
Hamburger Beiträge
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Abstract

We consider model order reduction of integrated circuits with semiconductor devices. Such
circuits are modeled using modified nodal analysis by differential-algebraic equations coupled
with the nonlinear drift-diffusion equations. A spatial discretization of these equations with
a mixed finite element method yields a high dimensional nonlinear system of differential-
algebraic equations. Balancing-related model reduction is used to reduce the dimension of
the decoupled linear network equations, while the semidiscretized semiconductor model is
reduced using proper orthogonal decomposition. Since the computational complexity of the
reduced-order model through the nonlinearity of the drift-diffusion equations still depends
on the number of variables of the full model, we apply the discrete empirical interpolation
method to further reduce the computational complexity. We provide numerical comparisons
which demonstrate the performance of the presented model reduction approach.

1 Introduction

Computer simulations play an significant role in design and production of very large integrated
circuits or chips that have nowadays hundreds of millions of semiconductor devices placed on sev-
eral layers and interconnected by wires. Caused by the decreasing physical size and increasing
packing density and operating frequency, such devices cannot be modeled by lumped equivalent
circuits any more. Therefore, the need for new models reflecting the complex continuous processes
in semiconductors in more details is growing. An approach for modeling the semiconductor de-
vices in the circuit relies on the drift-diffusion equations coupled to the network equations [1, 2].
A spatial discretization of the drift-diffusion equations leads to systems of very large state space
dimension that makes the analysis and simulations unacceptably time consuming and expensive.
In this context, model order reduction is of great importance. A general idea of model reduction
is to approximate the large-scale system by a much smaller model that captures the input-output
behavior of the original system to a required accuracy and also preserves essential physical pro-
perties. For circuit equations, passivity is the most important property to be preserved in the
reduced-order model.
For linear dynamical systems, many different model reduction approaches have been developed
over the last thirty years, see [3, 4] for recent collection books on this topic. Krylov subspace
based methods such as PRIMA [5] and SPRIM [6, 7] are the most used passivity-preserving model
reduction techniques in circuit simulation. A drawback of these methods is the ad hoc choice
of interpolation points that strongly influence the approximation quality. Recently, an optimal
point selection strategy based on tangential interpolation has been proposed in [8, 9] that provides
an optimal H2-approximation.
An alternative approach for model reduction of linear systems is balanced truncation. In order to
capture specific system properties, different balancing techniques have been developed for standard
and generalized state space systems, see, e.g., [10, 11, 12, 13, 14]. In particular, passivity-preserving
balanced truncation methods for electrical circuits (PABTEC) have been proposed in [15, 16, 17]
that heavily exploit the topological structure of circuit equations. These methods are based on
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balancing the solution of projected Lyapunov or Riccati equations and provide computable error
bounds.
Model reduction of nonlinear equation systems may be performed by a trajectory piece-wise linear
approach [18] based on linearization, or proper orthogonal decomposition (POD) (see, e.g., [19]),
which relies on snapshot calculations and is successfully applied in many different engineering
fields including computational fluid dynamics and electronics [19, 20, 21, 22, 23]. A connection of
POD to balanced truncation was established in [24, 25].
A POD-based model reduction approach for the nonlinear drift-diffusion equations has been pre-
sented in [26], and then extended in [20] to parameterized electrical networks using the greedy
sampling proposed in [27]. An advantage of the POD approach is its high accuracy with only few
model parameters. However, for its application to the drift-diffusion equations it was observed
that the reduction of the problem dimension not necessarily implies the reduction of the simulation
time. Therefore, several adaption techniques such as missing point estimation [28] and discrete
empirical interpolation method (DEIM) [29] have been developed to reduce the simulation cost
for the reduced-order model.
In this paper, we consider model order reduction of coupled circuit-device systems that consist of
the differential-algebraic equations modeling a circuit and the nonlinear drift-diffusion equations
describing the semiconductor devices. Our approach is based on a combination of the PABTEC
algorithm for the decoupled linear network equations and the DEIM-adopted POD method for
the distributed device equations.

