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Abstract

This paper addresses the analysis of spectra and pseudospectra of linearized
Navier-Stokes operators from the numerical point of view. Pseudospectra play
a crucial role in linear hydrodynamic stability theory and are closely related
to the non-normality of the underlying differential operators and the matri-
ces resulting from their discretization. This concept offers an explanation for
experimentally observed instability in situations when eigenvalue-based linear
stability analysis would predict stability. Hence the reliable numerical computa-
tion of pseudospectra is of practical importance particularly in situations when
the stationary “base flow” is not analytically but only computationally given.
The considered algorithm is based on a finite element discretization of the con-
tinuous eigenvalue problem and uses an Arnoldi-type method with a multigrid
component. Its performance is investigated theoretically as well as practically at
several two-dimensional test examples such as the linearized Burgers equations
and various problems involving the Navier-Stokes equations for incompressible
flow.

Keywords: Navier-Stokes equations, linearized stability, pseudospectrum,
finite element method, Arnoldi method, non-normal operators

1. Introduction

This paper investigates an algorithm for analyzing spectra and pseudospec-
tra of non-symmetric linear differential operators and discusses its performance
from the numerical point of view. The pseudospectrum of a differential oper-
ator at a point z ∈ C determines the size of a perturbation of the operator,
under which this point would become an eigenvalue of the perturbed operator.
Consequently, the pseudospectrum serves as a mean to investigate the influence
of perturbations on the eigenvalues of an operator. The concept of a pseu-
dospectrum has been advocated in Trefethen [32, 33], and Trefethen&Embree
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[34] in the context of non-normal matrices resulting from the discretization of
certain non-symmetric differential operators. It has gained attention especially
in hydrodynamic stability theory since it offers an explanation for certain well-
known phenomena of experimentally observed instability in situations, when
eigenvalue-based linear stability analysis would predict stability. In this case,
the stability of a stationary solution to the nonlinear system is analyzed by
studying the behavior of the associated linearized system, which is determined
by the eigenvalues of the corresponding linearized operator.

For example, in two or three dimensions the classical Couette flow and
Poiseuille flow are stationary solutions of the Navier-Stokes equations for any
Reynolds number. In experiments these solutions turn nonstationary or even
chaotic for higher Reynolds numbers depending on the experimental set up.
However, linear stability analysis based on the eigenvalues of the correspond-
ing linearized Navier-Stokes operator predicts stability for Couette flow for all
Reynolds numbers and stability of Poiseuille flow for Reynolds numbers much
larger than the critical ones observed in experiment. The reason of this failure of
linear stability theory was found in the presence of a large pseudospectrum cor-
responding to small “stable” eigenvalues, which causes significant initial growth
of small perturbations in the linearized system eventually triggering nonlinear
instability. For a discussion of this aspect, we refer to Trefethen et al. [35] and
Johnson et al. [19].

Hence the reliable numerical computation of pseudospectra is of practical
importance particularly in situations when the stationary “base flow” is not
analytically but only computationally given. Until now the computation of
pseudospectra has been restricted to matrices of moderate size and therefore
mainly to ordinary differential operators, such as the Orr-Sommerfeld operator
as a simplified model for the full Navier-Stokes equations (see Trefethen et al.
[36]). The goal of this paper is to analyze, theoretically as well as practically,
a method for computing critical pseudospectra of the linearized Navier-Stokes
operator even in cases when the stationary base flow is not known analyti-
cally. This method is based on a finite element discretization of the continuous
eigenvalue problem and uses an Arnoldi-type method, such as proposed in Tre-
fethen&Embree [34] and Trefethen [33]. For increasing efficiency the latter
algorithm involves a multigrid component. For a similar approach to solving
large nonsymmetric eigenvalue problems, we refer to Heuveline&Bertsch [13].
The adaptive finite element discretization of such problems has been treated
in Heuveline&Rannacher [14] and Rannacher et al. [28]. The effectivity of the
described method is illustrated by several test examples in two space dimensions
such as the vector Burgers equation and the Navier-Stokes equations linearized
around stationary “base solutions”.

The following crucial questions are investigated in computing pseudospectra
for the finite element analogue of the linearized Navier-Stokes operator:

1. For which choices of the various parameters in the numerical scheme are
the computed pseudospectra reliable?

2. How sensitive are computed eigenvalues and pseudospectra with respect
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to stabilization of pressure and transport in the numerical scheme?

3. Is it possible to detect the presence of a critical pseudospectrum a poste-
riori without explicitly computing it?

4. Do the computed pseudospectra of the discrete operators actually converge
to that of the continuous one?

5. How does the pseudospectrum depend on the inflow and outflow boundary
conditions imposed on admissible perturbations?

6. How do the pseudospectra of the linearized Burgers operator compare to
that of the linearized Navier-Stokes operator?

All these questions have not been satisfactorily considered yet in the literature.
The results presented in this paper are in some parts based on the Diploma
theses Westenberger [37], see also Rannacher et al. [28], and Gerecht [10] and
also use material from Heuveline&Rannacher [15] and Rannacher [27]

The content of the paper is as follows: In Section 2, we recall the basics of
linear hydrodynamic stability theory, particularly the aspect of pseudospectra
related to the non-normality of the underlying operators. Section 3 deals with
the finite element method used in our computations and addresses the conver-
gence of discrete pseudospectra. Section 4 presents our algorithm for comput-
ing eigenvalues and pseudospectra of matrices based on the Arnoldi method
and singular value decomposition. Section 5 presents an application in stabil-
ity analysis, for the vector Burgers equation linearized around a Couette-like
solution. We especially address the effect of different inflow and outflow bound-
ary conditions and of the various parameters in the solution algorithm on the
structure and accuracy of the computed pseudospectra. Then, in Section 6,
we investigate the analogous questions for the Navier-Stokes equations, at first
for its linearization around Couette flow and Poiseuille flow, and finally for the
stationary solution of a flow benchmark “channel flow around a cylinder”. All
numerical computations use the software package GASCOIGNE [9].

2. Stability analysis

In this section, we recall the concept of linear stability analysis and its
shortcomings for non-normal operators. Further, we describe the finite element
discretization of the Navier-Stokes equations in the common velocity-pressure
formulation used in our computations.

Let Ω ⊂ R
d, d = 2 or d = 3, be a bounded domain with polygonal or

polyhedral boundary ∂Ω , respectively. We use the standard notation L2(Ω) ,
H1(Ω) , and H1

0 (Γ; Ω) = {v ∈ H1(Ω) | v|Γ = 0}, Γ ⊂ ∂Ω , for the Lebesgue
and Sobolev spaces on Ω , with the corresponding norms denoted by ‖ · ‖ and
‖ · ‖m , respectively. Occasionally also Lp and Wm,p spaces for 1 ≤ p ≤ ∞
and m ∈ N will be used together with the corresponding notation of norms.
Spaces of Rd-valued functions v = (v1, . . . , vd) are denoted by boldface-type,
but no distinction is made in the notation of norms and inner products, e.g.,
L2(Ω) = L2(Ω)d and H1

0(Γ; Ω) = H1
0 (Γ; Ω)

d have norm ‖·‖ = (
∑d
i=1 ‖vi‖2)1/2
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and ‖v‖1 = (
∑d
i=1 ‖vi‖21)1/2, respectively. All other notation is self-evident, e.g.,

∂tu = ∂u/∂t and ∂nv = n · ∇v, where n is an outer normal unit vector.
We assume a decomposition ∂Ω = Γin ∪ Γout ∪ Γrigid, where Γin, Γout,

and Γrigid denote the inlet, the outlet and the rigid part of the boundary ∂Ω ,
respectively. We introduce the abbreviations L := L2(Ω) , L := L(Ω)d , and

Ĥ := H1(Ω), V̂ := Ĥ×L, H := H1
0(Γin ∪ Γrigid,Ω), V := H×L.

In the case Γout = ∅ , we use L := L20(Ω) = {q ∈ L2(Ω)| (q, 1) = 0} . For
theoretical analysis it is convenient to introduce spaces of solenoidal functions
in order to eliminate the pressure from the discussion (see, e.g., Galdi [8]),

J1 := {v ∈ H, ∇ · v = 0}, J0 := J1
‖·‖ ⊂ L.

In this context let P̃ denote the so-called “Stokes projection”, i.e., the orthog-
onal projection of L onto its subspace J0 .

With this notation, we consider the following eigenvalue problem occurring
in hydrodynamic stability theory:

− νΔv + v̂ · ∇v + v · ∇v̂ +∇q = λv, ∇ · v = 0, in Ω,

v|Γrigid∪Γin
= 0, ν∂nv − qn|Γout

= 0.
(1)

Here, the pair {v̂, p̂} is a stationary “base flow”, i.e., a stationary solution of
the corresponding Navier-Stokes equations

− νΔv̂ + v̂ · ∇v̂ +∇p̂ = f, ∇ · v̂ = 0, in Ω,

v̂|Γrigid
= 0, v̂|Γin

= vin, ν∂nv̂ − p̂n|Γout
= P,

(2)

where v̂ is the velocity vector field of the flow, p̂ its hydrostatic pressure, and
ν the kinematic viscosity (for normalized density ρ ≡ 1). The flow is driven
by a prescribed flow velocity vin at the Dirichlet (inflow) boundary, a mean
pressure P at the Neumann (outflow) boundary, and a volume force f . The
(artificial) “free outflow” (also called “do nothing”) boundary condition in (1)
and (2) has proven successful especially in modeling pipe flow since it is satisfied
by Poiseuille flow (see Heywood et al. [16]).

The goal is to investigate the stability of the base flow under small pertur-
bations, which leads us to consider the eigenvalue problem (1). If an eigenvalue
λ ∈ C of (1) has Reλ < 0 , the base flow is unstable, otherwise it is said to be
“linearly stable”. This means that the solution of the linearized nonstationary
perturbation problem

∂tw − νΔw + v̂ · ∇w + w · ∇v̂ +∇q = 0, ∇ · w = 0, in Ω,

w|Γrigid∪Γin
= 0, ν∂nw − qn|Γout

= 0
(3)

corresponding to an initial perturbation w|t=0 = w0 satisfies a bound

sup
t≥0

‖w(t)‖ ≤ A‖w0‖, (4)
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for some constant A ≥ 1 . However, “linear stability” does not guarantee full
“nonlinear stability” due to effects caused by the “non-normality” of the oper-
ator governing problem (1), which may cause the constant A to become large.
This is related to the possible “deficiency” (discrepancy of geometric and alge-
braic multiplicity) or a large “pseudo-spectrum” (range of large resolvent norm)
of the critical eigenvalue. This effect is commonly accepted as explanation of
the discrepancy in the stability properties of simple base flows such as Couette
flow and Poiseuille flow predicted by linear eigenvalue-based stability analysis
and experimental observation. Indeed, Fourier analysis shows that for Couette
flow at all Reynolds numbers the relevant eigenvalues have positive real part
and for Poiseuille they are like this up to Reynolds number Re ≈ 5772 . How-
ever, for both flows in the experiment transition to chaotic behavior happens
for much smaller Reynolds numbers depending on the experimental setup (see,
e.g., Trefethen&Embree [34] and Trefethen et al. [36], and the literature cited
therein).

2.1. Stability analysis in a variational setting

For pairs {v, p}, {ϕ, χ} ∈ V̂ , we define the semilinear form

a(v;ϕ) := ν(∇v,∇ϕ) + (v · ∇v, ϕ),

the bilinear form b(p, ϕ) := −(p,∇ · ϕ) , and the functional F (ϕ) := (f, ϕ) +

(Pn, ϕ)Γout
. With a solenoidal extension v̄in ∈ Ĥ of the inflow data vin, we

consider a solution {v̂, p̂} ∈ V+{v̄in, 0} of the saddle point problem

a(v̂;ϕ) + b(p̂, ϕ)− b(χ, v̂) = F (ϕ) ∀{ϕ, χ} ∈ V. (5)

This “base solution” {v̂, p̂} shall be (locally) unique. Further, we assume that
the derivative form

a′(v̂;ψ,ϕ) := ν(∇ψ,∇ϕ) + (v̂ · ∇ψ, ϕ) + (ψ · ∇v̂, ϕ)

is regular on H , i.e., it satisfies the stability condition

inf
ψ∈H

{
sup
ϕ∈H

a′(v̂;ψ, ϕ)
‖∇ϕ‖‖∇ψ‖

}
≥ γ > 0.

This means that λ = 0 is not an eigenvalue of (1). A corresponding “inf-sup”
condition is known to hold for the pressure form,

inf
p∈L

{
sup
ϕ∈H

b(p, ϕ)

‖∇ϕ‖‖p‖
}
≥ β > 0.

