linked to the same spatial node.

This comes down to solving a time discretized ODE

with a time-periodicity constraint at each nodel point.

This can easily be done with an optimized direct sparse

solver. To formulate this iteration algebraically, we ap-
ply the standard four color splitting on the matrices As

and Bs, resulting in,

Bs = B+
s −B−s and As = A+

s −A−s .

The timeline smoother is then obtained by

(A+
s ⊗Bt +B+

s ⊗At)y
(ν)

= f + (A−s ⊗Bt +B−s ⊗At)y
(ν−1).

To transfer a discrete approximation y(kl) from Ykl−1

to Ykl, we use the canonical interpolation operator. Al-

gebraically this operation is given by,

P(kl) = P (l)
s ⊗ I

(k)
t

with P
(l)
s ∈ R

nl×nl−1 the bilinear prolongation matrix

and I
(k)
t ∈ R

mk×mk the identity matrix. As restriction

we used the transpose of the prolongation operator, i.e.

R(kl) = P(kl)T = P (l)T
s ⊗ I

(k)
t .

To speed up the evaluation of the integral kernel, we im-

plemented the full multigrid method to evaluate both
boundary value problems, see Algorithm 2 for a refer-

ence implementation. Technical details as for example,

the number of post V-cycles are not considered here.

Furthermore, we took over the interpolation and re-
striction operators from Algorithm 1.

Finally, we can formulate the method to evaluate

the integral equation. It is given in Algorithm 3. Here,

the first call to Algorithm 2 solves the state equation

while the second call solves the adjoint equation. The
result of the evaluation is stored in the vector r(kl). In

order to evaluate only the kernel of the integral, the

terms Fst and Zst should be ignored.



8 Dirk Abbeloos et al.

Algorithm 2: Fmgm1st(k, L, A(kL), f (kL), y(kL))

for l = L down to 1 do1

Restrict the rhs to the lower level2

f (kl−1) ←R(kl)f (kl)3

end4

Solve on coarsest grid5

mgm1st(k, 1, A(k1), f (k1), y(k1))6

for l = 1 up to L do7

Interpolate the approximation of the solution8

y(kl) ← y(kl) + P(kl)y(kl−1)9

Perform a multigrid iteration10

mgm1st(k, l, A(kl), f (kl), y(kl))11

end12

Algorithm 3: Eval(k, l, u(kl), r(kl))

Assemble the rhs of the state equation1

f (kl) ← (A(kl)
s ⊗A

(kl)
t )u(kl) + Fst2

Evaluate the state equation3

Fmgm1st(k, l, A(kl), f (kl), y(kl))4

Assemble the rhs of the adjoint equation5

f (kl) ←
(
A

(kl)
s ⊗

(
A

(kl)
t + νE

(kl)
t

))
y(kl) + Zst6

Evaluate the adjoint equation7

Fmgm1st(k, l, A∗(kl), f (kl), r(kl))8

5.2 A multigrid method of the second kind for solving

the integral equation

To solve the integral equation (8) we use a multigrid

method of the second kind. Different variants of this

method were developed independently by Hackbusch
(Hackbusch, 1985) and Schippers (Hemker and Schip-

pers, 1981). An outline of the variant by Hackbusch

(v1) and by Schippers (v2) are given in Algorithm 4

and 5 respectively. Note the difference in the smoothing

step compared to Algorithm 1. The multigrid method
of the second kind exploits the smoothing characteris-

tics of the integral operator by applying a simple Picard

iteration in Algorithm 4 or an adaptation thereof in Al-

gorithm 5.

As mentioned, the integral operators required on

the different levels are not constructed explicitly but

only evaluated by using Algorithm 3. As a solver on the

coarsest level we choose a conjugate gradient method.
This method proved to converge in just a few, cheap

iterations.

In order to transfer a discrete approximation y(kl)

from Yk−1l−1 to Ykl a tensor product of the canonical
interpolation operator in space and a cubic interpola-

tion operator in time with periodic boundary conditions

is used. Algebraically this operation is given by,

P̃(kl) = P (l)
s ⊗ P

(l)
t .

(a) The cubic interpolation

(b) The restriction

Fig. 1 An illustration of the action of the cubic prolongation
Pt (a) and the canonical restriction Rt (b). For the prolon-
gation (restriction), the symbols • and • denote a degree of
freedom of the fine (coarse) or coarse (fine) grid respectively.
In addition, the coarse (fine) grid approximation is repre-
sented by the gray rectangles. The cubic interpolation with
periodic boundary conditions is illustrated by a solid line.