2 Model equations

In this section, we briefly introduce model equations for integrated circuits with semiconductor
devices. For more details on network analysis and semiconductor physics, we refer to [2, 30, 31,
32, 33].
A general circuit can be represented as a directed graph with nη + 1 nodes and nb branches.
The nodes of the graph correspond to the nodes of the circuit, while the branches of the graph
correspond to the circuit elements like resistors, capacitors, inductors, voltage sources and current
sources. The dynamical behavior of the circuit can then be described using modified nodal analysis
(MNA), e.g., [34], by a nonlinear system of differential-algebraic equations (DAEs)

AC
d
dtqC (A

T
C η) +AR g(A

T
R η) +AL ıL +AV ıI = 0, (1a)

d
dtφ(ıL )−ATLη = 0, (1b)

ATV η − uV = 0, (1c)

where η denotes the vector of node potentials, ıL , ıV and ıI are currents of inductive, voltage source
and current source branches, respectively, while uV and uI are voltages of voltage sources and
current sources, respectively. Furthermore, AC ∈ R

nη,nC , AL ∈ R
nη,nL , AR ∈ R

nη,nR , AV ∈ R
nη ,nV

and AI ∈ R
nη,nI are the (reduced) incidence matrices describing the topology of the corresponding

circuit elements, and the functions qC : RnC → R
nC , g : RnR → R

nR and φ : RnL → R
nL describe

capacitor charges, resistor conductivities and electromagnetic fluxes in the inductors, respectively.
We will assume that

(A1) the matrix AV has full column rank,

(A2) the matrix
[
AC AL AR AV

]
has full row rank,

(A3) the functions qC , g and φ are continuously differentiable and their Jacobians

∂qC (uC )

∂uC
= C (uC ),

∂g(uR )

∂uR
= G (uR ),

∂φ(ıL)

∂ıL
= L(ıL ) (2)

are positive definite for all admissible uC = ATC η, uR = ATR η and ıL , respectively.
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Assumptions (A1) and (A2) imply that the circuit contains neither loops of voltage sources
(V-loops) nor cutsets of current sources (I-cutsets), respectively, while assumption (A3) means
that all circuit elements are passive, i.e., they do not generate energy.
Using (2), the MNA equations (1) can be written in the compact form

E(x) ddtx = Ax+ f(x) + Bu, (3a)

y = BTx, (3b)

where

x =

⎡⎣ η
ıL
ıV

⎤⎦ , u =

[
ıI
uV

]
, y =

[ −uI
−ıV

]
are the state, input and output vectors, respectively, and

E(x) =

⎡⎢⎣ AC C (ATC η)ATC 0 0

0 L(ıL) 0

0 0 0

⎤⎥⎦, A =

⎡⎢⎣ 0 −AL −AV

ATL 0 0

ATV 0 0

⎤⎥⎦ , (3c)

f(x) =

⎡⎢⎣ −AR g(A
T
R η)

0

0

⎤⎥⎦ , B =

⎡⎢⎣ −AI 0

0 0

0 −I

⎤⎥⎦ . (3d)

In the following, we will distinguish between linear circuit elements like linear resistors, capacitors
and inductors, and nonlinear circuit elements like nonlinear capacitors, inductors, diodes and
transistors. A circuit element is called linear if the current-voltage relation for this element is
linear. Otherwise, the circuit element is called nonlinear. Without loss of generality, we may
assume that the circuit elements are ordered such that the incidence matrices can be partitioned
as

AC =
[
AC̄ A

˜C
]
, AL =

[
AL̄ A

˜L
]
, AR =

[
AR̄ A

˜R
]
, (3e)

where the incidence matrices AC̄ , AL̄ and AR̄ correspond to the linear circuit components, and
A

˜C , A˜L and A
˜R are the incidence matrices for the nonlinear devices. We also assume that the

linear and nonlinear elements are not mutually connected, i.e.,

C (ATC η) =
[ C̄ 0

0 C̃ (AT
˜C η)

]
, L(ıL) =

[
L̄ 0

0 L̃(ı
˜L )

]
, g(ATR η) =

[ ḠATR̄ η

g̃(AT
˜R η)

]
, (3f)

where C̄ ∈ R
nC̄ ,nC̄ , L̄ ∈ R

nL̄ ,nL̄ and Ḡ ∈ R
nR̄ ,nR̄ are the capacitance, inductance and conductance

matrices for the corresponding linear elements, whereas C̃ : Rn˜C → R
n

˜C ,n˜C , L̃ : Rn˜L → R
n

˜L ,n˜L and
g̃ : Rn˜R → R

n
˜R describe the corresponding nonlinear components, and ı

˜L is the vector of currents
through the nonlinear inductors. If the circuit contains some critical semiconductors that have to
be modeled by distributed device equations, then we consider the further partitioning

A
˜R =

[
AN AS

]
, g̃(AT

˜R η) =

[
g̃N (A

T
N η)

g̃S (A
T
S η)

]
, (3g)

where the subscripts N and S stand for other nonlinear resistive elements with simple current-
voltage relations and for semiconductors, respectively.
For modeling of such critical semiconductors, we use the nonlinear drift-diffusion equations in
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mixed formulation given by

