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Abstract. We give an algorithmic approach to the approximative solution of operator Lyapunov
equations for controllability. Motivated by the successfully applied alternating direction implicit
(ADI) iteration for matrix Lyapunov equations, we consider this method for the determination of
Gramian operators of infinite-dimensional control systems. In the case where the input space is finite-
dimensional, we show that this method provides approximative solutions of finite rank. Convergence
in several norms is shown.
Particular emphasis is placed on systems governed by a heat equation with boundary control. We
present that ADI iteration for the heat equation consists of solving a sequence of Helmholtz equations.
A numerical example is presented.
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1. Introduction. A fundamental concept in linear finite-dimensional systems
theory is the Gramian matrix, i.e., the solution P ∈ Rn×n of the Lyapunov equation

AP + PAT +BBT = 0 (1.1)

associated to a linear control system ẋ(t) = Ax(t)+Bu(t) with A ∈ Rn×n, B ∈ Rn×m.
These equations for instance arise in stability and controllability analysis [39, Sec. 3.8]
and model reduction by balanced truncation [3, Chap. 7]. Due to their importance,
a variety of numerical methods have been developed for Lyapunov equations, such
as alternating direction implicit (ADI) iteration [22], Bartels-Stewart method [9],
Smith’s method [37], Krylov subspace method [21, 34], sign function method [30],
and Hammarling’s method [19] (see [3, Chap. 6] for an overview). Especially the
ADI iteration, Smith method and matrix sign function method have in common that,
in case of m ≪ n, they typically provide so-called low-rank approximative solutions.
That is, instead of the full Gramian matrix, a factor S ∈ Rn×k with k ≪ n and
P ≈ SST is computed iteratively. Besides memory savings, the advantage of low-
rank approximative solutions is that they can be directly and efficiently used for
balanced truncation model reduction without any evaluation of the Gramian matrix
itself [38]. This feature makes these methods suitable for problems of large state space
dimension n ∈ N. An important class of large-scale systems are those emerging from
fine spatial discretization of controlled systems which are governed by linear partial
differential equations [10]. The latter however actually has (before discretization)
infinite state space dimension; in the Lyapunov equation, the variables A, B and the
to-be solved P are actually operators acting on infinite-dimensional spaces. It is hence
natural to wonder about the following questions:

a) Can iterative algorithms be formulated for operator Lyapunov equations, and
(when) do they converge?

b) What are the (computational) consequences for systems governed by PDEs?
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In this work we consider the ADI iteration for operator Lyapunov equations. Con-
sequently, this iteration provides a factorization P ≈ SS∗, where S is an operator
acting on some space which is finite-dimensional, if the input space will be finite-
dimensional. Convergence will be shown under only the assumption that the system
ẋ(t) = Ax(t) is exponentially stable and that the Gramian operator exists. We al-
low the input operator to be “unbounded”, which is motivated by partial differential
equations with boundary control. Particular emphasis is placed on systems governed
by the boundary controlled heat equation, where it will turn out that the ADI method
is consisting of the solution of a sequence of Helmholtz equations. Since the latter can
be (approximatively) solved by using adaptive finite element methods, we will also
discuss the impact of approximative solution in each step of the ADI iteration.

Let us mention that the general idea of transferring existing algorithms for ma-
trix Lyapunov equations to the infinite-dimensional case is not new: The method of
“proper orthogonal decomposition (POD)” was used [31, 44] to obtain low-rank ap-
proximative solutions of matrix Lyapunov equations. For B = [b1, . . . , bm] ∈ Rn,m,
this method uses the representation P =

∫∞

0

∑m
k=1 xk(t)xk(t)

T , where xk solves the
differential equation ẋk(t) = Axk(t), xk(0) = bk. Approximative solutions of low
rank are computed by determining a dominant subspace that is based on a singular
value decomposition of a matrix that consists of several sampled values (so-called
“snapshots”) of the trajectories xk. This method has been generalized to the infinite-
dimensional case in [35] and has been applied to model reduction and linear-quadratic
optimal control in [36]. In particular, convergence has been proven and confirmed by
numerical examples. A slight drawback of this method that it is not directly general-
izable to unbounded control operators B.

