
Hamburger Beiträge
zur Angewandten Mathematik

Analysis of quasi-POMs in
a microscopic traffic model

Bodo Werner

Nr. 2011-15
August 2011





Analysis of quasi-POMs in a microscopic traffic model

Bodo Werner

August 3, 2011

Abstract

This paper is an extension of [GW10, SGW09] where a microscopic follow-the-leader-model of N identical cars on
a circle S1

L of length L, with bottleneck like road works, were studied. It was shown that Ponies-on-a-Merry-Go-Round-
solution’s (POM’s) can bifurcate to so called quasi-POMs, where the length L and the strength ε of the bottleneck are
chosen as bifurcation parameters.

In this paper our focus is on quasi-POMs, particularly their macroscopic visualizations, where the trajectories
(ξj(t), t), ξj(t) := xj(t)modL are colored according to the speed vj(t) = ẋj(t), j = 1, 2, .., N . In the simulations in
[GW10] we had observed a time periodicity of these macroscopic visualizations (see Fig. 1). This will be analyzed in
this paper. As a consequence quasi-POMs are shown to have a macroscopic time-period Tp under a certain assumptionA.

To perform our analysis we investigate the closed invariant curves γ of reduced Poincaré maps π. The notion quasi-
POM is based on the appearance of an invariant curve of π. Restricting π to γ we obtain circle diffeomorphisms f such
that we can apply the theory for circle maps as presented in [GH83] and [dMvS91]. We have to make an assumption which
includes the irrationality of the rotation number % of the circle map. We obtain a connection between the macroscopic
period Tp, the rotation number % of the circle map and the average wait time τ between two successive passings of
cars at the observer point ξM of the circle associated with the reduced Poincaré map. Based on a numerical algorithm
for the computation of Tp, very similar to the McKay algorithm computing %, we are able to construct analytically and
numerically a continuous macroscopic speed function v(ξ, t), depending on the space variable ξ ∈ S1

L and on time t,
periodic with time-period Tp, and interpolating the discrete data vj(t) = ẋj(t) in (ξj(t), t) with ξj(t) := xj(t)modL.

The average wait time τ is connected with the global flow f = 1/τ of the quasi-POM. It will be compared with the
global flows of coexisting POMs (where v(ξ, t) is independent on time t).

Keywords: traffic flow, circle maps, rotation number, Hopf bifurcation, Neimark–Sacker bifurcation, quasi-periodic
solution

AMS subject classification: 37M20, 65L07, 65P30, 65P40

1 Introduction
This paper can be considered as a theoretical attachment to [GW10], where a microscopic follow-the-leader-model on a
circle S1

L of length L with bottleneck like road works was studied. We again assume that there are N “identical” cars,
obeying the same optimal velocity function. Our focus here is on quasi-POMs which bifurcate from Ponies-on-a-Merry-
Go-Round-solution’s (POMs). The bifurcation parameters are the strength ε of the bottleneck and the length L of the
circle.
Quasi-POMs are special solutions of the ODE system which are identified by so-called invariant curves γ of reduced
Poincaré maps π, while POMs correspond to their fixed points. Quasi-POMs may be the result of Neimark-Sacker type
bifurcation for the map π. The reduced Poincaré map π involves an observer somewhere at a measure point ξM ∈ S1

L.
Every time when a car passes ξM , the configuration x of the whole car ensemble (positions and velocities of all cars)
yields a point of a discrete orbit under π lying on γ.
In [GW10] we have seen that the macroscopic visualizations of quasi-POMs where the car trajectories in the (ξ, t)-plane
are colored according the size of speed, show time-periodic traffic patterns. For an example from [GW10] see Fig. 1. The
time-periodicity is obvious. The period can be roughly estimated by Tp ≈ 30.
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Figure 1: N = 10, L = 13, ε = 0.3: Macroscopic visualization of a quasi-POM from [GW10].

Under certain assumptions, we are going to prove this observed macroscopic time periodicity, by analyzing the invariant
curves γ associated with the quasi-POMs using dynamical system theory of circle maps. Up to now, the invariant curves
γ were only a tool to identify quasi-POMs.
To understand our analytical approach we have to look more carefully at the invariant curves γ. Fig. 2 shows the projection
of γ on the speed-headway plane of a single car close to the center of the bottleneck. Here also the first ten orbit points
under the reduced Poincaré map are numbered. The rather small distance of two successive points of the orbit indicates a
rather small rotation number %.
The invariant curve γ lives in IR2N−1, where N is the number of cars. Every x ∈ γ is a possible observed configuration
of the whole car ensemble by the observer at the measure point ξM which defines the reduced Poincaré map. Introducing
suitable angle coordinates, the flow of our ODE system, restricted to γ, can be interpreted as an orientation preserving
diffeomorphism f of the circle S1 := IR/ZZ. The classical theory of such circle maps is well known, see DE MELO,
VAN STRIEN [dMvS91], GUCKENHEIMER-HOLMES [GH83]. The most prominent notion is that of a rotation number
% ∈ [0, 1) which we assume to be irrational such that the map is ergodic and the Birkhoff Ergodic Theorem applies.
Under a certain assumption which we denote by A (see the end of this section), we prove