ε div gψ = q(n− p−N), (4a)

q ∂tn− div Jn = −q R(n, p), (4b)

q ∂tp+ div Jp = −q R(n, p), (4c)

gψ = ∇ψ, (4d)

Jn = q UT μn∇n− q μn n gψ, (4e)

Jp = −q UT μp∇p− q μp p gψ, (4f)

on a space-time domain Ω × [0, T ] with Ω ⊂ R
d, d = 1, 2, 3. Here, ψ = ψ(ξ, t) is the electric

potential, n = n(ξ, t) and p = p(ξ, t) are the electron and hole densities, Jn = Jn(ξ, t) and
Jp = Jp(ξ, t) are the current densities of electrons and holes, respectively, N = N(ξ) is the doping
profile, and

R(n, p) =
np− n20

τp(n+ n0) + τn(p+ n0)

is the Shockley-Read-Hall recombination-generation rate, where τp and τn are the electron and
hole lifetimes, respectively, and n0 is the intrinsic concentration. Furthermore, μn and μp are the
mobilities of electrons and holes, respectively, ε is the dielectric permittivity and q is the unit
charge. The temperature is assumed to be constant which leads to a constant thermal voltage UT .
For a comprehensive overview of the drift-diffusion equations, we refer to [31, 32, 35].
The semiconductor model (4) is coupled to the MNA system (3) through the semiconductor current
vector ıS with the components

(ıS )k =

∫
ΓO,k

(Jn + Jp − ε ∂tgψ) · ν dσ, (5)

where ν is the normal vector to the interface ΓO,k, and through the boundary conditions for
the drift-diffusion equations (4) depending on the node potentials η of the network. On Ohmic
contacts ΓO,k, they read

ψ(ξ, t) = ψap(A
T
S η(t)) + ψbi(ξ), (ξ, t) ∈ ΓO,k × [0, T ] (6a)

n(ξ, t) = φn(ξ), p(ξ, t) = φp(ξ), (ξ, t) ∈ ΓO,k × [0, T ], (6b)

where AS is the semiconductor incidence matrix, ψap denotes the applied potential, and ψbi, φn
and φp are given time-independent functions [2]. Furthermore, on isolated boundaries ΓI the
boundary conditions are given by

gψ · ν = 0, Jn · ν = 0, Jp · ν = 0. (6c)
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Figure 1: RC chain with a diode.
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In Figure 1, a coupled circuit-device system with one semiconductor diode is shown. In par-
ticular, the boundary conditions for the electric potential read ψ(ξ, t) = η2(t) + ψbi(ξ) for all
(ξ, t) ∈ ΓO,1 × [0, T ] and ψ(ξ, t) = η3(t) + ψbi(ξ) for all (ξ, t) ∈ ΓO,2 × [0, T ].
Equations (3), (4) and (5) represent a coupled system of partial differential-algebraic equations.
The analytical properties and numerical methods for such a system have been investigated in
[1, 2, 20, 36]. Using the finite element method for a spatial discretization of the drift-diffusion
equations (4) as described in [20], we obtain the nonlinear DAE system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−ML
d
dtn

h

ML
d
dtp

h

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −AFEM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψh

nh

ph

ghψ
Jhn

Jhp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−F(nh, ph, ghψ) + b(ATS η), (7)

where ψh, nh, ph, ghψ, J
h
n , J

h
p are the vectors of the corresponding semidiscretized functions,

and the functions F and b result from the nonlinearities in (4) and the boundary conditions (6),
respectively. Furthermore, after discretization, the coupling relation (5) takes the form

ıhS = C1J
h
n + C2J

h
p + C3

d
dtg

h
ψ, (8)

where ıhS is the semidiscretized semiconductor current vector, and C1, C2 and C3 are constant

matrices. This relation can be shortly written as ıhS = ϑ(xhS ), where

xhS =
[
(ψh)T (nh)T (ph)T (ghψ)

T (Jhn )
T (Jhp )

T
]T

is the state vector of (7), and ϑ is a state-to-output map. Determining the state xhS from equa-

tion (7) for a given voltage ATS η, say x
h
S = χ(ATS η), and substituting it into (8), we obtain the

relationship

ıhS = g̃S (A
T
S η), (9)

where g̃S : RnS → R
nS defined as g̃S (A

T
S η) = ϑ(χ(ATS η)) describes the voltage-current relation

for the semidiscretized semiconductors. The relation (9) can be considered as an input-to-output
map, where the input is the voltage vector ATS η at the contacts of the semiconductors and the

output is the approximate semiconductor current ıhS .
Summarizing, we have the coupled DAE system (3), (7) and (9) that represents a semidiscretized
model for the electronic circuit with semiconductors.

