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OPTIMAL CONTROL OF ELLIPTIC EQUATIONS WITH
POINTWISE CONSTRAINTS ON THE GRADIENT OF THE STATE

IN NONSMOOTH POLYGONAL DOMAINS

W. WOLLNER∗

Abstract. This article is concerned with optimal control problems subject to a second order
elliptic PDE and additional pointwise constraints on the gradient of the state. In particular, existence
of solutions on nonsmooth polygonal or polyhedral domains is analyzed. In this situation the solution
operator for the partial differential equation does not provide enough regularity to state the pointwise
constraint for any right hand side due to the appearance of singularities associated to the corners,
edges and vertices of the domain.

Further, necessary optimality conditions for the solution of the optimization problem in two and
three space dimensions are derived. However, in the three dimensional case certain critical angles
along the edges of the domain have to be circumvented in the derivation of the optimality conditions.

Finally, the derived optimality conditions are utilized to deduce additional regularity for the
control variable.

Key words. optimization with PDEs, first order state constraints, nonsmooth domains, regu-
larity, optimality conditions
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1. Introduction. We are concerned with the existence of solutions to optimal
control problems of second order elliptic equations subject to constraints on the gradi-
ent of the state. Such problems have some natural application for instance in cooling
processes or structural optimization when high stresses have to be avoided.

Despite these interesting applications first order state constraints have hardly
been recognized in mathematics. In the works [5, 6] the case of optimal control of
semilinear elliptic equations with pointwise first order state constraints was studied
under the assumption that the domain Ω ⊂ Rn possesses a C1,1 boundary. In partic-
ular, they studied the adjoint equation and derived first order necessary optimality
conditions. It is immediately clear that their results carry over to the case of a polyg-
onally bounded domain, as long as the linearized state equation (with homogeneous
Dirichlet boundary values) defines an isomorphism between W 2,t(Ω) ∩ H1

0 (Ω) and
Lt(Ω) for some t > n. However, even for n = 2 this requires a convex domain which is
usually too restrictive for applications. In [21] a Moreau-Yosida based framework for
PDE-constrained optimization with constraints on the derivative of the state is de-
veloped and used to obtain a semismooth Newton algorithm. In [25] an investigation
of barrier methods for this problem class is conducted.

When concerned with the discretization of the infinite dimensional problem using
finite elements, recent results where obtained in [11, 19, 24]. However in all cases
the domain was either smooth or polygonally bounded with sufficiently small interior
angles. Concerning adaptive discretization methods we refer to [29] and the recent
contribution [20].

This article is based upon parts of the dissertation [28] of the author. We will
consider a bounded, polygonal or polyhedral domain Ω ⊂ Rn with n = 2, 3. Then
using standard notation for the Lebesgue and Sobolev spaces we consider the following
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distributed optimal control problem

min
(q,u)∈Lr(Ω)×H1

0 (Ω)
J(q, u) =

1

2
‖u− ud‖2 +

α

r
‖q‖rLr

subject to


(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),

|∇u|2 ≤ ψ a.e. in Ω,

a ≤ q ≤ b a.e. in Ω,

(1.1)

where a, b ∈ R ∪ {±∞} with a < b and r, α, ψ ∈ R with r ≥ 2, α,ψ > 0. To assert
well posedness we assume that at least r > n or −∞ < a < b <∞. Furthermore, for
any given right hand side f ∈ L2(Ω) the state equation

(∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω) (1.2)

defines a unique element u ∈ H1
0 (Ω) which we will frequently denote by uf . Moreover,

the solution of (1.2) exhibits more regularity, i.e., uf ∈ Hs(Ω) for some s ≥ 3/2.
Because we wish to consider the constraint |∇u|2 ≤ ψ we need u ∈W 1,∞(Ω) and are
thus interested in additional regularity u ∈ W = W 2,t(Ω) ∩ H1

0 (Ω) for some t ≥ 2.
In particular, if t > n then W ⊂ W 1,∞(Ω) and we can pose the pointwise gradient
constraint. For given t we denote by t′ the dual number, i.e., t′ = t

t−1 .
With this we can define the reduced cost functional

Ĵ(q) := J(q, uq).

The admissible set for the control variable will be denoted by

Qad := {q ∈ Lr(Ω) | a ≤ q ≤ b a.e. in Ω}

whereas we denote the set of controls feasible for the reduced problem by

Qfeas := Qad ∩ {q ∈ Lr(Ω) | |∇uq|2 ≤ ψ a.e. in Ω}.

Remark 1.1. We note that the consideration of other linear and semilinear
elliptic operators with constant coefficients in the main part of the operator as well as
different boundary conditions would be possible using the same techniques used in this
article because our results depend only on the asymptotics of the singularities near
corners, edges, and vertices and not on the precise form of the singular functions.
However, as the exponents in the radial asymptotic of the singular functions may
differ the angle dependencies –present in the three dimensional case for (1.2)– may
need adjustment. Because our exposition is already quite technical we will refrain from
such generalizations.