Tp =
τ

%
(1)

for the time period Tp of the macroscopic pattern, where τ is the average wait time the observer has to wait between two
successive passings of cars. τ has a simple traffic relevance, since the global flow f of the dynamics is given by

f =
1

τ
=

1

% · Tp
. (2)

Further, there is a numerical algorithm, due to MACKAY [Mac92], for the efficient computation of the rotation number.
Remarkably. the rotation number % can be included by convergents of the continuous fraction expansion of %. It turns out
that this algorithm can be extended to compute and even to include the period Tp by lower and upper bounds.
As another consequence, we can show that a quasi-POM is associated with a macroscopic continuous speed function
v(ξ, t) being Tp-periodic in the time variable t and interpolating the discrete speed datas v(ξj(t), t) = ẋj(t), j =
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Figure 2: N = 10, L = 13, ε = 0.3 Invariant curve for car No. 4 (counted from the measure point ξM = 0). The rotation
number is % = 0.068.

1, 2, ..., N (Theorem 1). The resolution in Fig. 1 is not appropriate to see the discreteness of our macroscopic visual-
ization since time runs through a too large time interval. Fig. 3 is more appropriate for this purpose. Here the trajectories
are shown only for t ∈ [0, Tp] with Tp = 32.7 being computed by the MacKay Algorithm.
Once the period Tp is known, the macroscopic function v(ξ, t) can be numerically approximated by a simple numerical
simulation of the ODE system over a certain numberm of time intervals of length Tp. Time runs from t = 0 to t = m ·Tp,
for 0 ≤ t ≤ m · Tp we set

v(ξ, s) = ẋj(t), whenever ξ = xj(t) modL, s = tmodTp for j = 1, ..., N. (3)

We call the method to compute v(ξ, t) by (3) projection method. With respect to a satisfactory visualization we would
like to get a set

{(xj(t) modL, tmodTp), j = 1, 2, ..., N, t ∈ [0,m · Tp]}

being visually dense in [0, L] × [0, Tp]. The number m which is needed for this purpose, depends on properties of % and
on the chosen plot thickness of the visualized trajectories. The smaller % and the more irrational % is, the smaller m. For
the example in Fig. 1-3 (Tp = 32.7) the continuous result in Fig. 4 has been obtained for m = 10, e.g. the simulation was
performed from t = 0 until t = 10 · Tp = 327.

At the end of the Introduction we want to sketch the idea behind our analysis. We use notations in the context of tori
solutions (quasi-periodic) where a Poincaré map π and a smooth invariant curve γ of π with angle coordinates1 ϕ ∈ S1 =
[0, 1) and circle map f are involved. We assume that the rotation number % = %(f) is irrational.
Before we are doing this, we want to discuss the link between the invariant curve γ associated with an observer at ξM
and the macroscopic graphical representation of the quasi-POM. Assume that a car passes ξM at certain time tM . The
whole car configuration at time tM is a point x(ϕM ) ∈ γ, represented by the N points xj(tM ) modL on the trajectories
colored according to ẋj(tM ), j = 1, 2, ..., N . The angle ϕM is somewhere hidden in the time tM , it cannot been observed
directly, unless γ is known and the specific polar coordinates for γ are fixed. A finite number of points of the invariant

1In the numerical part we have to assume that suitable polar angles as in Fig. 5 can be chosen.
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Figure 3: Discrete macroscopic visualization of a quasi-POM (MakroN10L13ep0,3SingleOrbits)

Figure 4: N = 10, L = 13, ε = 0.3, Tp = 32.7, quasi-POM: Macroscopic visualization of v(ξ, t) by projection.
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curve could be reconstructed by the macroscopic picture taking all discrete times tn where a car is passing ξM and all
positions ξj(tn) = xj(tn) modL and speeds ẋj(tn), j = 1, 2, ..., N .
Now assume that there is a scalar field v on γ which can be observed, for instance the speed or headway of a certain car.
We will focus on that car which passes the observer point. This function v is measured at the discrete observer times tn
together with the discrete states x(ϕn) ∈ γ, where ϕn is the corresponding angle on γ. The aim is to show that there is
a time-period Tp and a Tp-periodic function v(t) which interpolates the discrete observed data v(tn). The main tool is a
connection between angle coordinates ϕn and the observer times tn.

1. We introduce the wait time τ(ϕ) between the Poincaré event associated with ϕ and the next event. Using the
Birkhoff Ergodic Theorem there is an average wait time τ and a time Tp of circulation of γ, with Tp = τ

% , where %
is the rotation number of f . The three numbers %, τ and Tp do not depend on the special Poincaré section defining
the Poincaré map (and the invariant curve γ), but only on the quasi-POM.

The aim is to show that Tp can be interpreted as the macroscopic time period.