3 Model reduction approach

In this section, we present a model reduction approach for the coupled nonlinear DAE system
(3), (7) and (9) based on decoupling this system into linear and nonlinear subsystems. Then
the linear part is approximated by a reduced-order linear model of lower dimension using the
PABTEC algorithm [15, 17], while the decoupled nonlinear equations are reduced using the POD
method as described in [20]. Combining these reduced-order linear and nonlinear models, we
obtain a nonlinear reduced-order model that approximates the coupled system (3), (7) and (9),
see Figure 2. We now describe this model reduction procedure in more detail. For simplicity,
in model reduction of the nonlinear part, we restrict ourself to the semidiscretized drift-diffusion
model (7). Other nonlinear equations can be reduced in a similar way.

3.1 Decoupling

Our goal is now to extract a linear subcircuit from a nonlinear circuit. For this purpose, we
use a decoupling procedure from [37] that consists in the replacement of the nonlinear inductors
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Figure 2: Model reduction approach

and nonlinear capacitors by controlled current sources and controlled voltage sources, respectively.
The nonlinear resistors are replaced by an equivalent circuit consisting of two serial linear resistors
and one controlled current source connected parallel to one of the resistors. Such replacements
introduce additional nodes and state variables, but neither additional CV-loops nor LI-cutsets
occur in the decoupled linear subcircuit meaning that its index coincides with the index of the
original circuit, see [38] for the index analysis of the circuit equations. An advantage of the
suggested replacement strategy is exemplary demonstrated in the following example.

Example 3.1 Consider again a circuit with a semiconductor diode as in Figure 1. We suggest
to replace the diode by an equivalent circuit shown in Figure 3. If we would replace the diode
by a current source, then a decoupled linear circuit would have I-cutset and, hence, lack well-
posedness. Moreover, if we would replace the diode by a voltage source, then the resulting linear
circuit would have CV-loop, i.e., it would be of index two, although the original circuit is of index
one. Note that model reduction of index two problems is more involved than that of index one
[39].

After the replacements described above, the extracted linear subcircuit can be modeled by the
linear DAE system in the MNA form

E d
dtx� = Ax� +Bu�, (10a)

y� = BTx�, (10b)
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Figure 3: Decoupled linear RC chain with a replacement circuit.

with xT� =
[
ηT ηTz ıTL̄ ıTV ıT

˜C
]
, uT� =

[
ıT
I
ıTz ıT

˜L uTV uT
˜C
]
and

E =

⎡⎣ACCATC 0 0

0 L 0

0 0 0

⎤⎦, A =

⎡⎣−ARGATR −AL −AV
ATL 0 0

ATV 0 0

⎤⎦, B =

⎡⎣−AI 0

0 0

0 −I

⎤⎦, (10c)

where the incidence and element matrices are given by

AC =

[
AC̄
0

]
, AR =

[
AR̄ A1

˜R A2
˜R

0 −I I

]
, AL =

[
AL̄
0

]
, (10d)

AV =

[
AV A

˜C
0 0

]
, AI =

[
A
I
A2

˜R A
˜L

0 I 0

]
, (10e)

G =

⎡⎣ Ḡ 0 0
0 G1 0
0 0 G2

⎤⎦ , C = C̄ , L = L̄ . (10f)

Here, the matrices A1
˜R and A2

˜R have entries in {0, 1} and {−1, 0}, respectively, and satisfy

A1
˜R +A2

˜R = A
˜R . Moreover, ηz is the potential of the introduced nodes, and the matrices G1

and G2 are diagonal with conductances of the introduced linear resistors in the replacement cir-
cuits on the diagonal, and the new input variables u

˜C and ız are given by

u
˜C = AT

˜C η, (11)

ız = (G1 +G2)G
−1
1 g̃(AT

˜R η)−G2A
T
˜R η. (12)

One can show that the linear system (10) together with the decoupled nonlinear equations (7),
(9) and the equations for the nonlinear inductors

L̃ d
dt ı˜L −AT˜L η = 0

is state equivalent to the coupled system (3), (7) and (9) together with the relations

ı
˜C = C̃ (u

˜C )
d
dtu˜C ,

ηz = (G1 +G2)
−1(G1(A

1
˜R )
T η −G2(A

2
˜R )
T η − ız

)
in the sense that these both systems have the same state vectors up to a permutation, see [37] for
detail.
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3.2 Model reduction of the linear subcircuit using the PABTECmethod