The associated linearized stability analysis considers the following nonstationary
linearized perturbation equation for v = v(t) ∈ J1 :

(∂tv, ϕ) + a′(v̂; v, ϕ) = 0 ∀ϕ ∈ J1, (6)
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with the initial condition v(0) = v0 ∈ J0 . The stability of v̂ under “small”
perturbations is then characterized by the growth property of the corresponding
solution operator S(t) : J0 → J0 , v(t) = S(t)v0 ,

‖S(t)‖ ≈ Ae−Reλ t, t ≥ 0, (7)

where A ≥ 1 and λ is a most critical eigenvalue, i.e., one with smallest real
part, of the stability eigenvalue problem

−νΔv + v̂ · ∇v + v · ∇v̂ +∇q = λv, ∇ · v = 0. (8)

If one of the eigenvalues has negative real part, then the base solution v̂ is
unstable. The variational formulation of this eigenvalue problem reads

a′(v̂; v, ϕ) = λ (v, ϕ) ∀ϕ ∈ J1, (9)

with the normalization ‖v‖ = 1 . Using the operators A(v̂) := P̃ (−νΔv̂+v̂·∇v̂)
and A′(v̂)v := P̃ (−νΔv + v̂ · ∇v + v · ∇v̂) , the eigenvalue problem (9) reads
in operator notation like A′(v̂)v = λIv . Since the domain Ω is bounded,
the resolvent A′(v̂)−1 is a compact operator and the classical Riesz-Schauder
theory applies (see Kato [20]). Accordingly, the eigenvalue problem (9) possesses
a countably infinite set Σ(A′(v̂)) := {λi}∞i=1 ⊂ C of isolated eigenvalues with
finite (algebraic) multiplicities which have no finite accumulation points. The
difference between the algebraic and geometric multiplicity of an eigenvalue λ ,
its so-called “defect”, is denoted by α ∈ N0 and corresponds to the largest
integer such that ker((A′(v̂)− λI)α+1) �= ker((A′(v̂)− λI)α) . Associated to a
primal eigenfunction v ∈ J1 , there is a “dual” (left) eigenfunction v∗ ∈ J1\{0}
corresponding to λ , that is determined by the “dual” eigenvalue problem

a′(v̂;ϕ, v∗) = λ (ϕ, v∗) ∀ϕ ∈ J1, (10)

or A′(v̂)∗v∗ = λ∗Iv∗ in operator notation. Here, λ∗ = λ̄ and the dual eigen-
function may also be normalized to ‖v∗‖ = 1 or to (v, v∗) = 1, if α = 0 and λ
is simple. In the degenerate case (v, v∗) = 0 , then (and only then) the problem

a′(v̂; v1, ϕ)− λ (v1, ϕ) = (v, ϕ) ∀ϕ ∈ J1, (11)

possesses a solution v1 ∈ J1 , a “generalized eigenfunction” with (v1, v) = 0 .
In this case the eigenvalue λ has defect α ≥ 1 and the solution operator S(t)
has the growth property

‖S(t)‖ ≈ tαe−Reλ t. (12)

The effect of degeneracy on the numerical approximation of the Navier-Stokes
equations has been addressed in Johnson et al. [19].
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2.2. The effect of non-normality and the pseudospectrum

The existence of an eigenvalue with Reλ < 0 inevitably causes dynamic
instability of the base flow v̂ , i.e., arbitrarily small perturbations may grow
without bound. This is induced by the growth property

‖S(t)‖ ≈ tαe−Reλ t →∞ (t→∞). (13)

However, even for 0 < Reλ� 1 the property (13) of S(t) implies

sup
t>0

‖S(t)‖ ≈
(α
e

)α 1

|Reλ|α , (14)

i.e., small perturbations may initially be amplified to an extent such that non-
linear instability occurs. Therefore, we are mainly interested in the case that
all eigenvalues have positive real part and want to compute the most “critical”
eigenvalues, that is those λ with minimal Reλ > 0 . The crucial question is
how to detect computationally whether the growth factor in the estimate (13)
may become critical or not.

However, a similar effect is also possible for non-deficient eigenvalues λ .
This is related to the concept of the “pseudo-spectrum” described in Trefethen
[32], Trefethen&Embree [34] and the literature cited therein. For ε ∈ R+ the
ε-pseudo-spectrum Σε(A) ⊂ C of the operator A := A′(v̂) in the Hilbert space
J0 is defined by

Σε(A) :=
{
z ∈ C \ Σ(A)

∣∣ ‖(A− zI)−1‖ ≥ ε−1
}
∪ Σ(A), (15)

where ‖ · ‖ denotes the natural operator norm.

Remark 2.1. The “pseudospectrum” is interesting only for non-normal oper-
ators, since for a normal operator Σε(A) is just the union of ε-circles around
its eigenvalues. This follows from the estimate (see Dunford&Schwartz [5] or
Kato [20])

‖(zI − A)−1‖ ≥ dist(z,Σ(A))−1, z /∈ Σ(A), (16)

where equality holds if A is normal.

The concept of “pseudospectrum” can be introduced for closed linear oper-
ators in abstract Hilbert or Banach spaces (see Trefethen&Embree [34]). Typ-
ically hydrodynamic stability analysis concerns differential operators defined
on bounded domains. This situation fits into the Hilbert-space framework of
“closed unbounded operators with compact inverse”. Here, we use this approach
for the special case of operators generated by sesquilinear forms on (complex)
Hilbert spaces.

Let V, H be two abstract complex (separable) Hilbert space with scalar
products and corresponding norms denoted by (·, ·)V , (·, ·) = (·, ·)H and ‖ ·‖V ,
‖ · ‖ = ‖ · ‖H , respectively, which form a so-called Gelfand triple, V ⊂ H ⊂ V ∗ ,
where V ∗ is the (complex) dual of V . The embedding V ⊂ H is assumed to
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be dense and compact. Typical examples relevant for the subject of this paper
are the Gelfand triples H1

0 (Γ; Ω) ⊂ L2(Ω) ⊂ H−1(Γ; Ω) and J1 ⊂ J0 ⊂ J∗1 . On
V , we consider a sesquilinear form a(·, ·) , which is assumed to be bounded,

|a(u, v)| ≤ α‖u‖V ‖v‖V , u, v ∈ V, (17)

and to satisfy a Garding’s inequality,

a(v, v) ∈ R, a(v, v) + γ‖v‖2 ≥ β‖v‖2V , v ∈ V, (18)

with certain constants β > 0 and γ ≥ 0 . Without loss of generality, for the
following, we assume that the sesquilinear form a(·, ·) is “coercive”, i.e., (18)
holds with γ = 0 . In this case, by the Lax-Milgram lemma, for any f ∈ H
there exists a unique solution u ∈ V of the variational equations

a(u, ϕ) = (f, ϕ)H , ∀ϕ ∈ V. (19)

Then, the sesquilinear form a(·, ·) generates an (abstract) operator A : D(A) ⊂
V ⊂ H → H (not to be confused with the linearized Navier-Stokes operator
from above) by

(Av, ϕ)H := a(v, ϕ), v ∈ D(A), ϕ ∈ V,

where
D(A) =

{
v ∈ V

∣∣ |a(v, ϕ)| ≤ c(v)‖ϕ‖, ϕ ∈ H
}
.

This operator is densely defined and onto, and its inverse A−1 viewed as a
mapping A−1 : H → D(A) ⊂ H is compact. The operator A with compact
inverse is “closed”, i.e., its graph in D(A) × H is closed. The space of such
densely defined closed linear operators is denoted by C(H) and the space of
all bounded linear operators on H by B(H) . By construction the eigenvalue
problem of the operator A is equivalent to the variational eigenvalue problem

a(v, ϕ) = λ(v, ϕ) ∀ϕ ∈ V, (20)

and, if 0 �∈ Σ(A) , to the eigenvalue problem of the inverse,

A−1v = λ−1v. (21)

Remark 2.2. Since we only consider operators defined in Hilbert spaces, we
can alternatively use weak or strict inequality signs in the definition (15) of the
pseudospectrum without changing its properties. This may be different in the
context of operators in Banach spaces without inner product; for a discussion
of this problem see Trefethen&Embree [34]

The first part of the following lemma can be found in in Trefethen&Embree
[34]. For completeness, we recall a sketch of the argument.
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Lemma 2.1. (i) For an operator A ∈ C(H) the following definitions of the
ε-pseudospectrum are equivalent:

(a) Σε(A) :=
{
z ∈ C \ Σ(A)

∣∣ ‖(A− zI)−1‖ ≥ ε−1
}
∪ Σ(A).

(b) Σε(A) :=
{
z ∈ C

∣∣ z ∈ Σ(A+ E) for some E ∈ B(H) with ‖E‖ ≤ ε
}
.

(c) Σε(A) :=
{
z ∈ C

∣∣ ‖(A− zI)v‖ ≤ ε for some v ∈ D(A) with ‖v‖ = 1
}
.

(ii) Let 0 �∈ Σ(A) . Then, the ε-pseudospectra of A and that of its inverse
A−1 : H → D(A) ⊂ H are related by

Σε(A) ⊂
{
z ∈ C \ {0}

∣∣ z−1 ∈ Σδ(z)(A−1)} ∪ {0}, (22)

where δ(z) := ε‖A−1‖/|z| and, for 0 < ε < 1 , by

Σε(A−1) ∩B1(0)c ⊂
{
z ∈ C \ {0}

∣∣ z−1 ∈ Σδ(A)}, (23)

where B1(0) := {z ∈ C, |z| ≤ 1} and δ := ε/(1− ε) .

Proof. (ia) In all three definitions, we have Σ(A) ⊂ Σε(A) . Let z ∈ Σε(A)
in the sense of definition (a), there exists w ∈ H with ‖w‖ = 1 , such that
‖(A− zI)−1w‖ ≥ ε−1 . Hence, there is a v ∈ H, ‖v‖ = 1 , and s ∈ (0, ε) , such
that (A− zI)−1w = s−1Iv or (A− zI)v = sIw . Let Q(v, w) ∈ B(H) denote
the unitary mapping, which rotates the unit vector v into the unit vector w ,
such that sIw = sQ(v, w)v . Then, z ∈ Σ(A + E) where E := sQ(v, w) with
‖E‖ ≤ ε , i.e., z ∈ Σε(A) in the sense of definition (b). Let now be z ∈ Σε(A)
in the sense of definition (b), i.e., there exists E ∈ B(H) with ‖E‖ ≤ ε such that
(A + E)w = zIw , with some w ∈ D(A), w �= 0 . Hence, (A − zI)w = −Ew ,
and therefore,

‖(A− zI)−1‖ = sup
v∈H

‖(A− zI)−1v‖
‖v‖ = sup

v∈D(A)

‖v‖
‖(A− zI)v‖

=
(

inf
v∈D(A)

‖(A− zI)v‖
‖v‖

)−1
≥

(‖(A− zI)w‖
‖w‖

)−1

=
(‖Ew‖
‖w‖

)−1
≥ ‖E‖−1 ≥ ε−1.

Hence, z ∈ Σε(A) in the sense of definition (a). This proves the equivalence of
definitions (a) and (b).

(ib) Next, let again z ∈ Σε(A) \ Σ(A) in the sense of definition (a). Then,

ε ≥ ‖(A− zI)−1‖−1 =
(
sup
w∈H

‖(A− zI)−1w‖
‖w‖

)−1
= inf
v∈D(A)

‖(A− zI)v‖
‖v‖ .

Hence, there exists a v ∈ D(A) with ‖v‖ = 1 , such that ‖(A − zI)v‖ ≤ ε ,
i.e., z ∈ Σε(A) in the sense of definition (c). By the same argument, now used
in the reversed direction, we see that z ∈ Σε(A) in the sense of definition (c)
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implies that also z ∈ Σε(A) in the sense of definition (a). Thus, definition (a)
is also equivalent to condition (c).

(iia) We use the definition (c) from part (i) for the ε-pseudospectrum. Let
z ∈ Σε(A) and accordingly v ∈ D(A), ‖v‖ = 1 , satisfying ‖(A − zI)v‖ ≤ ε .
Then,

‖(A−1 − z−1I)v‖ = ‖z−1A−1(zI − A)v)‖ ≤ |z|−1‖A−1‖ε.
This proofs the asserted relation (22).

(iib) To prove the relation (23), we again use the definition (c) from part (i) for
the ε-pseudospectrum. Accordingly, for z ∈ Σε(A−1) with |z| ≥ 1 there exists
a unit vector v ∈ H, ‖v‖ = 1 , such that

ε ≥ ‖(zI − A−1)v‖ = |z|‖(A− z−1I)A−1v‖.

Hence, setting w := ‖A−1v‖−1A−1v ∈ D(A) with ‖w‖ = 1 , we obtain

‖(A− z−1I)w‖ ≤ |z|−1‖A−1v‖−1ε.

Hence, observing that

‖A−1v‖ = ‖(A−1 − zI)v + zv‖ ≥ ‖zv‖ − ‖(A−1 − zI)v‖ ≥ |z| − ε,

we conclude that

‖(A− z−1I)w‖ ≤ ε

|z|(|z| − ε) ≤
ε

1− ε .