The case of non polygonal domains or, likewise, non constant coefficients in the
main part, quasilinear or nonlinear equations will require more additional work due
to complications from ,,crossing” of singular exponents. See, e.g., [7], for a 3d edge
with variable angle.

The rest of this article is structured as follows. In Section 2, we show that
problem (1.1) is well posed and derive a regularity result for the state equation.
Namely we will show additional regularity of the state variable due to the first order
state constraint. This will be based upon well known singular expansion of the solution
to (1.2). Then, in Section 3 we will obtain first order necessary conditions for arbitrary
polygonal domains in n = 2 and certain polyhedral domains in n = 3. Finally, we
will use the derived optimality conditions to show additional regularity of the control
variable in Section 4.
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2. Existence. The main theorem of this section will be the following
Theorem 2.1. Assume (1.1) has at least one feasible control, then (1.1) has a

unique solution (q, u) ∈ Lr(Ω) ×W 2,t(Ω) ∩H1
0 (Ω). With some t > 2 depending only

on the angles in the corners, vertices and edges of the domain.
Before we come to the proof of Theorem 2.1 we will require some additional prepa-

ration. In particular, we will show that the constraint |∇u| ≤ ψ gives us additional
regularity of the state variable. In order to make the idea more clear we split the
proof in two parts. One for the case n = 2 and one for the case n = 3. The proofs
in both cases follow the same line of arguments, but the case n = 3 is by far more
technical.

Lemma 2.2. Let Ω ⊂ R2 be a polygonal domain. Further, let f ∈ Lp(Ω) for
some p ≥ 2. If the solution u = uf ∈ H1

0 (Ω) of (1.2) satisfies u ∈ W 1,∞(Ω), then
u ∈ W 2,t(Ω) for some t ∈ [2, p] whose value can be determined by knowledge of the
angles in the corners of the domain. Moreover, if p > 2 then t ∈ (2, p] is possible.

Proof. The proof is based on the well known singular behavior of the solution near
the corners of the domain, cf., [14] for the 2d case. The idea of the proof is as follows,
the solution to the state equation can be split into a regular part that exhibits the
regularity introduced by the right-hand side f and a singular part corresponding to
the non-smooth boundary. By the bound on the gradient of the solution one obtains,
that the singular part may not exist.

Let C be the (finite) set of corners of the domain. For a corner c ∈ C we denote
the interior angle by ωc. We introduce polar coordinates with respect to the corner c
denoted by (ρc, θc). Now, because Ω is bounded we have f ∈ Lt(Ω) for all t ∈ [2, p].
Assume further that t is such that for t′ = t

t−1 it holds 2ωc
πt′ 6∈ N for all c ∈ C. Then

there exist numbers Cc,j such that the solution u to (1.2) satisfies

u−
∑
c∈C

j< 2ωc
πt′∑

j=1
jπ
ωc
6=1

Cc,jsc,j(ρc, θc) ∈W 2,t(Ω)

where the singular functions sc,j are given by

sc,j(ρc, θc) = ηc(ρc)ρ
jπ
ωc
c sin

(
jπ

ωc
θc

)
with suitable cutoff functions ηc, cf., [14, Theorem 4.4.3.7].

To proceed further, note that if t > 2 = n we have t′ < 2 and W 2,t(Ω) ⊂ C1(Ω).
Further, we have that limt↓2 t

′ = 2.
Now we intend to show that we can choose t > 2 (sufficiently small) to assert

that the inner sum in the singular expansion above contains at most the index j = 1.
To do so, first, we assume that ωc 6= 2π, then by considering t > 2 small enough
2ωc
πt′ < 2 and the second sum in the singular expansion contains at most the value

j = 1. If ωc = 2π, then t > 2 small enough implies 2ωc
πt′ < 3, and because the case

j = 2 is prohibited by the condition jπ
ωc
6= 1 we obtain again that the second sum in

the singular expansion contains at most the value j = 1.
Now, we will discuss the behavior of the derivative of the singular solutions. We

obtain for all c ∈ C where j = 1 appears in the singular expansion that 1 = j < 2ωc
πt′

and thus jπ
ωc

= π
ωc
< 2

t′ . Now, we have to distinguish two cases:
First, assume that π

ωc
< 1 then the first derivative of sc,j is unbounded because

∂ρcsc,j ≈ ρ
π
ωc
−1

c →∞ as ρc → 0. Thus the assumption u ∈W 1,∞(Ω) implies Cc,1 = 0.
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Second, if π
ωc

> 1, then it is necessary for the singular function to appear in the

representation above that we have π
ωc

< 2
t′ . Because 2

t′ → 1 as t ↓ 2 we can reduce

t > 2 even further to obtain that 2
t′ <

π
ωc

, and hence this case can be excluded by
choosing t sufficiently close to 2.