2. We consider a continuous scalar field v on γ (as for instance the speed of the car passing the observer). v can be
extended to a real 1-periodic function v = v(ϕ), ϕ ∈ S1.

3. Introduce the “modulo time” s := tmodTp.

4. Our assumption A: There is an orientation preserving homeomorphism Φ : s 7→ Φ(s) between the circle S1
Tp

of
times and the circle S1 of angles on γ. Φ is called the time-angle-function.

Equivalent to assumption A is that the orbit (sn) of modulo-times has the same ordering as the orbit (ϕn) under f .
Or: The modulo times s/Tp is a suitable S1-coordinate on γ where now the rotation angle is the average wait time
divided by Tp.

5. Set V (s) := v(Φ(s)). Then V can be extended to a continuous Tp-periodic real function V (t).

6. Assume that there is a one-parameter family of Poincaré maps depending continuously on a parameter ξ (like
ξ = ξM ). Then we obtain a macroscopic scalar field V (ξ, t) being Tp-periodic and continuous in t and continuously
in ξ.

It would be interesting to discuss the transfer of our analysis to quasi-periodical solutions of more general ODEs.

2 The model

Following [SGW09, GW10] we shortly present the traffic model for the case where all cars obey the same driving law —
all drivers are assumed to be “identical”.
We study the situation of N cars on a circular road of length L. A widely used car following model describing such a
situation is the optimal velocity model introduced by Bando et al. [BHN+95].
The optimal velocity function V = V (d) expresses the velocity a car is aiming to achieve, according to the distance d
(the headway) to the car in front. This function V : [0,∞) → [0,∞) is assumed to be smooth and strictly monotone
increasing, satisfying V (0) = 0 and limd→∞ V (d) = Vmax.
In [SGW09], a bottleneck (caused for example by roadworks) was introduced by extending the optimal velocity function
to

Vε(ξ, y) =
(

1− εe−(ξ−L
2 )2
)
V (y). (4)

The bottleneck is centered around the position ξ = L
2 and it acts by reducing the maximal velocity. The parameter ε ≥ 0

describes the “strength” of the bottleneck. We are interested in the dynamics of the traffic in dependence on the parameter
ε and the length L of the circle. The latter controls – for fixed N – the traffic density on the circle.
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Let xj = xj(t), t ≥ 0, be the distance the j-th car has covered at time t. We do not allow overtaking (as in [BJ08]) and
hence assume x1 < x2 < · · · < xN . In the following we set ξj = xj mod L, j = 1, ..., L, the positions of the cars on
the circle.
The ODE model reads as{

ẋj = vj
v̇j = 1

τ (Vε(ξj , xj+1 − xj)− vj)

}
, j = 1, . . . , N, xN+1 = x1 + L. (5)

The circular road is represented by the fact that xN+1 = x1 + L. We recall some results for this simplest version of
identical drivers, first without bottleneck.

2.1 The case without bottleneck
Here, no explicit dependence on the position due to a bottleneck is given.{

ẋj = vj
v̇j = 1

τ (V (xj+1 − xj)− vj)

}
, j = 1, . . . , N, xN+1 = x1 + L. (6)

This is the model presented originally by Bando et al [BHN+95]. It was studied by various authors (see [GSW04] and
references therein), recently also by the author ([Wer11]).
Although the model is very simple it became an important tool in the description of traffic flow on a circular road. Many
phenomena discovered in real experiments on a circular road setting can be described by the simple model (6). This is
related to the fact, that there exist simple solutions – called quasi-stationary solutions – given by

x0j (t) = j · L
N

+ t · V
( L
N

)
, j = 1, ..., N. (7)

The terminology quasi-stationary solution is due to the fact that this solution itself is (obviously) not stationary, but the
corresponding velocities v0j = V ( LN ) and headways d0j = L

N are.
Stability criteria and formulas for critical parameter values where Hopf bifurcations occur, can be determined. The
bifurcating periodic solutions which we will call hopf-periodic show well known oscillations in headway and and velocity.
They can be interpreted as traveling waves.

2.2 The case with bottleneck
In the case of bottleneck we use the model (5). Here quasi-stationary solutions of type (7) do not exist any more. It came
out that so called rotation solutions are the right object to look for (see [SGW09]).
A rotation solution of (5) with orbital period T is defined by

xj(t+ T ) = xj(t) + L, vj(t+ T ) = vj(t), j = 1, 2, ..., N, (8)

where T is assumed to be minimal.
We see that for ε = 0, our quasi-stationary solutions are (trivial) rotation solutions with orbital period T := L/c, where
c = V (L/N) is the common velocity of the drivers. But observe that the Hopf-periodic solutions we get by Hopf
bifurcations in general are not rotation solutions with orbital period T . Rotation solutions are nothing else then special
periodical solutions when our ODE is considered on a manifold given by (S1

L × IR)N .
Since all drivers are assumed to be identical, one can add an additional symmetry condition to a rotation solution, namely

xj(t+ T/N) = xj+1(t) for all t, j = 1, 2, ..., N. (9)

This means that all cars behave in the same way except a time shift of T/N between two cars. Rotation solutions satisfying
(9) are known as Ponies-on-a-Merry-Go-Round-solution’s (POMs) (see [AGMP91, SGW09]).
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Figure 5: N = 10, L = 13, ε = 0.3 Invariant curve γ̃ for car No.4 with polar angle φ and center M .