This completes the proof.

2.3. Pseudospectrum and stability analysis

Now, we turn back to the concrete situation of hydrodynamic stability anal-
ysis. First, we recall a result on the possible size of the amplification constant
A in the stability estimate (7), which in the finite dimensional case is referred
to as the “easy half” of the “Kreiss matrix theorem” (see Kreiss [21] and Tre-
fethen&Embree [34] and the references cited therein). In the case of a station-
ary base solution this estimate can easily be obtained by employing the Laplace
transform for semigroups (see Trefethen et al. [35]). Here, we supply an ele-
mentary argument, which could also be used in the case of a quasi-stationary
base solution.

Lemma 2.2. Let A := A′(v̂) and z ∈ C \ Σ(A) with Rez < 0 . Then, for the
solution operator S(t) : J0 → J0 of the linear perturbation equation (9), there
holds

sup
t≥0

‖S(t)‖ ≥ |Rez| ‖(A− zI)−1‖ (24)

and, consequently, in terms of the pseudospectrum

sup
t≥0

‖S(t)‖ ≥ sup
{
|Rez|ε−1 | ε > 0, z ∈ Σε(A),Rez < 0

}
. (25)
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Proof. For z �∈ Σ(A) , the inverse (A − zI)−1 is well defined as a bounded
operator in J0 . Let w0 := w|t=0 ∈ J0 , be an arbitrary but nontrivial ini-
tial perturbation. We recall thatw(t) = S(t)w0 . We rewrite the perturbation
equation (3) in strong form

∂tw + zw + (A− zI)w = 0,

and multiply by etz, to obtain

∂t(e
tzw) + etz(A− zI)w = 0.

Next, integrating this over 0 ≤ t <∞ and observing Rez < 0 yields

(A− zI)−1w0 =
∫ ∞

0

etzS(t) dtw0.

From this, we conclude

‖(A− zI)−1‖ ≤ |Rez|−1 sup
t>0

‖S(t)‖,

which implies the asserted estimate.

The next proposition relates the size of the resolvent norm ‖(A′(v̂)−zI)−1‖
to easily computable quantities in terms of the eigenvalues and eigenfunctions
of the operator A′(v̂) . The proof is recalled from Heuveline&Rannacher [15].

Theorem 2.1. Let λ ∈ C be a non-deficient eigenvalue of the operator A :=
A′(v̂) with corresponding primal and dual eigenvectors v, v∗ ∈ J1 normalized
by ‖v‖ = (v, v∗) = 1. Then, there exists a continuous function ω : R+ → C

with limε↘0+ ω(ε) = 1 , such that for λε := λ− εω(ε)‖v∗‖ , there holds

‖(A− λεI)−1‖ ≥ ε−1, (26)

i.e., the point λε lies in the ε-pseudospectrum of the operator A .

Proof. (i) Let b(·, ·) be a continuous bilinear form on J0, such that

sup
ψ,ϕ∈J1

|b(ψ, ϕ)|
‖ψ‖ ‖ϕ‖ ≤ 1.

We consider the perturbed eigenvalue problem, for ε ∈ R+ ,

a′(v̂; vε, ϕ) + εb(vε, ϕ) = λε (vε, ϕ) ∀ϕ ∈ J1. (27)

Since this is a regular perturbation and λ non-deficient, there exist correspond-
ing eigenvalues λε ∈ C and eigenfunctions vε ∈ J1, ‖vε‖ = 1, such that

|λε − λ| = O(ε), ‖vε − v‖ = O(ε).

Furthermore, from the relation

a′(v̂; vε, ϕ)− λε(vε, ϕ) = −εb(vε, ϕ), ϕ ∈ J1,
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we conclude that

sup
ϕ∈J1

|a′(v̂; vε, ϕ)− λε(vε, ϕ)|
‖ϕ‖ ≤ ε sup

ϕ∈J1

|b(vε, ϕ)|
‖ϕ‖ ≤ ε ‖vε‖,

and from this, if λε is not an eigenvalue of A ,

‖(A− λεI)−1‖−1 = inf
ψ∈J1

sup
ϕ∈J1

|a′(v̂;ψ,ϕ)− λε(ψ,ϕ)|
‖ψ‖ ‖ϕ‖ ≤ ε.

This implies the asserted estimate

‖(A− λεI)−1‖ ≥ ε−1. (28)

(ii) Next, we analyze the dependence of the eigenvalue λε on ε in more detail.
Subtracting the equation for v from that for vε , we obtain

a′(v̂; vε − v, ϕ) + εb(vε, ϕ) = (λε − λ)(vε, ϕ) + λ(vε − v, ϕ).

Taking ϕ = v∗ yields

a′(v̂; vε − v, v∗) + εb(vε, v
∗) = (λε − λ)(vε, v∗) + λ(vε − v, v∗)

and, using the equation satisfied by v∗,

εb(vε, v
∗) = (λε − λ)(vε, v∗).

This yields λε = λ+ εω(ε)b(v, v∗) , where, observing vε → v and (v, v∗) = 1,

ω(ε) :=
b(vε, v

∗)
(vε, v∗)b(v, v∗)

→ 1 (ε→ 0).

(iii) It remains to construct an appropriate perturbation form b(·, ·) . For con-
venience, we consider the renormalized dual eigenfunction ṽ∗ := v∗‖v∗‖−1,
satisfying ‖ṽ∗‖ = 1 . With the function w := (v − ṽ∗)‖v − ṽ∗‖−1 , we set for
ϕ, ψ ∈ J0

Sψ := ψ − 2Re(ψ,w)w, b(ψ,ϕ) := −(Sψ, ϕ).
The operator S : J0 → J0 acts like a Householder transformation mapping v
into ṽ∗ . In fact, observing ‖v‖ = ‖ṽ∗‖ = 1 , there holds

Sv = v − 2Re(v, v − ṽ∗)
‖v − ṽ∗‖2 (v − ṽ∗) = (2− 2Re(v, ṽ∗))v − 2Re(v, v − ṽ∗)(v − ṽ∗)

2− 2Re(v, ṽ∗)

=
2v − 2Re(v, ṽ∗)v − 2v + 2Re(v, ṽ∗)v + (2− 2Re(v, ṽ∗))ṽ∗

2− 2Re(v, ṽ∗)
= ṽ∗.

This implies that

b(v, v∗) = −(Sv, v∗) = −(ṽ∗, v∗) = −‖v∗‖.

12



Further, observing ‖w‖ = 1 and

‖Sv‖2 = ‖v‖2 − 2Re(v, w)(v, w)− 2Re(v, w)(w, v) + 4Re(v, w)2‖w‖2 = ‖v‖2,

we have

sup
v,ϕ∈J1

|b(v, ϕ)|
‖v‖ ‖ϕ‖ ≤ sup

v,ϕ∈J1

‖Sv‖ ‖ϕ‖
‖v‖ ‖ϕ‖ = 1.

Hence, for this particular choice of the form b(·, ·) , we have

λε = λ− εω(ε)‖v∗‖, lim
ε→0

ω(ε) = 1,

as asserted.

Remark 2.3. (i) We note that the statement of Theorem 2.1 becomes trivial
if the operator A := A′(v̂) is normal. In this case primal and dual eigenvectors
coincide and, in view of Remark 2.1, Σε(A) is the union of ε-circles around its
eigenvalues λ . Hence, observing ‖v∗‖ = ‖v‖ = 1 and setting ω(ε) ≡ 1 , we
trivially have λε := λ− ε ∈ Σε(A) as asserted.
(ii) If A is nonnormal it may have a nontrivial pseudospectrum. Then, a large
norm of the dual eigenfunction ‖v∗‖ corresponding to a critical eigenvalue λcrit
with 0 < Reλcrit � 1 , indicates that the ε-pseudospectrum Σε(A) , even for
small ε , reaches into the left complex half plane.

(iii) If the eigenvalue λ ∈ Σ(A) considered in Theorem 2.1 is deficient, the
normalization (v, v∗) = 1 is not possible. In this case, as discussed above, there
is another mechanism for triggering nonlinear instability.

2.3.1. The deficiency test

The result of Theorem 2.1 may be used in hydrodynamic stability analysis
as follows: Suppose that the spectrum of the linearized Navier-Stokes operator
A := A′(v̂) lies in the positive complex half-plane and let λcrit be its (non-
deficient) eigenvalue with smallest real part, 0 < Reλcrit � 1 . Further, let v
and v∗ be associated eigenfunctions normalized for instance by ‖v‖ = (v, v∗) =
1 . Then, in view of Remark 2.3 (ii), a large value ‖v∗‖ � 1 indicates a possibly
large growth constant A . The statement of Theorem 2.1 ensures that for any
ε ∈ R+ for which λε := λcrit − εω(ε)‖v∗‖ satisfies

Reλε = Reλcrit − εReω(ε)‖v∗‖ < 0, (29)

there holds λε ∈ Σε(A) . Consequently, by Lemma 2.2,

sup
t≥0

‖S(t)‖ ≥ |Reλε| ‖(A− λεI)−1‖ ≥
|Reλε|
ε

. (30)

For small ε , we may set ω(ε) = 1. Hence, taking for example ε = 2Reλcrit‖v∗‖−1 ,
it follows that Reλε ≈ −Reλcrit < 0, and consequently,

sup
t≥0

‖S(t)‖ ≥ 1
2‖v∗‖. (31)
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In order to computationally test the validity of the predicted relation λε ∈
Σε(A) , we may choose ε = 2Reλcrit‖v∗‖−1 � Reλcrit as proposed above and
check, whether for

λε := λcrit − ε‖v∗‖ = λcrit − 2Reλcrit, Reλε = −Reλcrit < 0,

there holds λε ∈ Σε(A) .

3. The Galerkin finite element approximation

The discretization of the variational problem (5) and of its associated eigen-
value problem uses a standard second-order finite element method as described,
for instance, in Girault&Raviart [12], Quarteroni&Valli [24], and Rannacher
[25, 26]. Let Th be decompositions of Ω into cells K (closed triangles, quadri-
laterals, etc.). The local width of a cell K ∈ Th is hK := diam(K) , while
h := maxK∈Th

hK denotes the global mesh size. For simplicity, we consider
here only low-order tensor-product elements, that is piecewise d-linear trial and
test functions for all unknowns (so-called equal-order “Q1/Q1 Stokes element”).
In order to ease local mesh refinement and coarsening, we allow “hanging” nodes
where the corresponding “irregular” nodal values are eliminated from the sys-
tem by linear interpolation of neighboring regular nodal values, see Figure 1.
The corresponding finite element subspaces are denoted by Lh ⊂ L and

Ĥh ⊂ Ĥ, Hh ⊂ H, V̂h := Ĥh × Lh, Vh := Hh × Lh.

Here, we assume the domain Ω to be polygonal such that the boundary ∂Ω
can be exactly matched by the mesh domain Ωh := ∪{K∈Th} . In the case of a
curved boundary certain modifications are necessary, which are rather standard
in finite element analysis (see Ciarlet [4]).

Th T2h

Figure 1: Two-dimensional mesh Th (with hanging nodes) organized in a patchwise manner
with corresponding coarser mesh T2h .

Since the finite element approximations vh ∈ Hh of v ∈ J1 are usually
not exactly solenoidal, we have to include the approximate pressures ph ∈ Lh
in the analysis. Therefore, from now on we will consider approximating pairs
{vh, ph} ∈ Vh to {v, p} ∈ V . Further, for notational simplification, we intro-
duce the spaces of discretely solenoidal functions

Jh :=
{
vh ∈ Hh

∣∣ (χh,∇ · vh) = 0 ∀χh ∈ Lh
}
,
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but Jh �⊂ J1 in general. In order to obtain a stable discretization in these
spaces with “equal-order interpolation” of pressure and velocity, we use a re-
duced version of the “Galerkin Least-Squares Stabilization” (GLS) of Hughes
et al. [18] or the “Local Projection Stabilization” (LPS) of Becker&Braack
[1]. By the same techniques, we also obtain the stabilization of the transport
in case of dominant advection. In this case the GLS stabilization is closely re-
lated to the “Streamline Upwinding Petrov-Galerkin Stabilization” (SUPG) of
Hughes&Brooks [17].