It is clear that the same argument remains true in the limit if t = t′ = 2.
Summing up we obtain that for t sufficiently small,

∑
c∈C

j< 2ωc
πt′∑

j=1

Cc,jsc,j(ρc, θc) ∈W 1,∞(Ω)

if and only if all the singular coefficients fulfill Cc,j = 0 and hence that u ∈ W 2,t(Ω)
for some t ∈ [2, p] sufficiently small, and if p > 2 we can actually choose t > 2.

Lemma 2.3. Let Ω ⊂ R3 be a polyhedral domain. Further, let f ∈ Lp(Ω) for
some p ≥ 3. If the solution u = uf ∈ H1

0 (Ω) of (1.2) satisfies u ∈ W 1,∞(Ω) then
u ∈ W 2,t(Ω) for some t ∈ (2, p]. The value of t can be determined by knowledge of
the angles in the edges and vertices of the domain.

Proof. As for Lemma 2.2 the proof is based on well known singular behavior of
the solution near the edges and vertices. The 3d case was considered in [9, 17] in
Hilbert spaces. Its extension to the non Hilbert space case can be found in [18].

As in the case n = 2, we have f ∈ Lt(Ω) for all t ∈ [2, p] because Ω is bounded.
In contrast to the case n = 2 we will have to consider contributions by vertices and
edges. Therefore we denote the set of vertices on ∂Ω by V and the set of edges by E .

We will begin by considering a vertex v ∈ V. We introduce spherical coordinates
(ρv, θv, ϕv) with respect to this vertex v. Let now Bv be a sufficiently small ball
around v, let Gv = ∂Bv ∩Ω, then let wj,v(θv, ϕv) be the sequence of eigenfunctions of
the Laplace-Beltrami operator with homogeneous Dirichlet boundary conditions on
Gv ordered by the magnitude of the corresponding eigenvalues λj,v. Now, let t be
such that λj,v 6=

(
3
t − 2

) (
3
t − 3

)
for all j. Then the corresponding singular expansion

for the vertex v reads ∑
λj,v<( 3

t−2)( 3
t−3)

Cj,vsv,j(ρv, θv, ϕv)

with the singular functions

sv,j(ρv, θv, ϕv) = ηv(ρ)ρ
βj,v− 1

2
v wj,v(θv, ϕv).

Here βj,v is given by βj,v =

√(
3
t − 1

)2
+ λj,v, see [18, Theorem 4.6].

As in the 2d case we wish to show that for t sufficiently small we can reduce
this sum to at most one summand sv,j with singular derivatives. One immediately
calculates that for t ↓ 3 the upper bound

(
3
t − 2

) (
3
t − 3

)
on λj,v in the singular

expansion converges to two. Hence for t > 3 small enough βj,v ≤
√

2+ε < 1.5 and we
obtain that the first derivative of these singular functions sv,j is not bounded because

∂ρvsv,j ≈ ρ
βj,v− 3

2
v →∞ as ρv → 0. Hence Cj,v = 0 if t is chosen sufficiently small.

We remark that we can choose t ∈ (3, p] independent of the angles because the
only requirement is βj,v < 1.5 (Although one may obtain the same for larger t by
using information on λj,v.). Further, the bound on βj,v is monotone increasing with
t and thus one can easily compute that infact βj,v < 1.5 at least for t ∈ [2, 3.1].
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Now, we consider the contributions from an edge e ∈ E . We denote its interior
angle by ωe and introduce cylindrical coordinates (ρe, θe, ze) with respect to the edge
e. We will no longer be able to assert that t > 3 but will be forced to allow values
t > 2 depending on the edge angle ωe.

Then we obtain, see [9, Section 17.D] and [17, Theorem 2.5.11] for t = 2, or
[15, Theorem 4.1] and [18, Section 7] for t > 2, that there exist functions qj,e ∈
W 2/t′−jπ/ωe,t(e), such that the singular expansion with respect to the edge e has the
form

j< 2ωe
πt′∑

j=1
jπ
ωe
6=1

Ce,j(ρe, ze)se,j(ρe, θe)

with the singular function

se,j(ρe, θe) = ηe(ρe)ρ
jπ
ωe
e sin

(
jπ

ωe
θe

)
and the coefficient function

Ce,j(ρe, ze) = (Gj(ρe, ze) ∗ qj,e)

given by a convolution with a C∞(Ω) function Gj(ρe, ze, ·) such that Ce,j(ρe, ze) =
Ce,j(ρe, ze) = (Gj(ρe, ze) ∗ qj,e) → qj,e(ze) if ρe → 0. The precise form of these
functions can, for instance, be found in the references above but is of no importance
for the following argument.