It turns out that the method to investigate rotation solutions via Poincaré maps Π can be simplified considerably. The
additional condition (9) allows to pass to a so called reduced Poincaré maps π, and the theoretical and numerical analysis
of POMs can be based on π in a very efficient way. The return time for π is approximately the N th fraction of that for
Π. While the Poincaré map Π (see [SGW09]) looks for discrete times whenever the car number say with No. 1 passes
a observer at position ξM , the reduced Poincaré map lists the whole configuration x (position and velocities) at discrete
times whenever any car passes the position ξ = 0. This gives a denser discrete time grid on which dynamics is evaluated.
The return time of π can be interpreted as a time the observer at the measure point ξM has to wait between two successive
passings of cars. In the next section we use the notation wait time.
Now, POMs correspond to fixed points and quasi-POMs to invariant curves of π which may bifurcate in Neimark–Sacker
points of π. This is the way how quasi-POMs are identified. Again, quasi-stationary solutions correspond to POMs and
Hopf-periodic solutions to quasi-POMs.

3 Theory

In this section we are going to prove that, under mild conditions, quasi-POMs have a macroscopic time period Tp being
observed in Fig. 1. As outlined in the Introduction, the invariant curves γ of the reduced Poincaré maps π and the circle
maps f induced by the restriction of π to γ play an essential role in the analysis.

3.1 Theory of circle maps
We assume that γ is sufficiently smooth and that f is an orientation preserving circle diffeomorphism using suitable angle
coordinates for γ. A natural choice can be a polar angle ϕ of the projection of γ onto a headway-speed-plane of some fixed
car (call this projection γ̃) with respect to a “center” M , see Fig. 5 as an example, where the interior of γ̃ is star-shaped
with respect to M .
It is convenient to identify the invariant curve γ with S1 = [0, 1), hence angles are varying from ϕ = 0 to ϕ = 1. Note
that ϕ is the coordinate of γ in contrast to ξ, the coordinate of the traffic circle S1

L of length L.
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Our focus now is on the circle map f , given by the restriction of π to γ, and the theory of circle maps, as for instance
presented in DE MELO, VAN STRIEN [dMvS91] and GUCKENHEIMER-HOLMES [GH83]. Most important is the rotation
number % ∈ [0, 1) of f , defined by the time average of the rotation angle along any orbit under f which is independent
of the initial angle of the orbit.
In the following we assume that % is irrational and that f is sufficiently smooth such that Denjoy’s Theorem holds. This
theorem claims that any orbit under f is dense on γ and that there are special angle coordinates on γ such that f is
described by a simple rotation r% about the angle % with respect to these coordinates. In other words: f is topologically
conjugate to the rotation r%. Moreover, there is an invariant measure µ such that the Birkhoff Ergodic Theorem (see DE
MELO, VAN STRIEN p.50 [dMvS91]), holds which claims that for all continuous real functions g on γ the time average

lim
n→∞

1

n

n−1∑
j=0

g(f j(ϕ0)) =

∫
γ

gdµ for all ϕ0 (10)

exists2 and equals the space average of g.
Our invariant curve γ and the induced circle map f depend on the measure point ξM ∈ S1

L by which the Poincaré section
is defined. But the circle maps associated with different measure points are diffeo-conjugate (the diffeomorphism is the
flow from one hyperplane to the other), and hence have the same rotation number. Therefore, the rotation number % is a
characteristic number of the quasi-POM, not only of the invariant curve γ (which varies with the measure point).
Possible functions g in (10) are given by the speed or the headway of a single car or – for us most interesting – by the
time an observer at the measure point (for instance at ξM = 0), observing x ∈ γ (and implicitly the corresponding angle3

ϕ), has to wait until the next car will pass the measure point when π(x) (respectively the corresponding angle f(ϕ)) is
observed. This wait time turns out to be crucial for our analysis. Observe that any point x ∈ γ is a possibly observed
configuration of the whole car ensemble, and π(x) is the configuration when the next car shows up at the measure point.
Any orbit of f given by the angle sequence (ϕn), is associated with such wait times τn > 0, n = 1, 2, .... The time being
passed when the nth observation is performed, is given by the sum tn := τ0 + τ1 + · · ·+ τn−1. Of course, the wait time
τ(ϕ) defines a smooth real function on γ, and by the Birkhoff Ergodic Theorem (10),