The paper is organized as follows. The subsequent Section 2 reviews the basic
notational and functional analytic framework. Section 3 contains basic facts about
semigroups and operator Lyapunov equations. In Section 4 we introduce the ADI
iteration for the solution of operator Lyapunov equations and present results about
convergence. In Section 5 we expand our analysis to an inexact ADI iteration that
one would have to do in practical computations due to the necessity of discretization
in the infinite-dimensional context. In Section 6 the developed theory is applied to
a heat equation with Robin boundary control. A numerical example is presented.

2. Basic notation and functional analytic prerequisites. Throughout the
paper R>0, R≥0, C+, C− and Cn×m respectively denote the sets of positive real,
nonnegative real, complex numbers with positive real part, complex numbers with
negative real part, and the space of n×m complex matrices. N stands for the set of
positive integers and by z we mean the complex conjugate of z ∈ C.

For p ≥ 1, ℓp stands for the p-summable complex sequences. We use the notation
from [1] for Lebesgue and Sobolev spaces Lp(Ω) and Hk(Ω).

Throughout this work, integrals of functions with values in Hilbert space are
understood in the sense of Bochner. For a brief overview on abstract integration
theory we refer to [14, pp. 621] and the bibliography therein. For p ∈ [1,∞], some
interval I and some separable Hilbert space X , Lp(I,X) denotes the Lebesgue space
of measurable functions f : I → X with the property that ‖f(·)‖X ∈ Lp(I).

Let Z and X be Hilbert spaces, such that Z ⊂ X and the canonical injection
Z → X , x 7→ x is continuous and dense. By calling a Hilbert space X pivot space, we
mean that X is identified its own topological dual X ′ (which is possible by the Riesz
representation theorem [27, pp. 48]), and the dual of Z is defined in a way that the
dual pairing 〈·, ·〉Z′,Z continuously (w.r.t. the norm in Z) extends the inner product in
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X . It follows that X ⊂ Z ′ and the canonical injection X → Z ′, x 7→ x is continuous
and dense.

B(X,Y ) and K(X,Y ) are the spaces of bounded, resp. compact, linear operators
T : X → Y , and we abbreviate B(X) := B(X,X), K(X) := K(X,X). For a densely
defined operator T : D(T ) ⊂ X → X , the symbols ρ(T ) and σ(T ) indicate its resolvent
set and spectrum, respectively. The identity mapping on X is denoted by IX and the
zero operator from X to Y by 0X,Y . Given an operator T : D(T ) ⊂ X → Y , the
graph norm is defined via ‖x‖2D(T ) = ‖x‖2X + ‖Tx‖2Y . If D(T ) associated with the

graph norm ‖ · ‖D(T ) is complete, then T is called closed.
A vector v ∈ X is in a canonical way identified as an operator v ∈ B(C, X) via

λ 7→ λv. For a Hilbert space X and m ∈ N, the product space Xm is equipped with
the canonical inner product. For another Hilbert space Y and operators T1, . . . , Tm ∈
B(X,Y ), the operator column matrix

T =
[
T1 · · · Tm

]

defines an operator T ∈ B(Xm, Y ) in a straightforward manner.
The adjoint of T ∈ B(X,Y ) is denoted by T ∗ ∈ B(Y,X) and the dual by T ′ ∈

B(Y ′, X ′). The adjoint of a densely defined operator T : D(T ) ⊂ X → Y , is defined
on T : D(T ∗) ⊂ Y → X , where D(T ∗) consists of all y ∈ Y with the property that
that there exists some z ∈ X with 〈Tx, y〉X = 〈x, z〉X for all x ∈ D(T ) (in this case,
we define T ∗y = z). The dual of a densely defined operator T : D(T ) ⊂ X → Y , is
defined on T : D(T ′) ⊂ Y ′ → X ′, where D(T ′) consists of all y ∈ Y with the property
that that the mapping D(T ) → C, z 7→ 〈Tz, x〉X has an extension to an element in
X ′. For y ∈ D(T ′), the element T ′y is defined via 〈T ′y, x〉X′,X = 〈y, Tx〉Y ′,Y for all
x ∈ D(T ). Note that T ∗ and T ′ coincide if both X and Y are considered to be pivot
spaces. For further details concerning duals and adjoints, we refer to [5, pp. 49].