For our analysis it is important to note that the singular behavior of se,j is the
same as for the corresponding 2d singular function corresponding to the interior angle
ωc = ωe. Thus we only need to show that the coefficient factor Ce,j(ρe, ze), which
depends on ρe, does not interfere.

We proceed exactly as in the 2d case. Note that we still have to let t → 2 to
exclude certain singular functions. Let t > 2 sufficiently small, and 2ωe

πt′ 6∈ N, then in
the above sum only j = 1 appears, and the first derivative of sj,e(ρe, θe) is unbounded
for ρe → 0. Further, by transformation one gets that the gradient satisfies

∇ =

cos θe
sin θe

0

 ∂ρe +

− sin θe
cos θe

0

 1

ρe
∂θe +

0
0
1

 ∂ze

and thus

‖∇(Ce,jse,j)‖2 = (∂ρe(Ce,jse,j))
2 +

(Ce,j∂θese,j)
2

ρ2
e

+ (∂ze(Ce,jse,j))
2 ≥ (Ce,j∂θese,j)

2

ρ2
e

.

Now, because

lim
ρe→0

Ce,j = qj,e

and

lim
ρe→0

(∂θese,j)
2

ρ2
e

=∞
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we obtain that boundedness of ∇(Ce,jse,j) implies qj,e ≡ 0.
Combining the singularities from edges and vertices, see [18, Section 7.2] or [9,

Section 17.D] we obtain the assertion.
Remark 2.1. The analysis of Lemma 2.3 shows that if Ω has only vertices

(and no edges) then a solution u of (1.2) that satisfies u ∈ W 1,∞(Ω) also satisfies
u ∈ W 2,3+ε(Ω) ⊂ C1(Ω). However, in the presence of edges the situation depends on
the angles as the following corollary summarizes.

Corollary 2.4. In Lemma 2.3 one can obtain t > 3 provided that all of the
interior angles ωe of the edges e of Ω satisfy

ωe 6∈
[

4
3π, π

)
∪
[

3
2π, 2π).

Proof. In order to obtain t > 3 we note that as already mentioned in the proof
of Lemma 2.3 the singularities coming from the vertices are not a problem. Hence we
have to consider an arbitrary edge e. We denote its interior angle by ωe and introduce
cylindrical coordinates (ρe, θe, ze) with respect to the edge e. Then as in the proof of
Lemma 2.3 we have that there exist functions qj,e and Gj , such that the singular part
of the solution is of the form

j< 2ωe
πt′∑

j=1
jπ
ωe
6=1

Ce,j(ρe, ze)se,j(ρe, θe)

with Ce,j and se,j given as in the proof of Lemma 2.3.
Now to proceed, we needed to exclude those singular functions se,j with exponent

jπ
ωe
> 1.
Again, as in Lemma 2.2 we start by excluding the case ωe = 2π. Then we aimed

at removing the indices j ≥ 2 from the above sum, because for j ≥ 2 the exponent
jπ
ωe
> 1. To do so we have to choose t small enough to obtain

2ωe
πt′

< 2.

If on the other hand we need t > 3 then immediately t′ < 3
2 . Hence we have 2ωe

πt′ ↓
4ωe
3π

if t ↓ 3. This yields that we can achieve 2ωe
πt′ < 2 if and only if 4

3
ωe
π < 2. Thus if

ωe <
3
2π we can find t > 3 such that j ≥ 2 does not appear in the singular expansion.

Now, it remains to consider those singular functions for which the leading singular
function is too regular, i.e., π

ωe
> 1. This immediately gives that we have to consider

edges with ωe < π only. Similar to the case before, we need to find t > 3 to obtain
that

2ωe
πt′

< 1.

With the considerations above we get that for ωe <
3
4π we can exclude the case j = 1

in the singular expansion.
Finally, we consider the case ωe = 2π. Then, the value j = 2 does not appear in

the singular expansion, and we only have to assert 2ωe
πt′ = 4

t′ < 3. Now, as above we

have 1
t′ ↓

2
3 and 4 2

3 < 3 hence for some t > 3 we have 2ωe
πt′ < 3.
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Remark 2.2. In addition to the results of Lemma 2.2 and Lemma 2.3, we remark
that provided certain (countably many) critical values of t are avoided the operator −∆
is closed from W 2,t(Ω)∩H1

0 (Ω) into Lt(Ω). Moreover, the operator is closed for t = 2.
To see this we first consider the case n = 2, then the result is obtained by [14,

Theorem 4.3.2.4] for t > 2 under the condition 2ωc
πt′ 6∈ N for all interior angles ωc.