τ := lim
n→∞

tn
n

(11)

exists and can be interpreted as the average wait time at the given measure (observer) point. τ is independent of the special
orbit, initiated by ϕ0 and also independent of the observer point4. Hence the average wait time τ is, besides of %, another
invariant of the quasi-POM.
We keep in mind that the orbit (ϕn) is associated with a real time sequence (tn) where tn is the overall time being passed
when ϕn is observed.
Now we are going to approach the (macroscopic) time period Tp. An obvious guess is that it equals the time an orbit
under f needs to circle γ (time of circulation). We just counter the number zn ∈ IN0 of γ-rounds the orbit has finished at
a certain time tn. Then, the time of circulation is approximately given by tn/zn. Since

% = lim
n→∞

zn
n
,

we have
Tp := lim

n→∞

tn
zn

= lim
n→∞

tn
n
· n
zn

= lim
n→∞

tn
n
· lim
n→∞

n

zn
=
τ

%
. (12)

If we scale time by t 7→ s := t/Tp the average wait time is just the rotation number %. Note that the time of circulation
Tp is (together with % and τ ) another invariant of our quasi-POM.

The essential step is to link the time of circulation Tp in (12) to our macroscopic time period.

2The convergence is uniformly wrt to the initial angle ϕ0.
3by a kind of a posteriori analysis after having found γ.
4For another measure point the times t′n satisfy |tn − t′n| ≤ C for a constant C.

8



Figure 6: time-angle function Φ for the invariant curve in Fig. 5, Tp = 32.74

We consider a single orbit under f on γ, starting in ϕ0 at time t0 = 0. Any orbit point ϕn under f is associated with
xn ∈ γ, an observation time tn, a wait time τn := tn+1 − tn and some scalar quantity vn like the speed vn of the car
passing the measure point ξM (we assume now an arbitrary ξM ∈ [0, L)).
It is natural to introduce the “modulo-time” sn := tn modTp. Observe that xn ∈ IR2N−1 contains all informations of the
car ensemble at time tn. If Tp is our desired macroscopic time-period of a continuous speed function v : S1

L × [0,∞)→
IR, (ξ, t) 7→ v(ξ, t), the statement v(ξM , sn) = vn must hold. If (sn) is dense in [0, Tp) and v(ξ, .) is continuous, the
sequence (vn) would uniquely define our desired function v(ξM , ·).
Observe that we encounter three types of circles. First the traffic circle S1

L of length with variable ξ, second the γ-circle
S1 with variable ϕ and third the time-circle S1

Tp
of length Tp.

As outlined in the Introduction, an essential step is the following assumption.

Assumption A: The orbit (sn) in [0, Tp) = S1
Tp

has the same ordering as (xn) on γ, respectively as (ϕn) on S1 = [0, 1).
This means that whenever we stop the orbit at a discrete time n, any point ϕj is the left (right) neighbor of ϕk on S1 if
and only if sj is the left (right) neighbor of sk.

Under this assumption A, with (ϕn) also (sn) is dense in [0, Tp], and it follows as in the proof of Denjoy’s Theorem
(GUCKENHEIMER-HOLMES [GH83]) that there is a coordinate transformation Φ : s 7→ ϕ, satisfying Φ(sn) = ϕn, n =
1, 2, ... defining an orientation preserving homeomorphism. We call Φ the time-angle function. After having computed
Tp, we may draw sn 7→ ϕn, n = 1., 2, ..., n, see Fig. 6.
Remark: The following three conditions are equivalent to assumption A.

1. The sequence (sn) in S1
Tp

has the same ordering as (ϕn) on S1.

2. There is an orientation preserving homeomorphism5 Φ : S1
Tp
→ S1 satisfying Φ(sn) = ϕn, n = 0, 1, 2, ....

3. (sn/Tp) is a suitable angle coordinate on S1 instead of ϕ.

5There exists a strictly monotone increasing lift Φ̂ : IR→ IR satisfying Φ̂(t+ k · Tp) = Φ(t) + k and Φ̂(t) = ϕ(t) for t ∈ [0, Tp).
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(a) ξ = 0 (b) ξ = L/4

Figure 7: t 7→ v(ξ, t) for the invariant curve in Fig. 5, Tp = 32.74, n = 400

Hence, assumption A can be numerically checked by drawing the time-angle function like in Fig. 6.

Theorem 1. Let Tp := τ
% be defined as in (12). Let the assumption A hold. Then for each continuous state v (like the

speed of a single car) and for each observer point ξ ∈ S1
L there is a unique Tp-periodic continuous function v(t) such

that v(tn) = vn where vn is the observed state of the orbit at time tn. With other words: There is a unique continuous
Tp-periodic interpolating function of the data (tn, vn), n = 1, 2, 3, .....

Proof. Let V (ϕ) be the 1-periodic function given by the state v along γ. Let Φ : s 7→ ϕ be the coordinate transformation
from Assumption A. Set v(s) := V (Φ(s)) and extend this function periodically.
This is true for all measure points ξ. Hence we get a continuous Tp-periodic function t 7→ v(ξ, tmodTp). Since the
reduced Poincaré map depends continuously on the the measure point ξ, we get a continuous function v : [0, L)×IR→ IR,
see Fig. 7 for ξ = 0 and ξ = L/4. Observe the scale on the speed axes and that time is running over two period intervals.
Compare with Figure 4 for ξ = 0 and ξ = L/4 = 3.25.