Once we have the decoupled linear DAE system (10) with E, A ∈ R
n�,n� and B ∈ R

n�,m� , we can
approximate this system by a reduced-order model

Ê d
dt x̂� = Âx̂� + B̂u, (13a)

ŷ� = Ĉx̂�, (13b)

with Ê, Â ∈ R
r�,r� , B̂ ∈ R

r�,m� , Ĉ ∈ R
m�,r� and r� � n�. If the matrices G, C and L in (10f) are

symmetric and positive definite, then system (10) is passive and reciprocal. The latter means that
the transfer function of (10) given by G(s) = BT (sE − A)−1B satisfies GT (s) = SextG(s)Sext
with the signature matrix

Sext = diag(InI+n˜L+n˜R
,−InV+n˜C

). (14)

Of course, these properties should be preserved in the reduced-order model (13). This would allow
us to synthesize this model as a circuit with a small number of elements compared to the original
circuit [40, 41].
The passive and reciprocal reduced-order model (13) can be computed via the PABTEC method
[15] based on balanced truncation. First, we define the controllability and observability Gramians
of system (10) as unique stabilizing solutions of the projected Riccati equations

EXFT + FXET + EXBTcBcXE
T + PlBoB

T
o P

T
l = 0, X = PrXP

T
r , (15)

ETY F + FTY E + ETY BoB
T
o Y E + PTr B

T
cBcPr = 0, Y = PTl Y Pl, (16)

where
F = A−BBT − 2PlB(I −MT

0 M0)
−1MT

0 B
TPr,

Bo =
√
2BJ−1o , Bc =

√
2J−1c BT ,

JTo Jo = I −MT
0 M0, JcJ

T
c = I −M0M

T
0 ,

M0 = I − 2 lim
s→∞B

T (sE −A+BBT )−1B,

and Pr and Pl are the spectral projectors onto the right and left deflating subspaces of the pencil
λE − (A − BBT ) corresponding to the finite eigenvalues. The balanced truncation approach is
based on the transformation of system (10) into a balanced form whose Gramians are both equal
to a diagonal matrix. Then the reduced-order model (13) is determined by the truncation of the
states corresponding to small diagonal elements of the balanced Gramians. In practice, we do not
need to balance system (10) explicitly. Instead, we can use the following algorithm developed in
[15].

Algorithm 3.2 (Passivity-preserving balanced truncation for electrical circuits (PABTEC))
Given (E, A, B, BT ) for the linear model equations (10), compute (Ê, Â, B̂, Ĉ) for a reduced-
order model (13).

1. Compute the Cholesky factor RX of the stabilizing solution X = RXR
T
X of the projected

Riccati equation (15).

2. Compute the eigenvalue decomposition

RTXSintERX = [U1, U2 ]

[
Λ1 0
0 Λ2

]
[U1, U2 ]

T ,

where Sint = diag(Inη+n˜R
,−InL̄ ,−InV+n˜C

), [U1, U2] is orthogonal, Λ1 = diag(λ1, . . . , λr) and

Λ2 = diag(λr+1, . . . , λq).

3. Compute the eigenvalue decomposition (I −M0)Sext = U0Λ0U
T
0 , where Sext is as in (14),

U0 is orthogonal and Λ0 = diag(λ̂1, . . . , λ̂m�).
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4. Compute the reduced-order model (13) with

Ê =

[
Ir 0
0 0

]
, Â =

1

2

[
2WTAV

√
2WTBC∞

−√2B∞BT V 2 I −B∞C∞

]
, (17a)

B̂ =

[
WTB

−B∞/
√
2

]
Ĉ =

[
BT V, C∞/

√
2
]
, (17b)

where
B∞ = S0|Λ0|1/2UT0 Sext, C∞ = U0|Λ0|1/2,
W = RXU1|Λ1|−1/2, V = SintRXU1S1|Λ1|−1/2,
S0 = diag(sign(λ̂1), . . . , sign(λ̂m�)), |Λ0| = diag(|λ̂1|, . . . , |λ̂m� |),
S1 = diag(sign(λ1), . . . , sign(λr)), |Λ1| = diag(|λ1|, . . . , |λr|).