3.1. Stabilized “equal-order” discretization of the Navier-Stokes problem
First, we describe two common stabilization techniques in solving the Navier-

Stokes equations to obtain the base solution. The GLS uses the mesh-dependent
inner product and norm

(ϕ, ψ)h :=
∑

K∈Th

(ϕ, ψ)K , ‖ϕ‖h = (ϕ,ϕ)
1/2
h ,

for defining the following stabilizing form, for pairs {vh, qh}, {ϕh, χh} ∈ V̂h :

sh({vh, qh}; {ϕh, χh}) :=
(
vh · ∇vh +∇qh, δhvh · ∇ϕh + αh∇χh

)
h
,

with mesh-dependent parameters δh|K = δK and αh|K = αK . Then, the
stabilized discrete Navier-Stokes problem seeks {v̂h, p̂h} ∈ Vh+{v̄inh , 0} , such
that

a(v̂h;ϕh) + sh({v̂h, p̂h}; {ϕh, χh}) + b(p̂h, ϕh)− b(χh, v̂h) = F (ϕh), (32)

for all {ϕh, χh} ∈ Vh , where v̄
in
h ∈ Jh is a suitable approximation of the inflow

data vin. The stabilization parameters are chosen according to αK = α0γK
and δK = δ0γK , where

γK := min
(h2K
6ν

,
hK
‖vh‖K

)
, K ∈ Th,

and usually α0 = δ0 = 0.3 (see Franca et al. [7]). Though this discretization is
not “strongly” consistent, i.e., the stabilization does not vanish at the continuous
solution, it preserves the optimal order of the discretization. The LPS applies
stabilization only to the scale of the finest mesh Th by using a local projection
or interpolation operator π2h : Vh → V2h to the next coarser mesh T2h . The
stabilizing form is then defined by

sh({vh, qh}; {ϕh, χh}) :=
(
vh · ∇(vh − π2hvh), δhvh · ∇(ϕh − π2hϕh)

)
h

+
(
∇(qh − π2hqh), αh∇(χh − π2hχh)

)
h
,

with the stabilization parameters αk and δK as specified above. For the eco-
nomical realization of the projection π2h , we use hierarchically block-structured
meshes such as shown in Figure 1. The LPS is also not strongly consistent but
preserves the total order of convergence of the discretization. It also results
in augmented discrete problems of the form (32). We note that problem (32)
cannot be simplified by eliminating the pressure through reducing it to the
subspace Jh of “solenoidal” functions since the stabilization also acts on the
pressure variable.
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3.2. “Inf-sup”-stable discretization of the Navier-Stokes boundary value problem

Most of the numerical results presented in this paper have been obtained
using the stabilized equal-order Q1/Q1 Stokes element described above. But
at some places also the Q2/Q1 Taylor-Hood element is employed (see Quar-
teroni&Valli [24] or Rannacher [25]). This Stokes element uses continuous bi-
quadratic shape functions for the velocity and bilinear ones for the pressure. It
is inf-sup-stable, e.g., it holds

inf
qh∈Lh

{
sup

ϕh∈Hh

b(ϕh, qh)

‖ϕh‖1

}
≥ β′ > 0, (33)

and therefore does not require extra pressure stabilization. It is mainly used
in comparison to the Q1/Q1 Stokes element in order to rule out any negative
effect on the computation of eigenvalues and pseudospectra possibly caused by
the pressure stabilization. However, also this Stokes element requires trans-
port stabilization in the case of higher Reynolds numbers. The corresponding
stabilization forms are in the GLS approach

sh(vh;ϕh) :=
(
vh · ∇vh, δhvh · ∇ϕh

)
h
,

and in the LPS approach

sh(vh;ϕh) :=
(
vh · ∇(vh − π2hvh), δhvh · ∇(ϕh − π2hϕh)

)
h
.

3.3. Discretization of the Navier-Stokes eigenvalue problem

Next, we describe the discretization of the eigenvalue problem associated
to the Navier-Stokes operator linearized around the stationary base solution
{v̂, p̂} . In the case of the “equal-order” Stokes elements the definition of the
stabilization by the GLS or LPS methods follows the same ideas as used for the
nonlinear boundary value problem. For brevity, we now only consider the case
of the “inf-sup”-stable Taylor-Hood element using GLS transport stabilization:

sh(v̂h; vh, ϕh) :=
(
v̂h · ∇vh, δhv̂h · ∇ϕh

)
h
.

Then, the stabilized primal and dual discrete eigenvalue problems seek {vh, qh}
and {v∗h, q∗h} in V\{0} and λh, λ

∗
h ∈ C , such that

a′(v̂h; vh, ϕh) + sh(v̂h; vh, ϕh) + b(qh, ϕh)− b(χh, vh) = λh (vh, ϕh), (34)

a′(v̂h;ϕh, v∗h) + sh(v̂h;ϕh, v
∗
h) + b(q∗h, ϕh)− b(χh, v∗h) = λ∗h (ϕh, v

∗
h), (35)

for all {ϕh, χh} ∈ Vh . The eigenfunctions are usually normalized by ‖vh‖ =
‖v∗h‖ = 1 .

In the following, for conceptional simplicity, we will skip the transport sta-
bilization in the formulation of the approximate eigenvalue problems. This is
justified since all results stated for h → 0 are of asymptotic nature. It allows
us to state the approximate eigenvalue problems in the compact form

a′(v̂h; vh, ϕh) = λh (vh, ϕh) ∀ϕh ∈ Jh, (36)

a′(v̂h;ϕh, v∗h) = λ∗h (ϕh, v
∗
h) ∀ϕh ∈ Jh. (37)
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For the described Galerkin finite element discretizations, we can recall a priori
error estimates from the literature. If the problem is H2-regular, there holds an
optimal-order L2-error estimate for the approximation of the base solution (see
Girault&Raviart [12] or Rannacher [25]),

‖v̂h − v̂‖+ h‖∇(v̂h − v̂)‖ = O(h2), (38)

and for a non-deficient eigenvalue (see Bramble&Osborn [2] and Osborn [23]),

|λh − λ| = O(h2). (39)

Further, for pairs of normalized discrete primal and dual eigenfunctions {vh, v∗h} ∈
Jh × Jh , there exists an associated pair of eigenfunctions {vh, vh∗} ∈ J1 × J1 ,
such that

‖vh − vh‖+ ‖v∗h − vh∗‖ = O(h2). (40)

Here, the superscript in vh indicates that the continuous eigenfunction associ-
ated to vh may vary with h .

Remark 3.1. In the case that problem (2) is H2-regular and that the data
is sufficiently smooth, then in addition to the L2-error estimate (38) there also
hold Lp-error estimates

‖v̂h − v̂‖Lp = O(h2| ln(h)|ω(p)), (41)

where 2 ≤ p ≤ ∞ with ω(p) = 0 for 2 ≤ p < ∞ , and ω(∞) = 1 . For proofs
of such results, we refer to Duran&Nochetto [6], Girault et al. [11], Chen [3],
and the literature cited therein. In case that problem (2) is not H2-regular,
for instance if the domain Ω has reentrant corners, then the above convergence
orders are reduced to O(hα) for some α ∈ [1, 2) .
Remark 3.2. The above asymptotic error estimates are usually proven in the
literature for the special case Γout = ∅ only. In this situation the relation

(ψ · ∇v, ϕ) = ((∇ · ψ)v, ϕ)− (ψ · ∇ϕ, v), ψ, ϕ, v ∈ H, (42)

holds true since integration by parts does not produce any boundary term. This
significantly simplifies the argument but the generalization to the case Γout �= ∅
only requires standard arguments in estimating the additional boundary term
((n · ψ)v, ϕ)Γout . However, in the following, our analysis will take care of this
possible complication since the case of free in- or outflow turns out to be the
most interesting one in the stability analysis. At one point, we like to use the
error estimate

|(ϕψ, v̂h − v̂)Γout
| ≤ ch2‖ϕ‖1‖ψ‖1, ϕ, ψ ∈ H1(Ω), (43)

which, in view of (41), is likely to hold true, but for which we unfortunately
cannot give a reference. However, a corresponding estimate with order O(h2−ε),
for any ε ∈ (0, 1) can be derived from the error estimates (41) by using standard
trace theorems.
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Now, let z �∈ Σ(A′(v̂)) be a regular point and w ∈ J1 be the (unique)
solution of the variational problem

a′z(v̂;w,ϕ) := a′(v̂;w,ϕ)− z(w,ϕ) = (f, ϕ) ∀ϕ ∈ J1, (44)

for some right hand side f ∈ J0. Assume that (5) is H
2-regular, than this linear

boundary value problem is H2-regular, i.e., its solution is in H2(Ω) and there
holds the a priori estimate

‖w‖2 ≤ c(v̂, z)‖f‖, (45)

where the constant c(v̂, z) depends on dist(z,Σ(A′(v̂))−1 .
Lemma 3.1. Suppose that problem (2) is H2-regular and that the error esti-
mates (38), (41), and (43) hold true. Then, if z �∈ Σ(A′(v̂)) , for sufficiently
small h , z is also a regular point for the discrete equations

a′z(v̂h;wh, ϕh) = (f, ϕh) ∀ϕh ∈ Jh. (46)

For the corresponding solutions wh ∈ Jh there holds the error estimate

‖wh − w‖+ h‖∇(wh − w)‖ ≤ c(v̂, z)h2‖f‖. (47)

Proof. (i) The assumption z �∈ Σ(A′(v̂)) implies that

sup
ϕ∈H

a′z(v̂;ψ,ϕ)
‖ϕ‖1

≥ γ(v̂, z)‖ψ‖1, ψ ∈ H. (48)

For ϕ ∈ H let ihϕ ∈ Hh an H1-stable interpolation satisfying

‖ϕ− ihϕ‖+ h‖∇ihϕ‖ ≤ ch‖ϕ‖1.

For such a construction, we refer to Scott&Zhang [31]. Then, with this notation,

γ(v̂, z)‖ψh‖1 ≤ sup
ϕ∈H

a′z(v̂;ψh, ϕ)
‖ϕ‖1

≤ sup
ϕ∈H

a′z(v̂;ψh, ϕ− ihϕ)
‖ϕ‖1

+ sup
ϕ∈H

a′z(v̂;ψh, ihϕ)
‖ihϕ‖1

‖ihϕ‖1
‖ϕ‖1

≤ sup
ϕ∈H

a′z(v̂;ψh, ϕ− ihϕ)
‖ϕ‖1

+ c sup
ϕh∈Hh

a′z(v̂;ψh, ϕh)
‖ϕh‖1

≤ c‖ψh‖1‖v̂‖2 sup
ϕ∈H

‖ϕ− ihϕ‖
‖ϕ‖1

+ c sup
ϕh∈Hh

a′z(v̂;ψh, ϕh)
‖ϕh‖1

≤ c(v̂)h‖ψh‖1 + c sup
ϕh∈Hh

a′z(v̂;ψh, ϕh)
‖ϕh‖1

,

and consequently,

(γ(v̂, z)− c(v̂)h)‖ψh‖1 ≤ c sup
ϕh∈Hh

a′z(v̂;ψh, ϕh)
‖ϕh‖1

. (49)
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Using the usual Sobolev inequalities and the estimate (38), we obtain

a′z(v̂h;ψh, ϕh) = a′z(v̂;ψh, ϕh) + ((v̂h − v̂) · ∇ψh, ϕh) + (ψh · ∇(v̂h − v̂), ϕh)
≤ a′z(v̂;ψh, ϕh) + 2‖v̂h − v̂‖1‖ψh‖1‖ϕh‖1
≤ a′z(v̂;ψh, ϕh) + c(v̂)h‖ψh‖1‖ϕh‖1.

Combining this with (49), we conclude

sup
ϕh∈Hh

a′z(v̂h;ψh, ϕh)
‖ϕh‖1

≥ (γ(v̂, z)− c(v̂)h)‖ψh‖1, (50)

which proves the first assertion.

(ii) Next, we consider the solution w̃h ∈ Jh of the discrete intermediate problem

a′z(v̂; w̃h, ϕh) = (f, ϕh) ∀ϕh ∈ Jh. (51)

This is the standard finite element approximation to the solution w ∈ J1 of
(44) defined through the same bilinear form a′z(v̂; ·, ·) . For this, we can recall
the error estimate

‖w̃h − w‖+ h‖∇(w̃h − w)‖ ≤ c(v̂, z)h2‖f‖ (52)

from the literature (see Girault&Raviart [12] or Rannacher [25]). Particularly,
there holds

‖w̃h‖1 ≤ ‖w̃h − w‖1 + ‖w‖1 ≤ c(v̂, z)‖f‖. (53)

We note that the corresponding error estimate for the associated pressures is
not needed here.

(iii) It remains to estimate the difference eh := wh − w̃h . Comparing the
corresponding equations, we find that for any ϕh ∈ Jh there holds

a′z(v̂; eh, ϕh) = a′z(v̂;wh, ϕh)− a′z(v̂; w̃h, ϕh) + a′z(v̂h;wh, ϕh)− a′z(v̂h;wh, ϕh)
= a′z(v̂;wh, ϕh)− a′z(v̂h;wh, ϕh)
= ((v̂ − v̂h) · ∇wh, ϕh) + (wh · ∇(v̂ − v̂h), ϕh)
= ((v̂ − v̂h) · ∇wh, ϕh)− (wh · ∇ϕh, v̂ − v̂h)

− ((∇ · wh)ϕh, v̂ − v̂h) + ((n · wh)ϕh, v̂ − v̂h)Γout .