Remark: Any v(tj) = vj leads to some function value v(s) for s ∈ [0, Tp) with s := sj = tj modTp. To get a visualized
“continuous” function v on [0, Tp] we need a net sj , j = 1, 2, ..., k for not too large k which is approximately “dense” in
[0, Tp]. The visualized denseness depends also on the thickness of the trajectories.

4 Computation of the macro period

Theorem 1. Let us stop the sequence at a discrete time n, obtaining the angles ϕ0 = 0, ϕ1, ..., ϕn. Let ϕ` (ϕr) be the left
(right) neighbor of ϕ0 = 0 on S1. Let zr ∈ IN be the number of rounds, the orbit has (just!) circled when reaching ϕr at
(discrete) “time” r and let z` ∈ IN0 be the number of rounds, the orbit has (almost!) circled when reaching ϕ` at “time”
`. Then the following holds.

t`
z`
< Tp <

tr
zr
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Remark: It is known that for the rotation number

z`
`
< % <

zr
r

holds. The bounds are Farey-neighbors, the next discrete time q when another orbit point is located in the interval (ϕ`, ϕr),
is given by q = `+ r. The MacKay algorithm ([Mac92]) for the computation of % is based on this fact.

Proof. The claim follows from the “order-preserving” - assumption A.

5 Global flow

The local flow at some position is given by the number of cars per time unit which pass this position. Globally it is the
average local flow which must be the same at any position of the circle. We take the observer point ξ = 0. Then obviously
the local flow is the inverse of the actual wait time while the global flow f can be defined by 1/τ , where τ is the average
wait time. For POMs the wait time is constant and equals the Nth part of the circulation time T . We get the simple formula
f = N/T where T is the orbital period (we have T = N · τ ).
For quasi-POMs we can compute the average wait time by first computing the rotational number % of the invariant curve
and the macro-period Tp by MacKay-algorithm. Then we can set (see (12))

τ = % · Tp.

Here we have observed an interesting point. If the center of the invariant curve is chosen in a wrong way, the resulting
numbers % and Tp were wrong, but τ = % · Tp was correct. On the other hand we could easily compute the time average
of the wait time along a long orbit under the reduced Poincaré map.
The global flow is a very good characterizing quantity of the POMs and quasi-POMs, especially when one compares
dynamics for different L,N and ε. For our solution diagrams we have observed the interesting fact that starting with the
bottleneck-free case ε = 0 along the POM-branch the global flow decreases continuously. Moreover, a local increase of ε
never leads to an increase of flow at a stable POM. Only unstable POMs may have this property.
For quasi-POMs it may be interesting to compare their flow with that of coexisting (mostly unstable) POMs. In some
cases, we have observed a larger flow of quasi-POMs than that of coexisting POMs.

6 Numerical Results

In the sequel we refer to the quasi-POMs and their macroscopic visualizations and invariant curves presented in [GW10]
for N = 10, L = 13, a = 2, τ = 1, vmax = 1 and several values of ε ∈ [0, 0.33]. We will compute the rotation number
% and the macro time period Tp by the MacKay algorithm ([Mac92]) which is based on Lemma 1. For this purpose we
have to assume that we have already found a quasi-POM by numerical simulation. Then we need a suitable headway-
speed-plane for a certain car such that the projection of the corresponding invariant curve on this plane is star shaped with
respect to a point M in its interior. If this is not possible, we can use a more general idea, see below.
The main aim is to compute the macroscopic speed function v(ξ, t), where 0 ≤ ξ ≤ L and 0 ≤ t ≤ Tp, by the projection
method based on our Theorem 1. To this end we have to solve our 2N -ODE system from t = 0 to t = m · Tp for a
sufficiently large m ∈ IN and to set

v(xj(t) modL, tmodTp) = ẋj(t), j = 1, 2, ..., N.

The number m determines the numerical effort for the numerical simulation from t = 0 to t = mTp. To obtain a
“continuous” visualization result, i.e. a sufficiently dense net of points (ξ, tmodTp), m must be chosen large enough.
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The choice ofm depends on properties of % (and on the graphical thickness of lines). The smaller % and the more irrational
% is, the smaller m. The irrationality of % depends on the continuous fraction expansion of %.
We will also compute the time-angle function Φ and plot the angle ϕ as (discrete) function of time t ∈ [0, Tp) to check
whether assumption A holds. It holds, if we obtain a continuous, strictly monotone increasing function.

6.1 ε = 0.3ε = 0.3ε = 0.3

In the last sections we have already presented some figures for ε = 0.3. Here the projection of the corresponding invariant
curve on the headway-speed plane of car No. 4 (counted from the measure point) is star shaped with respect to a point M
in its interior, as can be seen from Figure 5.
The MacKay algorithm for 1000 iterations of the reduced Poincaré map yields the inclusions

0.06764 =
60

887
< % <

23

340
= 0.06765 (13)

and
32.73513 < Tp < 32.73674.