The case t = 2 is covered by [14, Theorem 4.3.1.4].
The case n = 3 and t = 2 is covered by [10, Corollary 3.10], for the case t > 2

see [13, Theorem 5.8]1.
In particular, this implies that for such a t there exists a constant C such that for

any f ∈ I and corresponding solution uf ∈W 2,t(Ω) ∩H1
0 (Ω) the following holds

‖uf‖2,t ≤ C‖f‖t.

We are now prepared to show the main result of this section.
Proof. [Proof of Theorem 2.1] The proof is now standard. We define the set

Qfeas := {q ∈ Lr(Ω) | a ≤ q ≤ b, |∇uq|2 ≤ ψ a.e. in Ω}

where uq denotes the solution to (1.2) corresponding to f = q.
By assumption Qfeas 6= ∅. From Lemma 2.2 and Lemma 2.3 we obtain that for

any q ∈ Qfeas the corresponding state uq ∈ H2(Ω) ∩H1
0 (Ω) and the mapping q 7→ uq

is continuous. With this we can define the reduced cost functional Ĵ(q) = J(q, uq).
Now, because the PDE is linear the set Qfeas is closed and convex and is hence

closed with respect to weak convergence. Hence taking a minimizing sequence in
Qfeas and noting that Ĵ is weakly lower semicontinuous and coercive yields the desired
minimizer. Uniqueness of the minimizer is clear because Ĵ is strictly convex.

Again by application of Lemma 2.2 and Lemma 2.3 we get the desired regularity
of the optimal state noting that q ∈ Lt(Ω) for some t > 2.

Remark 2.3. Concerning the possible extension to semilinear PDEs we note that
the embedding W 2,t(Ω) → C1(Ω) is compact. Thus Qfeas will be weakly sequentially
closed even if q 7→ uq is not linear.

3. Optimality Conditions. After having established the existence of a solution
we will consider the system of first-order necessary conditions.

Lemma 3.1. Let (q, u) be the solution of (1.1). Further, assume that there exists a
Slater point, i.e., q̂ ∈ Qad such that the corresponding state û = uq̂ satisfies |∇û|2 < ψ
on Ω.

Assume that either n = 2 or n = 3 and t obtained in Lemma 2.3 is larger than
n = 3. Further, let t be such that ∆ is closed from W 2,t(Ω) ∩H1

0 (Ω)→ Lt(Ω). Then
there exists a measure µ ∈ C(Ω)∗ such that the following holds:

(uq − ud, uδq − uq) + α(|q|r−2q, δq − q)
+2〈µ,∇uq · (∇uδq −∇uq)〉C∗×C ≥ 0 ∀ δq ∈ Qad ∩ I,

〈µ, ϕ〉C∗×C ≥ 0 ∀ϕ ∈ C(Ω), ϕ ≥ 0,

〈µ, |∇u|2 − ψ〉C∗×C = 0,

(3.1)

where I denotes the image of W 2,t(Ω) ∩H1
0 (Ω) under ∆.

1The author would like to acknowledge the support of M. Dauge for an e-mail giving the same
result for t > 2, before the author was able to find a citable source.
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Proof. We note that the image I of W = W 2,t(Ω) ∩H1
0 (Ω) under ∆ is closed in

Lt(Ω) by assumption. Hence, because Ω is bounded, I ∩ Lr(Ω) is closed in Lr(Ω) for
any r ≥ t, too. This means, it is sufficient to consider the optimization problem on
the smaller (Banach) space Q = I ∩ Lr(Ω).

Then the mapping q 7→ |∇uq|2 is differentiable as a mapping Q → C(Ω) by
construction, because W ⊂ C1(Ω). In particular we can equivalently restate prob-
lem (1.1) as

min
q∈Q

Ĵ(q) := min
q∈Q

J(q, uq)

subject to

{
|∇uq|2 − ψ ≤ 0 in Ω,

a ≤ q ≤ b a.e. in Ω.

(3.2)

Next we note that by the assumptions on Ω and t we can apply Lemma 2.2 or
Lemma 2.3 to see that û ∈ C1(Ω) and thus it is strictly feasible, i.e., there is some
δ > 0 such that |∇û| ≤ ψ − δ < ψ. Thus the solution is regular (in the sense of La-
grange calculus), and by standard theorems, see, e.g., [22, Theorem 1.6], there exists
a Lagrange multiplier µ ∈ C(Ω)∗ such that (3.1) holds.

Remark 3.1. The result is almost identical to the smooth case, however, we had
to consider Q = I ∩ Lr(Ω) and hence if I 6= Lr(Ω) we get a non local constraint into
the admissible set Qad ∩ I.

We are however not yet done with our calculations. In the next step we will
separate the influence of the equality and inequality constraints. To this end we have
to consider the adjoint equation.