Here, P
(l)
s ∈ R

nl×nl−1 is the bilinear prolongation ma-

trix and P
(k)
t ∈ R

mk×mk−1 is the periodic, cubic pro-

longation matrix. Its actions is illustrated in Figure 1.
As restriction operator we use

R̃(kl) = R(l)
s ⊗R

(k)
t .

where R
(l)
s ∈ R

nl−1×nl is the boundary adapted full

weighting matrix and R
(k)
t ∈ R

mk−1×mk is the scaled

adjoint of the canonical interpolation operator. Its ac-
tion is illustrated in Figure 1.

To speed up the outer iteration, a full multigrid vari-

ant similar to Algorithm 2 is used.

Algorithm 4: mgm2nd1(k, l, d(kl), u(kl))

if l = 1 then1

Solve on coarsest grid2

αu(11) +K(11)u(11) = d(11)3

else4

Apply a Picard iteration5

u(kl) ← 1
α
d(kl) − 1

α
K(kl)u(kl)6

Compute the residual7

r(kl) ← d(kl) − αu(kl) −K(kl)u(kl)8

Restrict the residual to the lower level9

d(k−1l−1) ← R̃(kl)r(kl) and u(k−1l−1) ← 010

Perform the recursion11

for 2 times do12

mgm2nd1(k − 1, l− 1, d(k−1l−1), u(k−1l−1))13

end14

Interpolate the correction and correct15

u(kl) ← u(kl) + P̃(kl)u(k−1l−1)16

end17

6 Numerical results

In this section we elaborate on the numerical perfor-

mance of the nested multigrid method. More precisely,
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Algorithm 5: mgm2nd2(k, l, d(kl), u(kl))

if l = 1 then1

Solve on coarsest grid2

αu(11) +K(11)u(11) = d(11)3

else4

Compute the residual5

r(kl) ← d(kl) − αu(kl) −K(kl)u(kl)6

Perform restriction and smoothing7

u(kl) ← u(kl) − (
I − P̃(kl)R̃(kl)

)
r(kl)8

d(k−1l−1) ←9 ((
I −K(k−1l−1)

) R̃(kl) − R̃(kl)K(kl)
)
r(kl)

u(k−1l−1) ← 010

Perform the recursion11

for 2 times do12

mgm2nd2(k − 1, l − 1, d(k−1l−1), u(k−1l−1))13

end14

Interpolate the correction and correct15

u(kl) ← u(kl) + P̃(kl)u(k−1l−1)16

end17

we first numerically illustrate the convergence behav-

ior in terms of the spatial discretization parameter h

and the parameter α. Next, we compare the multigrid
methods with Krylov subspace methods, i.e. the outer

multigrid iteration is replaced by a Krylov subspace

method, like the conjugate gradient method (CG) and

the generalized minimal residual method (GMRES). All

algorithms have been implemented in C++. The Krylov
subspace implementations were taken from the software

package GLAS (Meerbergen et al., 2009).

6.1 Overview of the test problems

To illustrate the numerical performance of the nested
multigrid algorithm, we consider the following test prob-

lems.

– Example I is the homogeneous problem, i.e. we set

ν = 0, z = 0, zΩ = 0 and f = 0.
– In example II we chose a nontrivial, continuous source

term f = x2(1 − x)2 y2(1 − y)2 sin (2πt). Further-

more, we set ν = 0, z = 0, and zΩ = 0.

– In example III we chose the unreachable target state
z = χ[ 14 ,

3
4 ]
(t) χ[ 12 , 1]

2(x) where χS denotes the char-

acteristic function of the set S. This target state is

unreachable because z �∈ Y . The other parameters

were chosen to be ν = 0, f = 0, and zΩ = 0.

In addition, we imposed homogeneous Robin boundary

conditions, i.e. we required ∂y
∂ν + y = 0 on ∂Ω × (0, T )

where ∂·
∂ν is the derivative in the direction of the outer

unit normal ν(x) of ∂Ω at x. In every experiment the
discrete approximation of the control was initialized

with Gaussian white noise. An example solution of ex-

ample III is shown in Figure 2.

time t

c
o
n
t
r
o
l
u

Fig. 2 The optimal control u of example III plotted as a
function of time for the spatial coordinates x = (0.25, 0.25)
with a solid line (−), (0.5, 0.5) with a dashed line (−−) and
(0.75, 0.75) with dotted line (· · ·).