Then, using the Sobolev embedding inequalities together with the error esti-
mates (41) and (43) yields

|a′z(v̂; eh, ϕh)| ≤ ‖v̂ − v̂h‖L3‖∇wh‖L2‖ϕh‖L6 + ‖wh‖L6‖∇ϕh‖L2‖v̂ − v̂h‖L3

+ ‖∇wh‖L2‖ϕh‖L6‖v̂ − v̂h‖L3 + |((n · wh)ϕh, v̂ − v̂h)Γout
|

≤ c(v̂, z)h2‖wh‖1‖ϕh‖1.
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Using this in the stability estimate (48) with ψ := eh , we obtain

‖eh‖1 ≤ γ(v̂, z)−1 sup
ϕ∈H

a′z(v̂; eh, ϕ)
‖ϕ‖1

≤ γ(v̂, z)−1c(v̂, z)h2‖wh‖1 ≤ γ(v̂, z)−1c(v̂, z)h2{‖eh‖1 + ‖w̃h‖1}.

Consequently, recalling the estimates (52) and (53), we conclude that for suffi-
ciently small h > 0 :

‖eh‖1 ≤ c(v̂, z)h2‖f‖. (54)

This together with (52) implies the asserted error estimate (47).

3.4. Convergence of pseudospectra

Next, we study the approximation of the pseudospectrum of the linearized
Navier-Stokes operator by those of its discrete finite element analogues.

The discrete variational equation (46) defines a linear operator denoted
by A′h(v̂h) : Jh → Jh , which is considered as the discrete analog of A′(v̂) :
D(A′(v̂)) ⊂ J0 → J0 . In the following, we use the abbreviations A := A′(v̂) ,
Az := A′(v̂) − zI, and Ah := A′h(v̂h), Ah,z := A′h(v̂h) − zIh. Further, we

denote by P̃ and P̃h the L2 projections onto J0 and Jh , respectively. For
z �∈ Σ(A(v̂)), in terms of the corresponding solution operators Tz := A−1z P̃ :
H → J1 ⊂ H and Th,z := A−1h,zP̃h : Hh → Jh ⊂ H , defined by v = Tzf and

vh = Th,zf , respectively, the L2 error estimate (47) can be expressed in the
form of convergence in the operator norm:

‖Th,z − Tz‖ ≤ c∗(v̂, z)h2. (55)

Here, both operators Tz and Th,z are considered as operators in H . In case
of reduced regularity of the problem, e.g., due to the presence of corner singu-
larities, the estimate (55) holds with possibly reduced order O(hα) with some
α ∈ [1, 2) . We make the following assumption.

Assumption 3.1. (i) All eigenvalues of the linearized Navier-Stokes operator
have positive real parts, i.e., Σ(A′(v̂)) ⊂ C+ := {z ∈ C, Rez > 0} . Then, by
the result of Lemma 3.1, for sufficiently small h, also Σ(A′h(v̂)) ⊂ C+.

(ii) For some suitable ζ ∈ C− := {z ∈ C, Rez ≤ 0} the error estimate (55)
holds uniformly for z ∈ C− + ζ, i.e.,

‖Th,z+ζ − Tz+ζ‖ ≤ c∗h2, z ∈ C−, (56)

with a fixed constant c∗ := c∗(v̂, ζ) .

This assumption seems generic in the context of hydrodynamic stability
theory, since here we are mainly interested in the critical case that the spectrum
is contained in the right complex half-plane (suggesting stability) but with a
pseudospectrum reaching into the left complex half-plane (causing instability).
The assumption above states in particular that for given ε the ε-pseudospectrum
does not reach arbitrarily far into the negative half-plane.
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Lemma 3.2. Let Assumption 3.1 be satisfied. Then, the pseudospectra of the
discrete operators Th converge to that of the continuous operator T in the sense
that, for sufficiently small h > 0 ,

Σε−c∗h2(Th) ∩ C− ⊂ Σε(T ) ∩ C− ⊂ Σε+c∗h2(Th) ∩ C−. (57)

Proof. We note that for z, ζ ∈ C

z ∈ Σε(T ) ⇔ z + ζ ∈ Σε(Tζ), z ∈ Σε(Th) ⇔ z + ζ ∈ Σε(Th,ζ). (58)

Let now z ∈ C− and ζ ∈ C− be given as in Assumption 3.1. In particular
z + ζ �∈ Σ(Th,ζ) and z + ζ �∈ Σ(Tζ).
(i) Let z + ζ ∈ Σε(Th,ζ) . We note the identity

(Tζ − zI)−1 = (Th,ζ − zI)−1 + (Tζ − zI)−1
(
Th,ζ − Tζ

)
(Th,ζ − zI)−1.

From this, we infer that

‖(Tζ − zI)−1‖ ≤ ‖
(
I + (Tζ − zI)−1(Th,ζ − Tζ)

)
‖‖(Th,ζ − zI)−1‖,

and, consequently, by (56) with z = 0 ,

‖(Th,ζ − zI)−1‖ ≥
‖(Tζ − zI)−1‖

1 + ‖(Tζ − zI)−1‖‖Th,ζ − Tζ‖
≥ ‖(Tζ − zI)−1‖
1 + ‖(Tζ − zI)−1‖c∗h2

.

Since the function ψ(x) = x(1 + c∗h2x)−1 is strictly increasing on R+ , we
conclude that, for ‖(Tζ − zI)−1‖ ≥ ε−1 ,

‖(Th,ζ − zI)−1‖ ≥
ε−1

1 + c∗h2ε−1
= (ε+ c∗h2)−1.

(ii) In the same way exchanging the role of Th,ζ and Tζ , we conclude that, for
‖(Th,ζ − zI)−1‖ > (ε− c∗h2)−1 ,

‖(Tζ − zI)−1‖ ≥
(ε− c∗h2)−1

1 + c∗h2(ε− c∗h2)−1
= (ε− c∗h2 + c∗h2)−1 = ε−1.

In view of (58), this implies the asserted relation (57).

Lemma 3.3. Let Assumption 3.1 be satisfied. Then, the pseudospectra of the
discrete operators Ah converge to those of the continuous operator A in the
sense that, for ε(1 + c∗h2) ≤ 1,

Σε(1−c∗h2)(Ah) ∩ C− ⊂ Σε(A) ∩ C− ⊂ Σε(1+c∗h2)(Ah) ∩ C−. (59)

Proof. We use the notation Aζ := A− ζI and Ah,ζ := Ah− ζI and note that

z − ζ ∈ Σε(A) ⇔ z ∈ Σε(Aζ), z − ζ ∈ Σε(Ah) ⇔ z ∈ Σε(Ah,ζ). (60)

Let now z ∈ C− and ζ ∈ C− be given as in Assumption 3.1.
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(i) Let z + ζ ∈ Σε(A) ∩ C− and hence z ∈ Σε(Aζ) . Then, there exists some
v ∈ D(A) , ‖v‖ = 1 , such that ‖(Aζ − zI)v‖ ≤ ε . From this, we infer

ε ≥ ‖(Aζ − zI)v‖ ≥ ‖P̃h(Aζ − zI)v‖
= ‖(Ah,ζ − zI)(Ah,ζ − zIh)−1P̃h(Aζ − zI)v‖
= ‖(Ah,ζ − zI)wh‖‖(Ah,ζ − zIh)−1P̃h(Aζ − zI)v‖

where

wh :=
(Ah,ζ − zI)−1P̃h(Aζ − zI)v
‖(Ah,ζ − zI)−1P̃h(Aζ − zI)v‖

∈ Jh, ‖wh‖ = 1.

Further, by (56), we conclude

‖(Ah,ζ − zIh)−1P̃h(Aζ − zI)v‖
= ‖((Ah,ζ − zIh)−1P̃h − (Aζ − zI)−1)(Aζ − zI)v + v‖
≥ ‖v‖ − ‖((Ah,ζ − zIh)−1P̃h − (Aζ − zI)−1)(Aζ − zI)v‖
≥ 1− ‖(Ah,ζ − zIh)−1P̃h − (Aζ − zI)−1P̃‖‖(Aζ − zI)v‖
= 1− ‖Th,ζ+z − Tζ+z‖‖(Aζ − zI)v‖
≥ 1− c∗h2ε.

This shows that, for ε(1 + c∗h2) ≤ 1 ,

‖(Ah,ζ − zI)wh‖ ≤
ε

‖(Ah,ζ − zI)−1(Aζ − zI)v‖
≤ ε

1− c∗h2ε
≤ (1 + c∗h2)ε,

and, therefore,
z ∈ Σδ(Ah,ζ), δ = (1 + c∗h2)ε.

In view of (60), we obtain z − ζ ∈ Σδ(Ah).
(ii) Next, let z − ζ ∈ Σδ(Ah) ∩ C− for δ = (1 − c∗h2)ε. Then, in view of
(60), z ∈ Σδ(Ah,ζ) and there exists some vh ∈ Jh , ‖vh‖ = 1 , such that
‖(Ah − zIh)vh‖ ≤ δ . From this, we infer that

δ ≥ ‖(Ah,ζ − zI)vh‖ ≥ ‖P̃ (Ah,ζ − zI)vh‖
= ‖(Aζ − zI)(Aζ − zI)−1P̃ (Ah,ζ − zI)vh‖
= ‖(Aζ − zI)w‖‖(Aζ − zI)−1P̃ (Ah,ζ − zI)vh‖

where

w :=
(Aζ − zI)−1P̃ (Ah,ζ − zIh)vh
‖(Aζ − zI)−1P̃ (Ah,ζ − zI)vh‖

∈ D(A), ‖w‖ = 1.
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Further, by (56), we conclude

‖(Aζ − zI)−1P̃ (Ah,ζ − zI)vh‖
= ‖((Aζ − zI)−1P̃ − (Ah,ζ − zI)−1)(Ah,ζ − zI)vh + vh‖
≥ ‖vh‖ − ‖((Aζ − zI)−1P̃ − (Ah,ζ − zI)−1)(Ah,ζ − zI)vh‖
≥ 1− ‖(Aζ − zI)−1P̃ − (Ah,ζ − zI)−1P̃h‖‖(Ah,ζ − zI)vh‖
= 1− ‖Tζ+z − Th,ζ+z‖‖(Ah,ζ − zI)vh‖
≥ 1− c∗h2δ.

This shows that, for ε(1 + c∗h2) ≤ 1 ,

‖(Aζ − zI)w‖ ≤
δ

‖(Aζ − zI)−1P̃ (Ah,ζ − zI)vh‖
≤ δ

1− c∗h2δ
≤ ε,

and, therefore z ∈ Σε(Aζ) or, in view of (60), z − ζ ∈ Σε(A). This implies
Σε(1−c∗h2)(Ah) ⊂ Σε(A), which completes the proof.

4. The computation of matrix eigenvalues and pseudospectra

In the following, we will devise an algorithm for computing the pseudospec-
trum of the discretized operator Ah := A′h(v̂h) : Jh → Jh respectively its
inverse A−1h . In fact, the direct computation of the ε-pseudospectra of the op-
erator Ah is not feasible since it represents the discretization of an unbounded
operator. One rather considers the inverse operator A−1h , which approximates
the bounded inverse A−1 and computes its “largest” (dominant) eigenvalues.

Let {ϕih, i = 1, . . . , nv := dimHh} and {χjh, j = 1, . . . , np := dimLh} be
standard nodal bases of the finite element spaces Hh and Lh , respectively.
The eigenvector vh ∈ Hh and the corresponding pressure qh ∈ Lh possess
expansions

vh =
∑nv

i=1
vihϕ

i
h, qh =

∑np

j=1
qjhχ

j
h,

with the vectors of expansion coefficients likewise denoted by vh = (vih)
nv
i=1 ∈

C
nv and qh = (qjh)

np

j=1 ∈ C
np , respectively. With this notation the discrete

variational eigenvalue problem (34) is equivalent to the generalized algebraic
eigenvalue problem

[
Sh Bh
BTh 0

] [
vh
qh

]
= λh

[
Mh 0
0 0

] [
vh
qh

]
, (61)

with the so-called stiffness matrix Sh , gradient matrix Bh and mass matrix
Mh defined by

Sh :=
(
a′(v̂h;ϕ

j
h, ϕ

i
h)
)nv

i,j=1
, Bh :=

(
(χjh,∇ · ϕih)

)nv,np

i,j=1
, Mh :=

(
(ϕjh, ϕ

i
h)
)nv

i,j=1
.
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As mentioned above, we suppress terms stemming from pressure stabilization.
The generalized eigenvalue problem (61) can equivalently be written in the form

[
Mh 0
0 0

] [
Sh Bh
BTh 0

]−1 [
Mh 0
0 0

] [
vh
qh

]
= μh

[
Mh 0
0 0

] [
vh
qh

]
, (62)

where μh = λ−1h . Since the pressure qh only plays the role of a silent variable
(62) reduces to the standard eigenvalue problem

Thvh = μhMhvh, (63)

with the matrix Th ∈ R
nv×nv defined by

[
Th 0
0 0

]
:=

[
Mh 0
0 0

] [
Sh Bh
BTh 0

]−1 [
Mh 0
0 0

]
.