Hence, the average wait time τ = Tp · % fulfills (see (12))

2.21434 < τ < 2.21454.

The fractions in (13) are so-called convergents of %. With respect to the number n = 1000 of iterates of the reduced
Poincaré map the inclusion in (13) is rather accurate. For n = 5000 iterations we get the inclusion

0.06764428 =
143

2114
< % <

226

3341
= 0.06764442 (14)

with more accurate Tp = 32.7364 and τ = 2.2144.

Now we are going to explain our projection step for the computation of the macroscopic function v(ξ, t). We have to
choose two parameters, the number m for the simulation of the ODE-system for t ∈ [0,m · Tp] and the Matlab thickness
d of the trajectory lines in the figures, see Figure 8 for different choices of m and d.

In Figure 9 we demonstrate how an inaccurate Tp can destroy the projection method. The result is obviously discontinuous.

6.2 ε = 0.32ε = 0.32ε = 0.32

In this case, the projection method is suffering under the special property of % of being well approximable by the rational
number 1

13 with small denominator.
The MacKay algorithm for 500 iterations of the reduced Poincaré map yields the inclusions

0.07676768 =
38

495
< % <

1

13
= 0.07692308 (15)

and
29.30249756 < Tp < 29.36220498.

Hence, the average wait time τ = Tp · % fulfills (see (12))

2.24948466 < τ < 2.25863115.

For 1000 iterates we get the much better inclusion

0.07680492 =
50

651
< % <

51

664
= 0.07680723 (16)
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(a) m = 1, d = 5 (b) m = 10, d = 5

(c) m = 50, d = 5 (d) m = 50, d = 1

(e) m = 10, d = 40 (f) m = 10, d = 20

Figure 8: N = 10, L = 13, ε = 0.3, Tp = 32.74: Macroscopic visualization of the speed function v for different values
of m and d.
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(a) m = 20, d = 10 (b) m = 50, d = 1

Figure 9: N = 10, L = 13, ε = 0.3: macroscopic visualization of a discontinuous speed function for an inaccurate
Tp = 32 instead of Tp = 32.74.

and
29.34697180 < Tp < 29.347866220498.

Hence, the average wait time τ = Tp · % fulfills (see (12))

2.25399169 < τ < 2.25412786.

The consequences of the fact that 1
13 is a very good upper bound of % (every fraction which is a better upper bound has

a denominator larger than 600), can be seen in Figure 10 which shows the result of the projection method for different
values of m. Here we always used the relatively small Matlab line thickness d = 5. Only for m = 50 the projection
method yields a macroscopic acceptable picture.

6.3 0.0 ≤ ε ≤ 0.250.0 ≤ ε ≤ 0.250.0 ≤ ε ≤ 0.25

In this section we want to compute the macro period Tp for all cases reported in [GW10]. The main difficulty is to find
suitable polar coordinates by projections of the invariant curve on an appropriate plane such that the encircled region
is star like to a center. To check the assumption A we will compute some time-angle functions (which depend on the
chosen polar coordinates), the projected invariant curve (which depends on the type of projection) and most important the
macro period Tp with lower and upper bounds. As¡already mentioned, the accuracy depends on the number of iterations
performed for the reduced Poincaré map and on the irrationality of the rotation number %.
Observe that for the values ε = 0.25 and ε = 0.27 there coexist two different quasi-POMs.

1. ε = 0.0ε = 0.0ε = 0.0.

The projection of the IC on the headway-speed plane of car No. 4 is starlike wrt M = [0.75, 0.35]. Assumption A
seems to be satisfied according to Fig. 11.

After 1000 iterations of the reduced Poincaré map we get the following inclusions:

189.79299140 < Tp < 189.90078628
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(a) m = 1 (b) m = 5

(c) m = 10 (d) m = 20

(e) m = 40 (f) m = 50

Figure 10: N = 10, L = 13, ε = 0.32, Tp = 29.347, d = 5: Macroscopic visualization of the speed function v for
different values of m.
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Figure 11: time-angle function Φ for ε = 0.0 and car No. 4

Figure 12: time-angle function Φ for ε = 0.1 and car No.4

2

193
< % <

9

868
, 0.01036269 < % < 0.01036866, 1.96676675 < τ < 1.96901737.

After 5000 iterations we get the more accurate estimation 189.81994188 < Tp < 189.82210118.

2. ε = 0.1ε = 0.1ε = 0.1. The projection of the IC on the headway-speed plane of car No. 4 is starlike again wrt M = [0.75, 0.35].
Assumption A seems to be satisfied according to Fig. 12.

After 1000 iterations of the reduced Poincaré map we get the following inclusions:

180.12339642 < Tp < 180.15322845

7

634
< % <

9

815
, 0.01104101 < % < 0.01104294, 1.98874412 < τ < 1.98942215.