6.2 The dependency of the convergence of the

multigrid method on the fineness of the mesh

Figure 3 shows the convergence history of both nested

multigrid methods, i.e. the variant of Hackbusch and

Schippers denoted by v1 and v2 respectively, with dif-
ferent values for the spatial discretization parameter

h ∈ [ 18 ,
1
64 ]. The discretization parameter in the time

dimension denoted by Δt, was chosen to satisfy the

relation Δt = h2. Furthermore, we set the parameter
α = 0.01. Figure 3 illustrates that the convergence of

both nested multigrid methods improves with the fine-

ness of the mesh, which makes the method especially

suitable for very large scale problems. Table 1 reports

the convergence factor ρ in function of the spatial grid
parameter h for example I. Here, we define the conver-

gence factor ρ as,

ρ = n

√
‖rn‖L2(Ω×[0,T ])

‖r0‖L2(Ω×[0,T ])
, (15)

with n the number of multigrid iterations applied and ri
the residual of the integral equation after i iterations.

Clearly, the multigrid convergence improves dramati-

cally for finer meshes. For example, a reduction of the

parameter h from 1
16 to 1

64 improves the convergence

rate by approximately a factor 100. Similar results were
obtained in other experiments. The convergence factor

of the nested multigrid method for example II and III

are reported in Table 2.

Furthermore, the numerical experiments indicate that
the multigrid variant of Hackbusch seems to converge

faster than the variant of Schippers. This statement is

confirmed by more elaborated experiments, although
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Table 1 The convergence factor ρ of the multigrid algorithms
in function of the discretization parameter h for example I.

Example I

h v1 v2

1
8

1.9 10−2 1.9 10−2

1
16

1.7 10−3 6.3 10−3

1
32

2.6 10−4 5.5 10−4

1
64

1.6 10−5 2.5 10−5

Table 2 The convergence factor ρ of the multigrid algorithms
in function of the discretization parameter h for example II
and III.

Example II Example III

h v1 v2 v1 v2

1
8

2.7 10−2 2.7 10−2 1.9 10−2 1.9 10−2

1
16

2.2 10−3 1.2 10−2 1.7 10−3 6.3 10−3

1
32

9.6 10−4 1.7 10−3 2.6 10−4 5.4 10−4

1
64

1.2 10−4 1.8 10−4 1.6 10−5 2.4 10−5
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v2 h=2-5

v2 h=2-6

Fig. 3 The convergence history of the nested multigrid meth-
ods applied on example I with different values for the spatial
mesh parameter h. The multigrid variant of Hackbusch is de-
noted by a solid line.

the variant of Schipper seems to be more robust. More
precisely, there are cases where the method of Hack-

busch diverges while the variant of Schippers is still

convergent.

6.3 The dependency of the convergence of the

multigrid method on the parameter α

It is known that the integral equation (8) is a com-

pact perturbation of the identity operator, resulting in a
mesh independent condition number, when discretized

fine enough. Furthermore, the condition number de-

pends strongly on the parameter α, more specific, a

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10
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L2 -n
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m
 o

f t
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 re
si

du
al

iteration

v1 α=100

v1 α=10-1

v1 α=10-2

v1 α=10-3

v2 α=100

v2 α=10-1

v2 α=10-2

v2 α=10-3

Fig. 4 The convergence history of the multigrid methods ap-
plied on example I with different values for the parameter α.
The multigrid variant of Hackbusch is denoted by a solid line.

decrease of α results in a strong increase of the condi-
tion number and the other way round. As a consequence

we can expect the multigrid method to deteriorate for

decreasing values of α, which is confirmed by our nu-

merical experiments.
Figure 4 illustrates the convergence history of the

nested multigrid methods applied on example I with

different values for the parameter α ∈
[
10−4, 1

]
. Here,

we chose the discretization parameters as h = 2−4 and

Δt = 2−8. Clearly, for decreasing values of α the con-
vergences deteriorates and even diverges for α < 0.005.

The convergence factors of the multigrid methods for

example I and II are given in Table 3 and Table 4 re-

spectively. The numerical results indicate a severe in-
fluence of the parameter α on the convergence of the

multigrid methods. In the optimal control framework,

α is typically a fixed parameter. When α is not too

small, the convergence rate is restored when the mesh

is refined.
The numerical results indicate that the convergence

rate of both multigrid variants is identical for large val-

ues of α ≈ 1, while for a smaller α the method of Hack-

busch becomes relatively faster compared to the variant
of Schippers. The convergence rates also indicate that

for large values of α both methods are extremely fast.

Often only 2 iterations will be needed to solve a given

problem.

6.4 A comparison with Krylov subspace methods

To illustrate the effectiveness of the nested multigrid

method, we repeated the numerical experiments from

sections §6.2 and §6.3 with a CG and GMRS solver.
Since the convergence of both Krylov subspace meth-

ods is solely determined by the condition number, we

expect a mesh independent convergence behavior for
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Table 3 The convergence factor ρ of the multigrid algorithms
in function of the parameter α for example I. The symbol ∗
indicates that the method failed to converge.