In the next step, we describe how the pseudospectrum of the matrix eigenvalue
problem (63) may be computed.

The following lemma collects some useful facts, which particularly hold for
pseudospectra of matrices. The proof can be found in Trefethen [33] and Tre-
fethen&Embree [34]. Here and in the following, we skip the index h in the
notation of the matrices.

Lemma 4.1. (i) The ε-pseudospectrum of a matrix T ∈ C
n×n can be equiva-

lently defined in the following way:

Σε(T ) := {z ∈ C |Σmin(zI − T ) ≤ ε}, (64)

where Σmin(T ) denotes the smallest singular value of the matrix T , i.e.,
Σmin(T ) := min{|λ|1/2| λ ∈ Σ(TT ∗)}, with the adjoint T ∗ of T .

(ii) The pseudospectrum Σε(T ) of a matrix T ∈ C
n×n is invariant under

orthonormal transformations, i.e., for any unitary matrix Q ∈ C
n×n there

holds

Σε(T ) = Σε(Q
−1TQ). (65)

In view of Lemma 2.1 and Lemma 4.1 there are several different though
equivalent definitions of the ε-pseudospectrum Σε(T ) of a matrix T ∈ C

n×n,
which can be taken as starting point for the computation of pseudospectra
(see Trefethen [33] and Trefethen&Embree [34]). Here, we use the definition of
Lemma 4.1. Let Σε(T ) to be determined in a whole section D ⊂ C . We choose
a sequence of grid points zi ∈ D, i = 1, 2, 3, . . . , and in each zi determine the
smallest ε for which zi ∈ Σε(T ) by a singular value decomposition of the matrix
zI − T . By interpolating the obtained values, we can then decide whether a
point z ∈ C approximately belongs to Σε(T ) .
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4.1. Computation of eigenvalues

For computing the eigenvalues of a matrix T ∈ R
n×n of moderate size,

one usually uses the QR-method. However, the work count of this algorithm
growths very rapidly with the dimension of the matrix such that one may apply
it only to an appropriately pre-processed matrix with the same eigenvalues. By
a sequence of reduction steps the Arnoldi algorithm leads to a lower-dimensional
upper Hessenberg matrix the eigenvalues of which approximate those of T :

Hk =

⎛
⎜⎜⎜⎜⎜⎝

h1,1 h1,2 h1,3 · · · h1,m
h2,1 h2,2 h2,3 · · · h2,m
0 h3,2 h3,3 · · · h3,m
...

. . .
. . .

. . .
...

0 · · · 0 hm,m−1 hm,m

⎞
⎟⎟⎟⎟⎟⎠
.

For the computation of the eigenvalues of such a matrix the QR algorithm is
very efficient.

The Arnoldi method constructs a Krylov space Km = span{q, T q, .., Tm−1q}
of dimension m � n for an arbitrarily chosen starting vector q ∈ R

n. Then,
an l2-orthonormal basis {vi}mi=1 is computed. For this the basic algorithm is
the classical Gram-Schmidt method, stabilized variants of this or, for larger m ,
the Householder algorithm (see Saad [29]). To the orthonormal Krylov basis
{v1, ..., vm} , we associate the matrix Vm := [v1, ..., vm] ∈ R

n×m . Then the
Hessenberg matrix Hm ∈ R

m×m satisfies Hm := V TmTVm . For this reduced
matrix the QR-algorithm only requires O(m2) operations in contrast to the
O(n3) operations, which would be required for the full matrix T . The Krylov
space contains approximations mainly to the eigenvectors corresponding to those
eigenvalues of T with largest modulus, which in turn are related to the desired
eigenvalues of the differential operator with smallest real parts. Enlarging the
dimension m of Km improves the accuracy of this approximation as well as the
number of the approximated “largest” eigenvalues. In fact, the pseudospectrum
of Hm converges to that of T for m→ n .

The construction of the Krylov space Km is the most cost-intensive part
of the whole algorithm. It requires m-times the application of the matrix T ,
which amounts to the consecutive solution of the m linear systems
[
S B
BT 0

] [
ṽj
qj

]
=

[
M 0
0 0

] [
vj−1
0

]
, vj := ‖ṽj‖−1ṽj , j = 2, . . . ,m. (66)

This is achieved by a (geometric) multigrid method implemented in the software
package GASCOIGNE (see [9]). Since GASCOIGNE does not support complex
arithmetic the system (66) needs to be rewritten in real arithmetic, e.g.,

Sx = y ⇔
(
ReS ImS
−ImS ReS

)(
Rex
−Imx

)
=

(
Rey
−Imy

)
.

For the reliable approximation of the pseudospectrum of T in the subregion
D ⊂ C it is necessary to choose the dimension m of the Krylov space sufficiently
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large, such that all eigenvalues of T and of its perturbations in D are well
approximated by eigenvalues of Hm . Further, the QR-method is to be used
with maximum accuracy requiring the corresponding error tolerance TOL2 to
be set in the range of the machine accuracy. An eigenvector eλ corresponding
to an eigenvalue λ ∈ Σ(Hm) is then obtained by solving the singular system

(Hm − λI)eλ = 0. (67)

By back-transformation of this eigenvector from the Krylov space Km into the
ansatz space Vm , we obtain a corresponding approximate eigenvector of the full
matrix T .

4.2. Computation of the pseudospectrum

Actually, we want to determine the ε-pseudospectrum of the discrete op-
erator Ah , which approximates the unbounded differential operator A . The
inverse Hessenberg matrix H−1m may be viewed as a low-dimensional approx-
imation to Ah . Consequently, we compute the ε-pseudospectrum of H−1m as
approximation to that of Ah and eventually to that of A . To this end, we
choose a section D ⊂ C , in which we want to determine the pseudospectrum.
Let D := {z ∈ C| {Rez, Imz} ∈ [ar, br]× [ai, bi]} for certain values ar < br and
ai < bi . For each z ∈ D\Σ(H−1m ) the quantity ε(z,H−1m ) := ‖(zI−H−1m )−1‖−1
determines the smallest ε > 0 , such that z ∈ Σε(H−1m ). The most effective way
for computing the pseudospectrum goes via its definition using the smallest
singular value, i.e.,

ε(z,H−1m ) = Σmin(zI −H−1m ). (68)

Then, for any point z ∈ D , by computing Σmin(zI − H−1m ) , we obtain an
approximation of the smallest ε , such that z ∈ Σε(H−1m ) .

To determine the pseudospectrum in the complete rectangle D , we cover D
by a grid with spacing dr and di , such that k points lie on each grid line. For
each grid point, we compute the corresponding ε-pseudospectrum. This requires
the frequent computation of the singular value decomposition of a Hessenberg
matrix. For that, we use the LAPACK routine dgesvd within MATLAB. Since
the work count of the singular value decomposition growth like O(m2) , we limit
the dimension of the Krylov space by m ≤ 200 .

4.2.1. Choice of parameters and accuracy issues

The described algorithm for computing the pseudospectrum of a differential
operator at various stages requires the appropriate choice of parameters:

- The mesh size h in the finite element discretization on the domain Ω ⊂
R
n for reducing the infinite dimensional problem to an matrix eigenvalue

problem of dimension nh .

- The dimension of the Krylov space Km,h in the Arnoldi method for the re-
duction of the nh-dimensional matrix Th to the much smaller Hessenberg
matrix Hm,h .
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- The size of the subregion D := [ar, br] × [ai, bi] ⊂ C in which the pseu-
dospectrum is to be determined and the mesh width k of interpolation
points in D ⊂ C .

Only for an appropriate choice of these parameters one obtains a reasonable
approximation to the pseudospectrum of the differential operator A . First, h
is refined and m is increased until no significant change in the boundaries of
the ε-pseudospectrum is observed anymore. Decreasing k yields an improved
resolution of the ε-pseudospectrum’s boundary. But there is not much accuracy
gained beyond a resolution of 100× 100 image points in the rectangle D .

4.3. Numerical test

As a prototypical example for the proposed algorithm, we consider the
Sturm-Liouville boundary value problem (see Trefethen [33])

Au(x) = −u′′(x)− q(x)u(x), x ∈ Ω = (−10, 10), (69)

with the complex potential q(x) := (3 + 3i)x2 + 1
16x

4 , and the boundary con-
dition u(−10) = 0 = u(10). Using the sesquilinear form

a(u, v) := (u′, v′) + (qu, v), u, v ∈ H1
0 (Ω),

the eigenvalue problem of the operator A reads in variational form

a(v, ϕ) = λ(v, ϕ) ∀ϕ ∈ H1
0 (Ω). (70)

First, the interval Ω = (−10, 10) is discretized by eightfold uniform refinement
resulting in the finest mesh size h = 20 ·2−8 ≈ 0.078 and n = 256 . The Arnoldi
algorithm for the corresponding discrete eigenvalue problem of the inverse oper-
ator A−1 generates a Hessenberg matrix of dimension m = 200 . The resulting
reduced eigenvalue problem is solved by the QR method. For the determination
of the corresponding pseudospectra, we export the Hessenberg matrix Hm into
a MATLAB file. For this, we use the routine DGESVD in LAPACK (singu-
lar value decomposition) on meshes with 10 × 10 and with 100 × 100 points.
The ε-pseudospectra are computed for ε = 10−1, 10−2, ..., 10−10 leading to the
results shown in Figure 2.

We observe that all eigenvalues have negative real part but also that the
corresponding pseudospectra reach far into the positive half-plane of C , i.e.,
small perturbations of the matrix may have strong effects on the location of
the eigenvalues. Further, we see that already a grid with 10× 10 points yields
sufficiently good approximations of the pseudospectrum of the matrix Hm (resp.
the considered differential operator). The costly refinement to 100×100 points
only smoothens out the borderlines of Σε(Hm) . These results coincide with
those reported in Trefethen [33], demonstrating the correctness of our code.
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Figure 2: Approximate eigenvalues and pseudospectra of the operator A computed from those
of the operator A−1 on a 10× 10 grid (left) and on a 100× 100 grid (right): dots represent
eigenvalues and the lines the boundaries of the ε-pseudospectra for ε = 10−1, ..., 10−10.

5. The Burgers equation

5.1. Formulation of the stability problem

The first PDE test example is the two-dimensional Burgers equation

−νΔv + v · ∇v = 0, in Ω. (71)

This equation is sometimes considered as a simplified version of the “incompress-
ible” Navier-Stokes equation since both equations contain the same nonlinearity.
Here, we investigate the stability properties of the Burgers operator by taking
into account different choices of possible “inflow” boundary conditions, Dirchlet
or Neumann, which amounts to different types of admissible perturbations in
the stability analysis. Further, we also use this example for investigating some
questions related to the numerical techniques used, e.g., the required dimension
of the Krylov spaces in the Arnoldi method.

For simplicity, we choose Ω := (0, 2)× (0, 1) ⊂ R
2 , and along the left-hand

“inflow boundary” Γin := ∂Ω ∩ {x1 = 0} as well as along the upper and lower
boundary parts Γrigid := ∂Ω ∩ ({x2 = 0} ∪ {x2 = 1}) Dirichlet conditions
and along the right-hand “outflow boundary” Γout := ∂Ω∩{x1 = 2} Neumann
conditions are imposed, such that the exact solution has the form v̂(x) = (x2, 0)
of a Couette-like flow. We set ΓD := Γrigid ∪ Γin and choose ν = 10−2 .
Linearization around this stationary solution yields the nonsymmetric stability
eigenvalue problem for v = (v1, v2) :

−νΔv1 + x2∂1v1 + v2 = λv1,

−νΔv2 + x2∂1v2 = λv2,
(72)

in Ω with the boundary conditions v|ΓD
= 0, ∂nv|Γout

= 0 . For discretizing
this problem, we use the finite element method described above with conforming
Q1-elements combined with transport stabilization by the SUPG (streamline
upwind Petrov-Galerkin) method of Hughes&Brooks [17].
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5.2. Computation of pseudospectra

We investigate the eigenvalues of the linearized (around Couette flow) Burg-
ers operator with Dirichlet or Neumann inflow conditions. We use the Arnoldi
method described above with Krylov spaces of dimension m = 100 or m =
200 . For generating the contour lines of the ε-pseudospectra, we use a grid of
100× 100 .

For testing the accuracy of the proposed method, we compare the quality of
the pseudospectra computed on meshes of width h = 2−7 and h = 2−8 and
using Krylov spaces of dimension m = 100 or m = 200 . The results shown
in Figure 3 and Figure 4 indicate that the choice h = 2−7 and m = 100 is
sufficient for the present example.
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Figure 3: Computed pseudospectra of the linearized Burgers operator with Dirichlet inflow
condition for ν = 0.01 and h = 2−7 (left) and h = 2−8 (right) computed by the Arnoldi
method with m = 100. The dots represent eigenvalues and the lines the boundaries of the
ε-pseudospectra for ε = 10−1, ..., 10−4.
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Figure 4: Computed pseudospectra of the linearized Burgers operator with Dirichlet inflow
condition for ν = 0.01 and h = 2−8 computed by the Arnoldi method with m = 100 (left)
and m = 200 (right). The dots represent eigenvalues and the lines the boundaries of the
ε-pseudospectra for ε = 10−1, ..., 10−4.