One can show that the reduced-order system (13), (17) is passive and reciprocal, and we have the
following a priori L2-norm error bound

‖ŷ� − y�‖L2 ≤ 2‖I +G‖2
H∞(|λr+1|+ . . .+ |λq|)‖u�‖L2 ,

provided 2‖I + G‖H∞(|λr+1| + . . . + |λq|) < 1, see [13, 15]. Here, the H∞-norm is defined as
‖I +G‖H∞ = supω∈R ‖I +G(iω)‖, where ‖ · ‖ denotes the spectral matrix norm. Furthermore,
if we choose r in the PABTEC algorithm such that 2‖I + Ĝ‖H∞(|λr+1| + . . . + |λq|) < 1, where

Ĝ(s) = Ĉ(sÊ− Â)−1B̂ is the transfer function of (13), then we obtain the a posteriori error bound

‖ŷ� − y�‖L2 ≤ 2‖I + Ĝ‖2
H∞(|λr+1|+ . . .+ |λq|)‖u�‖L2

that is inexpensive to compute.
Note that the projectors Pl, Pr and the matrix M0 required in Algorithm 3.2 can be constructed
in explicit form using the topological structure of the MNA equations (10), see [15, 17]. Moreover,
for RC and RL circuits, the PABTEC algorithm can be simplified in such a way that a projected
Lyapunov equation has to be solved instead of the projected Riccati equation, that reduces the
computational complexity considerably [16].

3.3 Model reduction of the nonlinear semiconductor model using the
POD method

For the approximation of the nonlinear semiconductor model (7) by a reduced-order model, we use
the POD method [19] combined with the DEIM approach [29] for efficient evaluation of nonlin-
earities. For this purpose, we first run a simulation of the coupled system system (3), (7) and (9)
and collect k snapshots ψh(tj), n

h(tj), p
h(tj), g

h
ψ(tj), J

h
n (tj), J

h
p (tj) at time instances tj ∈ [0, T ],

j = 1, . . . , k. Note that already at this stage we can replace the decoupled linear subsystem (10)
of (3) with the reduced-order model (13), (17) in order to reduce the simulation time. The snap-
shot variant of POD introduced in [19] finds a best approximation of the space spanned by the
snapshots with respect to the considered scalar product. Since every component ψh, nh, ph, ghψ,

Jhn , J
h
p of the state vector of (7) has its own physical meaning, we approximate these components

separately by the vectors

ψPOD(t) = Uψγψ(t), nPOD(t) = Unγn(t), pPOD(t) = Upγp(t),

gPODψ (t) = Ugψγgψ (t), JPODn (t) = UJnγJn(t), JPODp (t) = UJpγJp(t),

respectively, where the projection matrices U∗ ∈ R
nξ×s∗ with ∗ ∈ {ψ, n, p, gψ, Jn, Jp} contain the

(time-independent) POD basis vectors, the functions γ∗ are the corresponding time-variant coef-
ficients, and the numbers s∗ denote the respective numbers of the POD basis functions included.
The projection matrices U∗ are determined from the singular value decomposition of the matri-
ces composed of the corresponding snapshots. Let, for example, Ψ = ŨψΣψṼ

T
ψ be the singular

9



value decomposition of the snapshot matrix Ψ =
[
ψh(t1) . . . ψh(tk)

]
, where Ũψ and Ṽψ are

orthogonal and Σψ = diag(σψ,1, . . . , σψ,k) with σψ,1 ≥ . . . ≥ σψ,k. Then the projection matrix Uψ

is defined as Uψ = Ũψ
[
Isψ 0

]T
. Other projection matrices can be obtained in a similar way,

see [20] for detail. The approximation quality of the POD basis with respect to the snapshots is
expressed by 1−Δ∗ with the lack of information Δ∗ defined by

Δ∗ =

√√√√∑k
i=s∗+1 σ∗,i∑k
i=1 σ∗,i

≤ 1, (18)

where σ∗,i denote the singular values of the corresponding snapshot matrix.
The Galerkin projection of system (7) yields the reduced-order model⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− d
dtγn
d
dtγp

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −APOD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γψ

γn

γp

γgψ
γJn

γJp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− UTF(Unγn, Upγp, Ugψγgψ) + UT b(ATS η), (19)

where APOD = UTAFEMU and U = diag(Uψ , Un, Up, Ugψ , UJn , UJp). The coupling relation (9)
can then be approximated by

ı̂hS = C1UJnγJn + C2UJpγJp + C3Ugψ
d
dtγgψ . (20)

As for the original system (7) and (9), we denote the relation between ATS η and ı̂
h
S by

ı̂hS =
ˆ̃gS (A

T
S η). (21)

All matrix-matrix multiplications are calculated in an off-line phase, whereas the nonlinear function
F has to be evaluated on-line. For the reduction of the evaluation time, we use DEIM proposed
in [29].