Example I

α v1 v2

1 2.1 10−7 2.1 10−7

0.1 9.7 10−6 9.6 10−6

0.01 1.7 10−3 6.3 10−3

0.001 * *

Table 4 The convergence factor ρ of the multigrid algorithms
in function of the parameter α for example III.

Example III

α v1 v2

0.5 5.8 10−7 5.8 10−7

0.1 9.7 10−6 9.6 10−6

0.05 4.9 10−5 4.9 10−5

0.01 1.7 10−3 6.3 10−3

fixed α and a strong deterioration of the convergence

rate for decreasing α. Both statements were confirmed

in our numerical experiments as shown in Figure 5 and
Figure 6. In the last figure we only plotted the conver-

gence history of the CG-solver, because the GMRES-

solver shows a similar result. From the experiments

we conclude that the GMRES method converges faster
in terms of number of iterations, but every iteration

is also more expensive in terms of integral operator

evaluations than the according CG-iteration. Compar-

ing these results with Figures 3 and 4 indicates that

for α ≥ 10−2 the convergence of the nested multigrid
method is much faster then of the Krylov subspace

methods. In most cases only a few multigrid iterations

are needed to solve a problem, where every multigrid

iteration requires only two evaluations of the integral
kernel on every level. Moreover, the convergence of the

Krylov subspace methods are mesh independent while

the convergence of the nested multigrid method im-

proves with increasing fineness of the mesh.

7 Conclusion

This paper presented a nested multigrid algorithm for

solving optimal control problems constrained by a time-

periodic parabolic PDE. The method is based on the

reduction of the optimality conditions to a Fredholm in-
tegral equation of the second kind. The resulting equa-

tion is then discretized using a space-time finite element

framework, which preserves the structure of both the
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Fig. 5 The convergence history of the CG and GMRES solver
applied to example I with different values for the spatial mesh
parameter h. The solid line denotes the CG-solver, while the
points corresponds to the GMRES-solver.
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Fig. 6 The convergence history of the CG solver applied to
example I with different values for the parameter α.

PDE-constraint and the optimality problem on the dis-

crete level. The problem is solved with a nested multi-

grid method resulting in fast convergence. Moreover,

the convergence factor improves with the fineness of
the mesh, which makes the method especially suitable

for very large scale problems.
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8 Appendix: Derivation of equations

In this appendix we derive the adjoint equation for the

example included in the text, i.e. the first equation of
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(6). The derivation starts from the expression,

〈Ly (y, u, p) , φ〉Y ∗,Y =

〈Jy(y), φ〉Y ∗,Y − 〈p, ey(y, u)φ〉P∗,P ,

which after substituting expressions (2) and (4), results

in,

〈Ly (y, u, p) , φ〉Y ∗,Y =

+
∫ T
0
c (y − z, φ)L − 〈∂tφ, λ〉H∗,H − ay (t, y, λ)φ dt

+(y(T )− zΩ, φ(T ))L − (φ(0)− φ(T )L, μ)L

with p = (λ, μ) ∈ P ∗. The exact form of the functional

ay(t, y, λ) is given by,

ay (t, y, λ)φ = (∇φ,∇λ)L + boundary terms.

The above expression for ay(t, y, λ) is missing some

boundary conditions, which we do not include here for

brevity reasons. In order to derive the adjoint of the
derivative with respect to the time operator, we use

the integration by parts formula, i.e.,

−〈∂tφ, λ〉H∗,H = 〈∂tλ, φ〉H∗,H
− (λ(T ), φ(T ))L + (λ(0), φ(0))L .

After substitution in the original equation, this leads to

the following expression,

〈Ly (y, u, p) , φ〉Y ∗,Y =

+
∫ T
0 (y − z, φ)L + 〈∂tλ, φ〉H∗,H − ay (t, y, λ)φ dt

− (λ(T ), φ(T ))L + (λ(0), φ(0))L

+ν (y(T )− zΩ, φ(T ))L − (φ(0)− φ(T )L, μ)L .

To derive the adjoint equations in a simple form, we

eliminate the variable μ by considering variations of

φ(0) only. This leads to μ = λ(0) in the L2-sense. Sub-

stituting this back and after simplification we obtain,

〈Ly (y, u, p) , φ〉Y ∗,Y =

+
∫ T
0 (y − z, φ)L + 〈∂tλ, φ〉H∗,H − ay (t, y, λ)φ dt

+ν (y(T )− zΩ, φ(T ))L − (λ(T )− λ(0), φ(T ))L .

(16)

Finally, we may conclude that the above expression is
the weak formulation of{

−∂tλ−�λ− y = −z in Ω × (0, T )

λ(T )− λ(0)− ν y(T ) = −ν zΩ on Ω,

This is a boundary value problem in space and time.
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