A densely defined operator P : D(P ) ⊂ X → X is called self-adjoint, if P = P ∗

(this also includes that D(P ) = D(P ∗)). A self-adjoint operator P is nonnegative if
〈x, P1x〉X ≥ 0 for all x ∈ D(P ). The notions of negativity, positivity and nonpositivity
of an operator can be defined in straightforward manner. This induces a partial order
on the set of self-adjoint operators: For two self-adjoint operators P1 : D(P1) ⊂ X →
X , P2 : D(P2) ⊂ X → X we say that P1 ≥ P2, if P1 − P2 ≥ 0. The square root of a
nonnegative operator P : D(P ) ⊂ X → X is denoted by P 1/2; its domain D(P 1/2) is
the completion of D(P ) with the norm ‖x‖2

D(P 1/2)
= ‖x‖2X + 〈x, Px〉X [14, p. 606].

Compact operators are known to admit a singular value decomposition

Tx =

∞∑

i=1

σi 〈x, ui〉X · vi, (2.1)

where the sequence of singular values (σi)i is monotonically decreasing and tends to
zero, and (ui)i, (vi)i are orthonormal systems in X and Y , respectively [27, pp. 203].

Subsequently, we introduce special classes and norms of operators which were
originally introduced in [33].

Definition 2.1. Let X,Y be separable Hilbert spaces and let p ∈ [1,∞[. Then
T ∈ K(X) is called a p-th Schatten class operator, if the sequence consisting of its
singular values fulfill (σi)i ∈ ℓp. In this case we write T ∈ Sp(X,Y ). Provided with the
norm ‖T ‖Sp(X,Y ) = ‖(σi)i‖ℓp the space Sp(X,Y ) becomes a Banach space. Operators
of first Schatten class are called nuclear and those of second Schatten class are called
Hilbert-Schmidt.
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We abbreviate Sp(X) := Sp(X,X). For more details on the Schatten class, we
refer to [24, pp. 126]. The trace of T ∈ S1(X) is well-defined by the expression

tr(T ) =

∞∑

i=1

〈ei, T ei〉 , (2.2)

where (ei) is an (arbitrary) orthonormal basis of X [27, pp. 206]. For self-adjoint
and nonnegative P ∈ S1(X), the spectral theorem implies that ‖P‖S1(X) = tr(P ).
Moreover, for T ∈ S2(X,Y ) it holds T ∗T ∈ S1(X), TT ∗ ∈ S1(Y ) with ‖T ‖2S2(X,Y ) =

‖T ∗‖2S2(Y,X) = tr(T ∗T ) = tr(TT ∗).

3. Operator Lyapunov equations. We review basic facts about solvability of
operator Lyapunov equations. Consider the following setup throughout this article:
For Hilbert spaces U , X (which are assumed to be pivot spaces), let A : D(A) ⊂ X →
X and B ∈ B(U,D(A∗)′) be given. The operator Lyapunov equation is given by

2Re 〈Px,A∗x〉X + ‖B′x‖2U = 0 for all x ∈ D(A∗) (3.1)

and has to be solved for the self-adjoint operator P ∈ B(X). Indeed, (3.1) is equivalent
to (1.1) in the case where A and B are real matrices. The property of B to possibly
map to a larger space D(A∗)′ ⊃ X is motivated by partial differential equations with
boundary control, see [12] and [42, Chap. 10].

To analyze solvability of operator Lyapunov equations we first need to introduce
the concept of strongly continuous semigroups, stability and admissibility:

Definition 3.1 (Strongly continuous semigroups, generators, exponential stabil-
ity). An operator-valued function T (·) : R≥0 → B(X) is called strongly continuous
semigroup, if T (0) = IX , T (t+ s) = T (t) · T (s) for all t, s ∈ R≥0, and

lim
t→0,t>0

T (t)x = x for all x ∈ X.

A strongly continuous semigroup is called exponentially stable, if there exists some
M ∈ R≥0, ω ∈ R>0 such that

‖T (t)‖B(X) ≤ M · e−ωt for all t ∈ R≥0.