Lemma 3.2. Let u ∈ W = W 2,t(Ω) ∩H1
0 (Ω) with t > n be given. Then for any

µ ∈ C(Ω) the problem

(−∆ϕ, z) = (u− ud, ϕ) + 〈µ, 2∇u∇ϕ〉C∗×C ∀ϕ ∈W (3.3)

has a (non unique) solution z ∈ Lt′(Ω).
Proof. To see the solvability of (3.3), we first note that the equation

(∇ϕ,∇z0) = (u− ud, ϕ) ∀ϕ ∈ H1
0 (Ω)

possesses a solution z0 ∈ H1
0 (Ω) which then automatically satisfies

(−∆ϕ, z0) = (u− ud, ϕ) ∀ϕ ∈W.

Hence it is sufficient to consider solvability of the equation

(−∆ϕ, z1) = 〈µ, 2∇u∇ϕ〉C∗×C ∀ϕ ∈W. (3.4)

It is clear that the right-hand side 〈µ, 2∇u∇·〉C∗×C is an element of W ∗ for any
t > n. Now −∆: W → I ⊂ Lt(Ω) is an isomorphism and hence the same holds true
for −∆∗ : I∗ → W ∗. Setting I⊥ = {v ∈ Lt′(Ω) | (v, q) = 0 ∀ q ∈ I} where t′ = t

t−1 we

have I∗ ∼= Lt
′
(Ω)/I⊥ because I is closed in Lt(Ω), see, e.g., [27, Theorem III.1.10].

This means there exists a solution z1 ∈ Lt
′
(Ω) to (3.4) which is uniquely deter-

mined modulo I⊥. Hence z = z0 + z1 ∈ Lt
′
(Ω) is a solution to (3.3).

We remark that the non uniqueness of the solution is not entirely unexpected,
see [16].

By combining this with Lemma 3.1 we get the following
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Theorem 3.3. Under the assumptions of Lemma 3.1 for a solution (q, u) of (1.1),
there exists a measure µ ∈ C(Ω)∗ and a function z ∈ Lt′(Ω) such that:

(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 (Ω),

(−∆ϕ, z) = (u− ud, ϕ) + 〈µ,∇u · ∇ϕ)〉C∗×C ∀ ϕ ∈W,
α(|q|r−2q, δq − q) ≥ −(δq − q, z) ∀ δq ∈ Qad ∩ I,

〈µ, ϕ〉C∗×C ≤ 0 ∀ ϕ ∈ C(Ω), ϕ ≤ 0,

〈µ, |∇u|2 − ψ〉C∗×C = 0.

(3.5)

Proof. The proof is simple. Take any solution z to (3.3). Then the assertion
follows from the optimality conditions in Lemma 3.1.

We remark that z being determined only modulo I⊥ doesn’t affect the variational
inequality

α(|q|r−2q, δq − q) ≥ −〈δq − q, z〉Z∗×Z ∀ δq ∈ Qad ∩ I

because the test functions are chosen from I and thus the value on the right hand
side is unaffected by choosing any representation z solving (3.3) since z is uniquely
determined up to an element in I⊥.

Remark 3.2. We note that, in the case n = 3, there is a gap between the existence
Theorem 2.1 and the necessary conditions Lemma 3.1 and Theorem 3.3 because there
are certain angles for which we could not obtain W 2,t regularity of the solution for
t > 3, compare also Corollary 2.4.

4. Regularity. We will now discuss another issue of importance, namely that of
regularity of the solutions to (1.1) in the context of first-order constraints. In order
to set things into perspective we will briefly comment on the smooth case, although
it has already been discussed in [24, Appendix A].

The Case of a Smooth Domain. We recall that the necessary optimality condition
for problem (1.1) on a domain with C1,1 boundary has the form

(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ H1
0 (Ω),

(z,−∆ϕ) = (u− ud, ϕ) + 〈µ,∇ϕ∇u〉C∗×C ∀ ϕ ∈W,
〈µ, ϕ〉C∗×C ≤ 0 ∀ ϕ ∈ C(Ω), ϕ ≤ 0,

α(|q|r−2q, δq − q) ≥ (−z, δq − q) ∀ δq ∈ Qad,

〈µ, |∇u|2 − ψ〉C∗×C = 0.

(4.1)

Here q ∈  Lr(Ω), u ∈ W = W 2,r(Ω) ∪ H1
0 (Ω), µ ∈ C(Ω)∗, and z ∈ Ls(Ω) for any

s < n
n−1 , see [6].
If the regularity of z would be best possible, then this would automatically limit

the possibility to obtain higher regularity for the control variable by bootstrapping ar-
guments, because the control and the adjoint state are linked by an algebraic equation.
In particular, if z has no derivatives, then in general q has none either.