3.4 Recoupling

After model reduction of the linear DAE system (10) using the PABTEC method, we obtain the
reduced-order model (13), (17). In particular, this model has the form

Ê d
dt x̂� = Âx̂� +

[
B̂1 B̂2 B̂3 B̂4 B̂5

]
⎡⎢⎢⎢⎢⎣
ıI
ız
ı
˜L
uV
u
˜C

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
ŷ�1
ŷ�2
ŷ�3
ŷ�4
ŷ�5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
Ĉ1
Ĉ2
Ĉ3
Ĉ4
Ĉ5

⎤⎥⎥⎥⎥⎥⎦ x̂�,

where ŷ�j = Ĉj x̂�, j = 1, . . . , 5, approximate the corresponding components of the output y�
in (10b). Combining this system with the unchanged nonlinear circuit equations and the reduced
semiconductor model (19), (21) as described in [37], we get the reduced-order nonlinear model

Ê(x̂) ddt x̂ = Â x̂+ f̂(x̂) + B̂ u, (22a)

ŷ = Ĉ x̂, (22b)
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where x̂T =
[
x̂T� ı̂TL ûTC ûT

˜R

]
, uT =

[
ıT
I

uTV
]
and

Ê(x̂) =

⎡⎢⎢⎣
Ê 0 0 0

0 L̃ (̂ı
˜L ) 0 0

0 0 C̃ (û
˜C ) 0

0 0 0 0

⎤⎥⎥⎦, f̂(x̂) =

⎡⎢⎢⎣
0
0
0

ˆ̃g(û
˜R )

⎤⎥⎥⎦, B̂ =

⎡⎢⎢⎣
B̂1 B̂4
0 0
0 0
0 0

⎤⎥⎥⎦, (22c)

Â =

⎡⎢⎢⎣
Â+ B̂2(G1 +G2)Ĉ2 B̂3 B̂5 B̂2G1

−Ĉ3 0 0 0

−Ĉ5 0 0 0

−G1Ĉ2 0 0 −G1

⎤⎥⎥⎦, Ĉ =
[
Ĉ1 0 0 0

Ĉ4 0 0 0

]
. (22d)

The coupled system (22), (19) and (21) represents then an approximation to the nonlinear DAE
system (3), (7) and (9), where both the linear subcircuit as well as the semiconductor model are
reduced. Note that both model reduction approaches presented in Sections 3.2 and 3.3 for the de-
coupled linear subcircuit and nonlinear drift-diffusion equations can be executed independently. In
this case, the model equations (22), (7) and (9) with unreduced g̃ instead of ˆ̃g in (22c) approximate
the original coupled nonlinear DAE system (3), (7) and (9), where only the linear subsystem is
reduced and the semiconductor model remains unchanged. Finally, the model equations (3), (19)

and (21), where the approximate function ˆ̃g instead of g̃ is used in (3f) represent an approximation
to the original nonlinear DAE system (3), (7) and (9), where only the distributed semiconductor
model is reduced and the circuit equations remain unchanged.

4 Numerical experiments

In this section, we present some results of numerical experiments to demonstrate the applicability
of the presented model reduction approaches for coupled circuit-device systems.
For model reduction of linear circuit equations, we use the MATLAB Toolbox PABTEC [42]. The
POD method is implemented in C++ based on the FEM library deal.II [43] for discretizing the
drift-diffusion equations. The obtained large and sparse nonlinear DAE system (3), (7), (9) as
well as the small and dense reduced-order model (19), (21), (22) are integrated using the DASPK
software package [44] based on a BDF method, where the nonlinear equations are solved using
Newton’s method. Furthermore, the direct sparse solver SuperLU [45] is employed for solving
linear systems.
Consider an RC circuit with one diode as shown in Figure 1. The input is given by

u(t) = uV (t) = 10 sin(2πf0t)
4

with the frequency f0 = 104 Hz, see Figure 4. The output of the system is y(t) = −ıV (t).
We simulate the models over the fixed time horizon [0, 2.5f0 ]. The linear resistors have the same
resistance R = 2kΩ and the linear capacitors have the same capacitance C = 0.02μF.
First, we describe the diode by the voltage-current relation

g̃(u
˜R ) = 10−14

(
exp(40u

˜R )− 1
)
, (23)

and apply only the PABTEC method to the decoupled linear system (10) that models the linear
circuit given in Figure 3. System (10) with n� = 1503 variables was approximated by a re-
duced model (13) of dimension r� = 24. This dimension was determined as r� = r + r0, where
r0 = rank(I −M0) and r satisfies the condition (|λr+1|+. . .+|λq|) < tolBT with a prescribed toler-
ance tolBT = 10−7. The outputs y and ŷ of the original nonlinear system (3) and the reduced-order
nonlinear model (22), respectively, are plotted in Figure 4. Simulation time and the absolute and
relative L2-norm errors in the output are presented in Table 1. One can see that the simulation
time is reduced by a factor of 10, while the relative error is below 2 %.
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Figure 4: Input voltage and output currents for the basic diode with the voltage-current rela-
tion (23).