The rotation number is sufficiently irrational for our computations.

After 5000 iterations we get the better inclusion 180.12815764 < Tp < 180.12955231.

3. ε = 0.2ε = 0.2ε = 0.2. The projection of the IC on the headway-speed plane of car No. 3 (not for car No.4!) is starlike wrt
M = [0.75, 0.35]. Assumption A seems to be satisfied according to Fig. 13.

After 1000 iterations of the reduced Poincaré map we get the following inclusions:

175.49563670 < Tp < 175.52290665

10

873
< % <

7

611
, 0.01145475 < % < 0.01145663, 2.01025881 < τ < 2.01090124.
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Figure 13: time-angle function Φ for ε = 0.2 and car No.3

The rotation number is sufficiently irrational for our computations.

After 5000 iterations we get 175.50688700 < Tp < 175.50894549.

4. ε = 0.24ε = 0.24ε = 0.24.

There are no projections of the IC on a headway-speed plane of single cars which are star like wrt to a point, see
Fig. 14.

To compute the macro period Tp we need another method to find suitable polar coordinates. We succeeded by using
the average of three-car datas headway and speed with center M = (0.75, 0.35). The assumption A is satisfied, see
Fig. 15.

Using 5000 iterations we get
162.99452500 < Tp < 162.99643851

and
47

3822
< % <

22

1789
, 0.01229723 < % < 0.01229737, 2.00438061 < τ < 2.00442798.

5. ε = 0.25ε = 0.25ε = 0.25.

Using 5000 iterations we get
94.94346935 < Tp < 94.94382682

and
53

2473
< % <

103

4806
, 0.02143146 < % < 0.02143154, 2.03477714 < τ < 2.03479279.

Observe the dramatic change in comparison with ε = 0.24.

6. ε = 0.27ε = 0.27ε = 0.27.

Also here our average projection works with the same center though also the single car projection would have
worked too.

Using 5000 iterations we get
39.71481676 < Tp < 39.71495430

and
263

4841
< % <

59

1086
, 0.05432762 < % < 0.05432781, 2.15761140 < τ < 2.15762643.

There is a second coexisting quasi-POM, see [GW10].
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(a) carNo. 2 (b) carNo. 3

(c) carNo. 4 (d) carNo. 5

(e) carNo. 6 (f) carNo. 7

Figure 14: N = 10, L = 13, ε = 0.24: Different projections of the IC on headway-speed planes of different cars.
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(a) Invariant curve (b) time-angle function

Figure 15: N = 10, L = 13, ε = 0.24: Average projection car No. 3, 4, 5

(a) Invariant curve (b) time-angle function

Figure 16: N = 10, L = 13, ε = 0.25: Average projection car No. 3, 4, 5
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(a) Invariant curve (b) time-angle function

Figure 17: N = 10, L = 13, ε = 0.27: Average projection car No. 3, 4, 5

After 2000 iteration steps we get
43.30870976 < Tp < 43.30939547

and
65

1318
< % <

47

953
, 0.04931715 < % < 0.04931794, 2.13586201 < τ < 2.13593031.

7. ε = 0.25ε = 0.25ε = 0.25. This quasi-POM which coexists with that described above for the same value of ε = 0.25. It can be
obtained by a kind of path following. The polar coordinates can be easily chosen by projection on the headway-
speed plane of a single car (No.5), the macro period is much less, the average wait time is larger than that of the
coexisting quasi-POM.

After 2000 iterations we get
49.59085527 < Tp < 49.59921633,

15

353
< % <

17

400
, 0.04249292 < % < 0.04250000, 2.10726014 < τ < 2.10796669.

7 Additional remarks

1. The theory does not depend on the assumption of identical drivers. It is also valid for quasi-rotations, see Section
??. We expect similar periods, but different patterns, since the macroscopic functions will be different for different
cars. The simulations will be much more expensive than for the case of identical drivers.

2. In this paper, our projection method is only used for macroscopic visualizations. But of course, it could also be used
for an analytical expression for v(ξ, t) by some approximation method based on interpolating data. This expression
could be used to compute numerically an arbitrary run of a car by solving the scalar (!) ODE

ξ̇ = v(ξ, t), ξ(0) = ξ0.
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3. It would be tempting to try to compute the observer function v(ξ, t) directly as a Tp periodic function comparable
to the computation of periodic solutions of ODEs. But this is impossible since these functions (as the invariant
curves themselves) do not depend smoothly on parameters. The Implicit Function Theorem does not hold. Hence
the computation of such observer functions is somewhere ill posed.

References
[AGMP91] D. G. Aronson, M. Golubitsky, and J. Mallet-Paret. Ponies on a merry-go-round in large arrays of josephson

junctions. Nonlinearity, 4:903–910, 1991.

[BHN+95] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Dynamical model of traffic congestion
and numerical simulation. Phys. Rev. E, 51:1035ff, 1995.
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