It will be crucial for our analysis that there exists t > n such that −∆ is W 2,t-
regular, i.e., for q ∈ Lt(Ω) the weak solution u = uq ∈ H1

0 (Ω) to (1.2) belongs in fact
to W 2,t(Ω), and ‖u‖W 2,t ≤ c‖q‖Lt . If the boundary is of class C1,1 this is obtained by
classical regularity theory for any t, this dates back to [2], for a more recent exposition
see [12].
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If the domain is polygonal or polyhedral the existence of such a t requires ad-
ditional conditions on the domain. If n = 2 there is such t provided the domain is
convex see [17, Theorem. 4.4.3.7]. If n = 3 then one needs to assume in addition,
that the angle between any two faces of Ω is bounded strictly above by 3

4π [10, Corol-
lary 3.7]. If this is the case the optimality conditions (4.1) remain true with some
sufficiently small t > n in W = W 2,t(Ω) ∩H1

0 (Ω). Let tmax > n be defined such that
−∆ is W 2,t-regular for any t ∈ (n, tmax).

From the necessary optimality conditions (4.1) one derives additional regularity
for the adjoint state z. We simply recall the following from [24, Lemma 1]:

Lemma 4.1. The solution z of (4.1) belongs to W 1−n/t−ε,t′(Ω) for every ε > 0
and t ∈ (n, tmax), where we define t′ as usual by 1

t + 1
t′ = 1.

Further we require the following result for the algebraic relation between q and

z, which is based upon Hölder-continuity of x 7→ |x|
1
r−1 . For details we refer to [24,

Lemma 2].
Lemma 4.2. Let f ∈W s,t′(Ω) with s < 1 and let r ≥ 2, then

sign(f)|f |
1
r−1 ∈W

s
r−1 ,t

′(r−1)(Ω).

Then one can derive the following regularity result for the optimal control from
the algebraic relation between q and z.

Corollary 4.3. For any ε > 0 the optimal control q given by (4.1) belongs to
the space W γ,p, where γ = (1−n/t−ε)/(r−1) and p = t′(r−1) for any t ∈ (n, tmax).

Proof. The proof is based upon the relation

q = max
(
a,min

(
b, sign

(−1

α
z
)∣∣∣−1

α
z
∣∣∣ 1
r−1
))
.

Using this Lemma 4.2 together with Lipschitz continuity of the max and min function

in W
s
r−1 ,t

′(r−1)(Ω), see [23, Theorem II.A.1], yield the assertion.

The Case of a Non-Smooth Domain. Let Ω be such that there is some t > n such
that the solution u to (1.1) is in W = W 2,t(Ω) ∩H1

0 (Ω). With respect to Lemma 2.2
this assumption is met for any polygonal domain for n = 2. In regard of Lemma 2.3
and the subsequent Corollary 2.4 it gives a condition on the interior angles at edges
of the domain.

For such a domain, we define tmax > n such that the solution u ∈W 2,t(Ω)∩H1
0 (Ω)

for any t ∈ (n, tmax). We note here, that the assumptions of Lemma 3.1 are then
satisfied for almost every t ∈ (n, tmax). As we will later try to use some interpolation
results, we further require tmax sufficiently small, such that

−∆: W 1,t
0 (Ω)→W−1,t(Ω)

is an isomorphism. By [10, Remark 3.11] it is clear that then tmax > n is still possible.
We will now derive a regularity result for the adjoint variable similar to Lemma 4.1.

To do so we will employ the K-Method of interpolation (although any other method
would do fine). Hence we define fractional-order Sobolev spaces W s,p by Besov spaces
Bsp,p. For details on this see, e.g., [26, Definition 4.2.1] or [1, Chapter 7].

Lemma 4.4. Let t ∈ (n, tmax) satisfy the assumptions of Lemma 3.1. Then one
can select a solution z of (3.3) which belongs to W 1−n/t−ε,t′(Ω) for every ε > 0 where
we define t′ as usual by 1

t + 1
t′ = 1.
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Proof. The proof is almost identical to Lemma 4.1, however we have to employ
some additional effort due to the non uniqueness of the solution z to (3.3).

Let W̃ 2,t = W 2,t(Ω) ∩H1
0 (Ω) and ε > 0 be given, then

〈∇ϕ∇u, µ〉C,C∗ ≤ ‖u‖C1‖µ‖C∗‖ϕ‖C1 ≤ C‖ϕ‖W 1+n/t+ε,t

by standard embedding theorems [26, Theorem 4.6.1]. By definition, of the interpo-
lation tuple, it holds

(W 1,t(Ω),W 2,t(Ω))n/t+ε,t ⊃ (W 1,t
0 (Ω), W̃ 2,t)n/t+ε,t =: W̃ 1+n/t+ε,t

and we obtain that the right-hand side of the adjoint equation is an element of
(W̃ 1+n/t+ε,t)∗.