Now, we turn to Neumann inflow conditions. In this particular case the
first eigenvalues and eigenfunctions of the linearized Burgers operator can be
determined analytically as λk = νk2π2 , vk(x) = (sin(kπx2), 0)

T , for k ∈ Z .
All these eigenvalues are degenerate. However, there exists another eigenvalue
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λ4 ≈ 1.4039 between the third and fourth one, which is not of this form, but
also degenerates.

We use this situation for studying the dependence of the proposed method
for computing pseudospectra on the size of the viscosity, 0.001 ≤ ν ≤ 0.01 .
Again the discretization uses the mesh size h = 2−7, Krylov spaces of dimension
m = 100 and a grid of spacing k = 100 . By varying these parameters, we find
that only eigenvalues with Reλ ≤ 6 and corresponding ε-pseudospectra with
ε ≥ 10−4 are reliably computed. The results are shown in Figure 5.

For Neumann inflow conditions the most critical eigenvalue is significantly
smaller than the corresponding most critical eigenvalue for Dirichlet inflow con-
ditions, which suggests weaker stability properties in the “Neumann case”. In-
deed, in Figure 5, we see that the 0.1-pseudospektrum reaches into the negative
complex half-plane indicating instability for such perturbations. This effect is
even more pronounced for ν = 0.001 with λNcrit ≈ 0.0098 .

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Computed pseudospectra of the linearized (around Couette flow) Burger operator
with Neumann inflow conditions for ν = 0.01 (left) and ν = 0.001 (right): The dots repre-
sent eigenvalues and the lines the boundaries of the ε-pseudospectra for ε = 10−1, . . . , 10−4.

6. The Navier-Stokes equations

In this section, we investigate the stability of some stationary solutions of the
Navier-Stokes equations. These are the classical Couette and Poiseuille flows
and the flow in the benchmark problem “channel flow around a cylinder” (see
Schäfer&Turek [30].

6.1. Couette flow

At first, we consider 2D shear flow (so-called Couette flow), i.e., the flow
between two infinite plates which are moved parallel to each other with constant
relative velocity v̂1 ≡ 1 . We choose the same reference domain Ω = (0, 2) ×
(0, 1) as considered above for the Burgers equation. Then, neglecting gravity
Couette flow is given by v̂(x) = (x2, 0)

T with p̂(x) ≡ 0, which is divergence
free and satisfies the equation for all Reynolds numbers. Couette flow satisfies
the Dirichlet boundary conditions v̂|x2=0 = 0, v̂|x2=1 = 1 and several different
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possible inflow and outflow boundary conditions. Here, as in the preceding
section, we consider the following two options:

Dirichlet inflow: v̂|Γin
= x2, ν∂nv̂ − p̂n|Γout=0, (73)

Neumann inflow: ν∂nv̂ − p̂n|Γin
= 0, ν∂nv̂ − p̂n|Γout

= 0. (74)

Remark 6.1. As a third alternative, we may consider perturbations satisfying
periodic boundary conditions v̂|Γin

= v̂|Γout
. However, in our test calculations

the results obtained for periodic boundary conditions largely coincide with those
for Neumann/Neumann boundary conditions (74), so that we do not further
discuss this special case.

After linearization of the Navier-Stokes operator around Couette flow, we
obtain the following eigenvalue problem

−νΔv1 + x2∂1v1 + ∂1p+ v2 = λv1,

−νΔv2 + x2∂1v2 + ∂2p = λv2,

∂1v1 + ∂2v2 = 0.

(75)

The discretization is done by the finite element method using GLS stabilization
as described above for the general Navier-Stokes problem.

Remark 6.2. For moderate Reynolds numbers similar results coinciding by
three decimals on the finest mesh are obtained by LPS stabilization and by
the inf-sup stable Taylor-Hood element. This shows that pressure stabilization
does not much affect the accuracy in computing eigenvalues. However, this is
completely different in the case of higher Reynolds numbers when transport
stabilization is required. Here, the kind of stabilization may drastically affect
the accuracy in computing eigenvalues, as we will see below.

6.1.1. Eigenvalues and eigenvectors

The only difference between the eigenvalue problem (75) for the Navier-
Stokes equation and (72) for the Burgers equation is the additional incompress-
ibility constraint and the presence of the pressure variable. This implies that
in the case of Neumann inflow conditions the explicitly given eigenvalues and
divergence-free eigenfunctions, λk = k2π2, vk = (sin(kπx2), 0)

T , k ∈ Z , are
also eigenfunctions of (75) corresponding to the pressure component p ≡ 0 .
Since the associated generalized eigenvectors wk = (sin(kπx2), sin(kπx2))

T of
the Burgers equation are not divergence free, these eigenvalues of (75) are non-
degenerate in contrast to the eigenvalues of the burgers equation (72). The
eigenvalues and corresponding pseudospectra are again computed on meshes
with h = 2−7 and using Krylov spaces of dimension m = 200 . The obtained
eigenvalues are listed in Table 1. These eigenvalues are simple in contrast to
the same situation in the context of the Burgers operator. In addition to the
explicitly given eigenvalues λk = k2π2 there are further ones, corresponding to
eigenmodes with nonzero pressure. These “new” eigenvalues are not eigenvalues
of the Burgers operator.
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Table 1: Computed first six eigenvalues, numbered in consecutive order, of the linearized
(around Couette flow) Navier-Stokes operator with Neumann inflow conditions for ν = 0.01 .

h 1 3 5 6 h 2 4

2−5 0.09878 0.3961 0.8947 1.600 2−5 0.2389 0.8802
2−6 0.09872 0.3951 0.8899 1.584 2−6 0.2390 0.8746
2−7 0.09870 0.3949 0.8887 1.580 2−7 0.2392 0.8737

λ = νk2π2 0.09870 0.3948 0.8883 1.579 ref. 0.2395 0.8743

6.1.2. Pseudospectra

Next, we investigate the pseudospectra of the linearized Navier-Stokes opera-
tor compared to those of the linearized Burgers operator. The results are shown
in Figures 6 and 7. The accuracy of the obtained pseudospectra is confirmed
by test computations on finer meshes with h = 2−8 using larger Krylov spaces
with dimension m = 200 and different stabilization parameters in the finite
element discretization. It turns out that in both cases the stability properties
are similar. But for the Burgers operator only the 10−1-pseudospectrum reaches
into the negative complex half-plane, while for the Navier-Stokes operator the
10−2-pseudospectrum touches the imaginary axes.

6.1.3. Pseudospectra for larger Reynolds numbers

In Trefethen et al. [36] it is stated that in experiments Couette flow turns
nonstationary for a Reynolds number Recrit in the interval 350 ≤ Recrit ≤
3500 , where in the present situation Re = ν−1 . The computed pseudospectrum
for Re = 350 and Re = 3500 with Neumann inflow conditions are shown in
Figure 8. Again the correctness of these results is confirmed by testing on finer
meshes with larger Krylov spaces and different stabilization parameters. Our
results differ somewhat from those in Trefethen et al. [36] as our ε-pseudospectra
reach further into the negative complex half-plane.
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Figure 6: Computed pseudospectra of the linearized (around Couette flow) Burgers (left) and
Navier-Stokes operator (right) for ν = 0.01 and Dirichlet inflow condition: The dots repre-
sent eigenvalues and the lines the boundaries of the ε-pseudospectra for ε = 10−1, . . . , 10−4.
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Figure 7: Computed pseudospectra of the linearized (around Couette flow) Burgers (left) and
Navier-Stokes operator (right) with Neumann inflow conditions for ν = 0.01 : The dots rep-
resent eigenvalues and the lines the boundaries of the ε-pseudospectra for ε = 10−1, . . . , 10−4.
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Figure 8: Computed pseudospectra of the linearized (around Couette flow) Navier-Stokes
operator with Neumann inflow conditions for Re = 350 (left) and Re = 3500 (right)
using GLS stabilization: The dots represent eigenvalues and the lines the boundaries of the
ε-pseudospectra for ε = 10−2, 10−2.5, 10−3, 10−3.5.

6.1.4. Effect of stabilization

Before we conclude this section we need to give a comment concerning the
effects of using different kinds of transport stabilization in the finite element
discretization.

As depicted in Table 2 the computed smallest eigenvalue depends strongly
on the choice of the stabilization. More into details, we see, that the pressure
stabilization has little influence, hence the results using equal order Q1 elements
give approximately the same values as the inf-sup stable Taylor-Hood element.
However, the choice of the transport stabilization strongly influences the com-
puted discrete eigenvalue, although under sufficient refinement the difference
will vanish. We immediately see in Figure 9 that this also influences our com-
puted pseudospectra. Nonetheless, these computations are not worthless, since
the different computed eigenvalues using different transport stabilizations im-
mediately show that a critical pseudospectrum for perturbations of the size of
the stabilization exists.
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Figure 9: Computed pseudospectra of the linearized (around Couette flow) Navier-Stokes op-
erator with Neumann inflow conditions for Re = 3500 using the inf-sup stable Taylor-Hood
element with GLS (left) and LPS (right) transport stabilization: The dots represent eigenval-
ues and the lines the boundaries of the ε-pseudospectra for ε = 10−2, 10−2.5, 10−3, 10−3.5.

Table 2: Computed smallest eigenvalue of the linearized (around Couette flow) Navier-Stokes
operator with Neumann inflow conditions for Re = 3500 for different kinds of stabilization.

h GLS (Q1) GLS (Taylor-Hood) LPS (Q1) LPS (Taylor-Hood)

2−5 0.002822 0.002820 -0.03182 0.002820
2−6 0.002820 0.002820 -0.08455 -0.06330
2−7 0.002820 0.002820 -0.16434 -0.14280
2−8 0.002820 0.002820 -0.06297 -0.10850

6.1.5. The “deficiency test”

We use the present situation for testing the relevance of the “deficiency
test” stated in Theorem 2.1 an Section 2.3.1. For this, we follow the procedure
discussed in Section 2.3.1, i.e., we choose ε = 2Reλcrit‖v∗‖−1 � 1 and check
whether with the computed pseudospectrum of A′(v̂), there holds

λε := λcrit − ε‖v∗‖ = −λcrit ∈ Σε(A′(v̂)). (76)

Table 3 shows the critical eigenvalue λcrit and the “test quantity” ‖v∗h‖ de-
pending on the Reynolds number.

We begin with the case Re = 350 and the critical eigenvalue λ
(350)
crit ≈

0.0282 . For the values ‖v∗‖ ≈ 450 and ε = 2Reλcrit‖v∗‖−1 ≈ 1.3 · 10−4,
there holds λ

(350)
ε ≈ −0.0282 . Next, we consider the case Re = 3500 and

the critical eigenvalue λ
(3500)
crit ≈ 0.00282. For the values ‖v∗‖ ≈ 11111 and

ε = 2Reλcrit‖v∗‖−1 ≈ 5 · 10−7, there holds λ(3500)ε ≈ −0.00282 . These results
are in qualitative agreement with the computed ε-pseudospectra of the linearized

Navier-Stokes operator shown in Figure 8, i.e., λ
(350)
ε ∈ Σ10−3(A) and λ

(3500)
ε ∈

Σ10−3.5(A) .
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Table 3: Development of the “test quantity” ‖v∗h‖ under mesh refinement for the critical
eigenvalues of the linearized (around Couette flow) Navier-Stokes operator with Neumann
inflow conditions for different Reynolds numbers Re = 100, . . . , 10000.

h \Re 100 350 500 1000 3500 5000 10000

2−6 46 370 625 1290 2500 2500 2049
2−7 48 416 714 1923 5882 7142 8620
2−8 48 434 769 2222 11111 14285 21276

λcrit 0.0987 0.0282 0.0197 0.00987 0.00282 0.00197 0.00099

6.2. Poiseuille flow

Next, we investigate the stability of Poiseuille flow. On a short channel
Ω = (0, 2)× (0, 1) , we consider the classical Poiseuille flow,

v̂(x) = (1− 4(x2−0.5)2, 0)T , p̂(x) = −8ν−1x1,

which satisfies no-slip conditions along the upper and lower boundary and the
Dirichlet inflow condition v̂(0, x2) = (1− 4(x2 − 0.5)2, 0)T , or alternatively the
Neumann inflow condition (ν∂nv̂ − p̂n)(0, x2) = 0 . The outflow condition is
chosen of Neumann-type (ν∂nv̂− p̂n)(2, x2) = 0 . Linearizing the Navier-Stokes
operator around this solution yields the eigenvalue problem

−νΔv1 + 4(x2−x22)∂1v1 + ∂1p+ 4(1−2x2)v2 = λv1,

−νΔv2 + 4(x2−x22)∂1v2 + ∂2p = λv2,

∂1v1 + ∂2v2 = 0.