Table 1: Simulation time and approximation errors for the nonlinear RC circuit with the basic
diode described by the voltage-current relation (23).

system dimension simulation absolute error relative error
time ‖y − ŷ‖L2 ‖y − ŷ‖L2/‖y‖L2

unreduced 1503 0.584 s
reduced 24 0.054 s 5.441 · 10−7 1.760 · 10−2

As the next step, we introduce the drift-diffusion model (4) for the diode. The parameters of the
diode are summarized in Table 2. Note that we do not expect to obtain the same output y as in the
previous experiment. To achieve this, one would need to perform a parameter identification for the
drift-diffusion model which is not done in this paper. In Table 3, we collect the numerical results
for different model reduction strategies. The outputs of the systems with the reduced network
and/or POD-reduced diode are compared to the full semidiscretized model (3), (7) and (9) with
7510 variables. First, we reduce the extracted linear network and do not modify the diode. This
reduces the number of variables by about 20 %, and the simulation time is reduced by 27 %. It
should also be noted that the reduced network is not only smaller but it is also easier to integrate
for the DAE solver. An indicator for the computational complexity is the number of Jacobian
evaluations or, equivalently, the number of LU decompositions required during integration.
Finally, we create a POD-reduced model (19) and (21) for the diode. The number of columns
s∗ of the projection matrices U∗ is determined from the condition Δ∗ ≤ tolPOD with Δ∗ defined
in (18) and a tolerance tolPOD = 10−6 for each component. We also apply the DEIM method
for the reduction of nonlinearity evaluations in the drift-diffusion model. The resulting reduced-
order model (19) for the diode is a dense DAE of dimension 105 while the original model (7)
has dimension 6006. Coupling it with the unreduced and reduced linear networks, we obtain the
results in Table 3 (last two rows). The simulation results for the different model reduction setups
are also illustrated in Figure 5.

5 Summary

In the present paper, we developed a framework to combine the PABTEC and simulation-based
POD model order reduction techniques to determine reduced-order models for coupled circuit-
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Table 2: Diode model parameters.

Parameter Value

ε 1.03545 · 10−12 F/cm
UT 0.0259 V
n0 1.4 · 1010 1/cm3

μn 1350 cm2/(V sec)
τn 330 · 10−9 sec
μp 480 cm2/(V sec)
τp 33 · 10−9 sec
Ω [0, l1]× [0, l2]× [0, l3]
l1 (length) 10−4 cm
l2 (width) 10−5 cm
l3 (depth) 10−5 cm
N(ξ), ξ1 < l1/2 −9.94 · 1015 1/cm3

N(ξ), ξ1 ≥ l1/2 4.06 · 1018 1/cm3

FEM-mesh 500 elements, refined at ξ1 = l1/2

Table 3: Statistics for model reduction of the coupled circuit-device system.

network diode dim. simul. Jacobian absolute relative
(MNA (drift-diffusion time evaluations error error
equations) equations) ‖y − ŷ‖L2 ‖y − ŷ‖L2/‖y‖L2

unreduced unreduced 7510 23.37s 20
reduced unreduced 6031 16.90s 17 2.165 · 10−8 7.335 · 10−4
unreduced reduced 1609 1.51s 16 2.952 · 10−6 1.000 · 10−1
reduced reduced 130 1.19s 11 2.954 · 10−6 1.000 · 10−1

device systems. While the PABTEC method preserves the passivity and reciprocity in the re-
duced linear circuit model, the POD approach delivers high-fidelity reduced-order models for the
semiconductor devices. Numerical examples demonstrate that the recoupling of the respective
reduced-order models delivers an overall reduced-order model for the circuit-device system which
allows significantly faster simulations (speedup-factor is about 20) while keeping the relative errors
below 10 %.
Finally, we note that the model reduction concept developed in this paper is not restricted to the
reduction of electrical networks containing semiconductor devices. It can also be extended to the
reduction of networks modeling e.g. nonlinear multibody systems containing many simple mass-
spring-damper components and only a few high-fidelity components described by PDE systems.
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