By assumption on t and tmax we have that both

A1 := −∆: W 1,t
0 (Ω)→W−1,t(Ω),

A2 := −∆: W̃ 2,t(Ω)→ I ⊂ Lt(Ω),

are isomorphisms. Hence the adjoint operators

A∗1 : W 1,t′

0 (Ω)→W−1,t′(Ω),

A∗2 : I∗ → (W̃ 2,t)∗,

are isomorphisms, too. We note that, as in the proof of Lemma 3.2, I∗ ∼= Lt
′
(Ω)/I⊥.

Especially by selecting an arbitrary element s ∈ I⊥ and using Lt
′
(Ω) ∼= I∗ ⊕ I⊥ we

can lift an element z ∈ I∗ to Lt
′
(Ω) by setting ls(z) = z + s. To ensure that the

continuous ‘inverse’ mapping ls ◦ (A∗2)−1 : (W 2,t(Ω) ∩H1
0 (Ω))∗ → Lt

′
(Ω) is linear we

need to choose s = 0.
By interpolation [26, Theorem 4.8.2], we have

(W̃ 1+n/t+ε,t)∗ = ((W 1,t(Ω), W̃ 2,t)n/t+ε,t)
∗ = (W−1,t′(Ω), (W̃ 2,t)∗)n/t+ε,t′ .

We apply interpolation for the continuous operators (A∗1)−1 and ls ◦ (A∗2)−1 to ob-
tain [26, Theorem 1.3.3]

z ∈ (W 1,t′

0 (Ω), Lt
′
(Ω))n/t+ε,t′ = W 1−n/t−ε,t′(Ω).

This proofs the assertion.
Finally we can state the desired regularity result
Corollary 4.5. Let t ∈ (n, tmax) satisfy the assumptions of Lemma 3.1. Fur-

ther, assume that Qad = Lr(Ω) and if n = 3 that the domain contains only vertices
but no (nonsmooth) edges. Then for any ε > 0 the optimal control q given by (1.1)
belongs to the space W γ,p, where γ = (1− n/t− ε)/(r − 1) and p = t′(r − 1).

Proof. Under the assumption Qad = Lr(Ω) the inequality(
α sign q|q|r−1, δq − q

)
+ (δq − q, z) ≥ 0 ∀ δq ∈ Qad ∩ I

becomes an equation(
α sign q|q|r−1, δq

)
+ (δq, z) = 0 ∀ δq ∈ Lr(Ω) ∩ I.
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Now, as before, we can decompose Lt(Ω) = I ⊕ I⊥ with I⊥ = {v ∈ Lt(Ω) | (v, ϕ) =
0 ∀ϕ ∈ I∗} and correspondingly Lt

′
(Ω) = I∗ ⊕ I⊥.

We have α sign q|q|r−1 + z ∈ Lt
′
(Ω) and thus there exist uniquely determined

elements r ∈ I∗ and s ∈ I⊥ such that

α sign q|q|r−1 + z = r + s.

Further, it is (s, ϕ) = 0 for all ϕ ∈ I, by definition, and thus(
α sign q|q|r−1 + z − s, δq

)
=
(
sign q|q|r−1 + z, δq

)
= 0 ∀ δq ∈ Lr(Ω) ∩ I.

On the other hand, it is(
α sign q|q|r−1 + z − s, δq

)
= (r, δq) = 0 ∀δq ∈ I⊥

and thus, because Lr(Ω) ∩ I ⊕ Lr(Ω) ∩ I⊥ = Lr(Ω), it holds

α sign q|q|r−1 + z − s = 0.

From this we deduce that

q = sign
(−1

α
z + s

)∣∣∣−1

α
z + s

∣∣∣ 1
r−1

with some s ∈ I⊥.
In the following we use the notation of Lemma 2.2 and Lemma 2.3 for the state-

ment of the asymptotic behavior of the singular functions. We obtain a basis for I⊥

using dual singular functions. For n = 2 they can be found for instance in [4]. The
important condition is that they are the sum of a function in H1

0 (Ω) and a C∞(Ω)

function whose only singularities are at the corners where it behaves like O(ρ
−π/ωc
c ).

Hence we deduce that s ∈W 1−n/t−ε,t′(Ω) for any ε > 0.
In the case n = 3 we obtain that for a vertex we obtain the singular behavior

O(ρ
−1−βj,r+1/2
e ), see, e.g., [3] and once again this yields s ∈ W 1−n/t−ε,t′(Ω) for any

ε > 0. We note that in both cases it is sufficient to consider the behavior of the dual
singular functions alone as there are only finitely many needed to generate I⊥. Hence
we can deduce regularity of s from the regularity of a basis of I⊥.

From the regularity

z + s ∈W 1−n/t−ε,t′
0 (Ω)

we obtain the desired result from Lemma 4.2.
Remark 4.1. For edges e it is no longer sufficient to consider the regularity of

the dual singular functions as given for instance in [8]. This is due to the fact that
the space I⊥ is no longer finite dimensional. Thus a more detailed analysis of the
corresponding coefficient function is needed.
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