(77)

We only consider perturbations which are not required to satisfy any inflow or
outflow conditions as this is the case which leads to smaller eigenvalues.

The most critical eigenvalues for different Reynolds numbers are shown in Ta-
ble 4. Again comparing the results coming from different stabilization schemes,
we conclude, that only the results for Re = 1000 can be trusted. For larger
Reynolds numbers, we see a significant difference between LPS and GLS trans-
port stabilization, which vanishes only on increasingly refined meshes. This
is similar to our findings for the linearization around Couette Flow, but since
for Re ≥ 6000 the eigenvalues obtained using GLS stabilization have positive
(though very small) real part these values are not yet converged.

6.2.1. Pseudospectra

According to Orszag [22] Poiseuille flow turns nonstationary at Re > 5772.22.
However, in experiments this transition is observed already for much smaller
Reynolds numbers. Therefore, in Trefethen et al. [36] the ε-pseudospectra are
computed for Re = 1000 and Re = 10000 showing a critical pseudospectrum
in the latter case. Here, we consider the same Reynolds numbers and try to ex-
plain the experimentally observed instability for smaller Reynolds numbers by a
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Table 4: Computed eigenvalue with smallest real part of the linearized (around Poiseuille flow)
Navier-Stokes operator with Neumann inflow conditions for different Reynolds numbers.

(a) Transport stabilization using LPS

h/Re 100 500 1000 2000 4000 6000 10000

2−6 0.04936 -0.04000 -0.1054 -0.1559 -0.1365 -0.1129 -0.0709
2−7 0.04935 0.00987 -0.0120 -0.0445 -0.0877 -0.1104 -0.1313
2−8 0.04935 0.00987 0.0049 -0.0035 -0.0167 -0.0286 -0.0540

(b) Transport stabilization using GLS

h/Re 100 500 1000 2000 4000 6000 10000

2−6 0.04936 0.00987 0.0049 0.0025 0.0012 0.00082 0.00039
2−7 0.04935 0.00987 0.0049 0.0025 0.0012 0.00082 0.00022
2−8 0.04935 0.00987 0.0049 0.0025 0.0012 0.00082 0.00038

quantitative analysis of the relevant pseudospectra. To this end, we choose the
maximum inflow velocity v̄in = 1 , the characteristic channel width d = 1 , and
set the viscosity ν = 0.5·10−3 and ν = 0.5·10−4 to obtain the desired Reynolds
numbers. The results are shown in Figure 10. There is only little quantitative
coincidence with the results reported in Trefethen et al. [36]. Our results yield
more critical pseudospectra, e.g., already the 10−3.5-pseudospectrum reaches
into the negative complex half-plane.
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Figure 10: Computed pseudospectra of the linearized (around Poiseuille flow) Navier-Stokes
operator with Neumann inflow conditions for Re = 1000 (left) and Re = 10000 (right)
computed by the inf-sup stable Taylor-Hood element with GLS transport stabilization:
The dots represent eigenvalues and the lines the boundaries of the ε-pseudospectra for
ε = 10−2, 10−2.5, 10−3, 10−3.5.

6.2.2. The “deficiency test”

We consider the case Re = 1000 and the critical eigenvalue λcrit ≈ 0.005 .
For the values ‖v∗h‖ ≈ 6500 and ε = 2Reλcrit‖v∗‖−1 ≈ 3 · 10−6, there holds
λε = λcrit−ε‖v∗‖ ≈ −0.005 . This is in qualitative agreement with the computed
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ε-pseudospectra shown in Figure 10, i.e., λε ∈ Σ10−3.5(A) .

Table 5: Development of the “test quantity” ‖v∗h‖ under mesh refinement for the critical
eigenvalues of the linearized (around Poiseuille flow) Navier-Stokes operator with Neumann
inflow conditions for different Reynolds numbers Re = 100, 350, 500, 1000, 3500, 5000, 10000 .

Re 100 350 500 1000 3500 5000 10000
h ‖v∗h‖
2−6 71 416 588 862 847 769 685
2−7 75 625 1000 1851 3225 3448 3021
2−8 76 666 1250 3030 7692 9090 10526
λcrit 0.0494 0.0141 0.0099 0.00494 0.00141 0.00099 0.000384

6.3. The “flow channel” benchmark

The configuration of the next example is that of the (laminar) 2D flow bench-
mark described in Schäfer&Turek [30] (see Figure 11). The geometry data are
as follows: channel domain Ω := (0.00m, 2.2m) × (0.00m, 0.41m), diameter of
circle D := 0.10m, center of circle at a := (0.20m, 0.20m) (slightly nonsym-
metric position). The Reynolds number is defined in terms of the diameter D
and the maximum inflow velocity Ū = max |vin| = 0.3m/s (parabolic profile),
Re = Ū2D/ν . The boundary conditions are

v|Γrigid
= 0, v|Γin = vin, ν∂nv − np|Γout = 0. (78)

The viscosity is chosen such that the Reynolds number is small enough, 20 ≤
Re ≤ 40 , to guarantee stationarity of the base flow as shown in Figure 11. For
Re = 60 the flow is nonstationary (time periodic).

2.2m

0.16m

0.15m

0.15m x2

x1

S

0.41m 0.1m

(0m,0.41m)

(0m,0m)

Figure 11: Configuration of the “channel flow” benchmark and x1-component of the velocity
for Re = 40 .

We want to investigate the stability of the computed base flow for several
Reynolds numbers, 20 ≤ Re ≤ 60 , and inflow conditions imposed on the admis-
sible perturbations, Dirichlet or Neumann (“free”), by determining the corre-
sponding critical eigenvalues and pseudospectra. This computation uses a “sta-
tionary code” employing the Newton method for linearization, which is known
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to potentially yield stationary solutions even at Reynolds numbers for which
such solutions may not be stable.

6.4. Perturbations satisfying Dirichlet inflow conditions

We begin with the case of perturbations satisfying (homogeneous) Dirichlet
inflow conditions. Table 6 contains the computed eigenvalues for the five differ-
ent Reynolds numbers Re = 20, 40, 45, 50, 60 . The eigenvalue with smallest real
part at Re� 20 does not correspond to that at Re = 20 . It is rather another
real eigenvalue, which becomes most critical for Re → 20 . For Re → 60 , we
have a (two-fold) eigenvalue with negative real part, which indicates instability
of the computed base flow.

Next, we investigate the pseudospectra of the critical eigenvalues for Re =
40 and Re = 60 . This is done on meshes which are obtained by four to five
uniform refinements of the (locally adapted) meshes used for computing the
base flow. In the Arnoldi method, we use Krylov spaces of dimension m =
100 . Computations with m = 200 give almost the same results. The obtained
pseudospectra are shown in Figure 12.

Table 6: Computed eigenvalue with smallest real part of the linearized (“channel flow”)
Navier-Stokes operator for Dirichlet inflow conditions and different Reynolds numbers
Re = 20, 40, 45, 50, 60 .

Re 20 40 45 50 60

4 0.062 0.0200±0.33i 0.0097±0.33i 0.0011±0.33i -0.0125±0.33i
5 0.062 0.0187±0.33i 0.0080±0.33i -0.0010±0.34i -0.0157±0.34i
6 0.062 0.0186±0.33i 0.0076±0.33i -0.0016±0.34i -0.0165±0.34i
ref. 0.062 0.0185±0.33i 0.0075±0.33i -0.0018±0.34i -0.0165±0.34i
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Figure 12: Computed pseudospectra of the linearized Navier-Stokes operator (“channel flow”
benchmark) for different Reynolds numbers, Re = 40 (left) and Re = 60 (right), with
Dirichlet inflow conditions: The dots represent eigenvalues and the lines the boundaries of
ε-pseudospectra for ε = 10−2, 10−2.5, 10−3, 10−3.5.

For Re = 40 the relevant 10−2-pseudospectrum does not reach into the neg-
ative complex half-plane indicating stability of the corresponding base solution
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in this case, as expected in view of the result of nonstationary computations.
Obviously the transition from stationary to nonstationary (time periodic) so-
lutions occurs in the range 40 ≤ Re ≤ 60 . However, for this “instability” the
sign of the real part of the critical eigenvalue seems to play the decisive role and
not so much the size of the corresponding pseudospectrum. This is reflected by
the results shown in Table 7, which demonstrate that the test quantity ‖v∗h‖
remains uniformly bounded for the range of Reynolds numbers considered.

Table 7: Development of the “test quantity” ‖v∗h‖ under mesh refinement for the critical eigen-
values of the linearized (around the “channel flow”) Navier-Stokes operator with Dirichlet
inflow conditions for different Reynolds numbers Re = 20, 40, 45, 50, 60 .

Re 20 40 45 50 60
level ‖v∗h‖
4 31 11 10 10 10
5 31 12 11 11 10
6 31 13 12 11 11

Reλcrit 0.0624 0.0186 0.0076 -0.00106 -0.0165

6.4.1. Perturbations satisfying Neumann (free) inflow conditions

Now, we consider the case of perturbations satisfying (homogeneous) Neu-
mann (“free”) inflow conditions, i.e., the space of admissible perturbations is
larger than in the preceding case. In view of the observations made before for
Couette flow and Poiseuille flow, we expect weaker stability properties. The
stationary base flow is again computed using Dirichlet inflow conditions but the
associated eigenvalue problem of the linearized Navier-Stokes operator is con-
sidered with Neumann inflow conditions. Table 8 contains the results. In the
case of perturbations satisfying Dirichlet inflow conditions the stationary base
flow turned out to be stable up to Re = 45 . In the present case of perturba-
tions satisfying Neumann inflow conditions at Re = 40 the critical eigenvalue
has positive but very small real part, Reλmin ≈ 0.003. Hence, the precise sta-
bility analysis requires the determination of the corresponding pseudospectrum.
The results are shown in Figure 13. Though, for Re = 40 the real part of
the most critical (positive) eigenvalue is rather small, the corresponding 10−2-
pseudospectrum reaches only a little into the negative complex half-plane.

Table 8: Computed eigenvalues with smallest real part of the linearized (“channel flow”)
Navier-Stokes operator with Neumann inflow conditions for Re = 20, 40, 45, 50, 60.

Re 20 40 45 50 60

4 0.0150 0.005±0.00i 0.0002±0.16i -0.0054±0.16i -0.0140±0.17i
5 0.0152 0.004±0.16i -0.0043±0.16i -0.0110±0.16i -0.0217±0.17i
6 0.0153 0.003±0.16i -0.0049±0.16i -0.0119±0.16i -0.0232±0.17i
ref. 0.0154 0.003±0.16i -0.0052±0.16i -0.0120±0.16i -0.0240±0.17i
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Figure 13: Computed pseudospectra of the linearized Navier-Stokes operator (“channel flow”)
with Neumann inflow conditions for different Reynolds numbers, Re = 40 (left) and Re =
60 (right): The dots represent eigenvalues and the lines the boundaries of the ε-pseudospectra
for ε = 10−2, 10−2.5, 10−3, 10−3.5.

Table 9: Development of the “test quantity” ‖v∗h‖ under mesh refinement for the critical
eigenvalues of the linearized (around the “channel flow”) Navier-Stokes operator with Neu-
mann inflow conditions for different Reynolds numbers Re = 20, 40, 45, 50, 60 .

Re 20 40 45 50 60
level ‖v∗h‖
4 15 30 27 29 32
5 15 25 27 27 30
6 15 24 25 25 28

Reλcrit 0.015 0.003 -0.005 -0.012 -0.024

7. Conclusion

The results presented above lead us to the following conclusions concerning
the guiding questions posed in the introduction:

1. In case of “laminar” Reynold numbers the computed pseudospectra turn
out to be reliable for moderately fine meshes with h ≈ 2−7 − 2−8 and
dimensions m = 100− 200 of Krylov spaces.

2. The computed pseudospectra are not very sensitive with respect to the
stabilization of pressure used in the finite element discretization. However,
there is strong sensitivity with respect to stabilization of transport. Here,
GLS gives reasonable results on coarser meshes while LPS requires rather
fine meshes in order to avoid the occurrence of spurious eigenvalues.

3. The critical pseudospectrum of the linearized Navier-Stokes operator is
approximated by that its of discretized analogue with optimal order.

4. The “deficiency test” lim suph→0 ‖v∗h‖ � 1 proposed in Section 2.3.1 can
be used for predicting the presence of a critical pseudospectrum.

5. Generally, the base flows considered are much less stable with respect to
perturbations satisfying Neumann (“free”) inflow conditions than Dirichlet
inflow conditions.

6. The linearized Burgers operator has significantly different stability prop-
erties than the linearized Navier-Stokes operator.
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