The operator A : D(A) ⊂ X → X defined by

Ax = lim
t→0,t>0

1
t (T (t)x− x),

D(A) =

{
x ∈ X

∣∣∣∣ lim
t→0,t>0

1
t (T (t)x− x) ∈ X

}

is called generator of the semigroup T (·).
The domains of A and its adjoint are known to be dense in X [42, Cor. 2.1.8 &

Prop. 2.8.1.]; in particular, every strongly continuous semigroup possesses a generator.
Definition 3.2 (Admissible control operator, Gramian operator). Let U,X be

Hilbert spaces, let A : D(A) ⊂ X → X be the generator of a strongly continuous
semigroup T (·) on X, and let B ∈ B(U,D(A∗)′). Then we call B an admissible
control operator for T (·), if for some (and then also any) t ∈ R>0, there holds

Φtu :=

∫ t

0

T (τ)Bu(τ)dτ ∈ X for all u ∈ L2(R≥0, U). (3.2)
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The control operator B is called infinite-time admissible, if

Φu :=

∫ ∞

0

T (τ)Bu(τ)dτ ∈ X for all u ∈ L2(R≥0, U). (3.3)

If B is infinite-time admissible for T (·), then

P = ΦΦ∗ ∈ B(X)

is called Gramian of (A,B).
Some comments on facts about the above definition are stated below.
Remark 3.3.

a) Expression 3.2 has to be understood in the following way: As T (·) extends to
a strongly continuous semigroup on D(A∗)′ [42, Prop. 2.10.4], the function
T (·)Bu(·) is D(A∗)′-valued and measurable. Admissibility means that the integral
is even in the smaller space X.

b) Admissibility implies Φt ∈ B(L2(R≥0, U), X) [20, p. 6], infinite-time admissibility
implies Φ ∈ B(L2(R≥0, U), X) [20, p. 5].

c) If B is admissible for an exponentially stable semigroup T (·), then B is infinite-
time admissible [20, p. 6]. Indeed, we will assume exponential stability in most of
our results.

d) Any B ∈ B(U,X) is admissible.
Note that fully dual statements hold true for observability Gramians [42, pp. 134];

all results in this article can be formulated for that case in a straightforward manner.
Next, recall that the Gramian indeed solves the operator Lyapunov equation (3.1)

see [20]. Note that in [20] a more general context is considered in which exponential
stability is not presumed.

Theorem 3.4. [20, Thm. 3.1] Let U,X be Hilbert spaces and A : D(A) ⊂ X → X

be the generator of an exponentially stable semigroup T (·) on X. Then there holds:
a) If B ∈ B(U,D(A∗)′) is an admissible control operator for T (·), then the Gramian

P of (A,B) is the unique self-adjoint and nonnegative solution of the operator
Lyapunov equation (3.1).

b) On the other hand, if B ∈ B(U,D(A∗)′) and there exists some nonnegative self-
adjoint Q ∈ B(X) that satisfies

2Re 〈Qx,A∗x〉X + ‖B′x‖2U ≤ 0 for all x ∈ D(A∗) (3.4)

then B is an admissible control operator for T (·).
Remark 3.5. Being aware of 2Re 〈Px,A∗x〉X = 〈Px,A∗x〉X + 〈A∗x, Px〉X , an

application of x + y and x+ iy to (3.1) implies that the operator Lyapunov equation
is equivalent to

〈Px,A∗y〉X + 〈A∗x, Py〉X + 〈B′x,B′y〉U = 0 for all x, y ∈ D(A∗). (3.5)

We briefly focus on the case where the generator A is self-adjoint and negative,
and the control operator fulfills B ∈ B(U,D(((−A)

1
2 )′)) (the heat equation considered

in Sec. 6 is of this type). The latter property is equivalent to

(−A)−
1
2B ∈ B(U,X). (3.6)

Proposition 3.6. Assume that A : D(A) ⊂ X → X is self-adjoint, negative,
and it has compact resolvent. Let B : U → D(A)′ such that (3.6) holds true. Then
the following holds true:
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a) A generates an exponentially stable semigroup T (·) on X.
b) B is admissible for T (·).
Moreover, the Gramian P of (A,B) is nuclear if and only if (−A)−1/2B : U → X is
Hilbert-Schmidt. In this case, there holds

‖P‖S1(X) = tr(P ) = 1
2 · ‖(−A)−1/2B‖2S2(U,X) = − 1

2 · tr(B′A−1B). (3.7)

Proof. Since A is negative and has compact resolvent, there exists some ν ∈ R>0

with 〈x,Ax〉 ≤ −ν‖x‖2X for all x ∈ D(A). Then assertion a) follows from the Lumer-
Phillips theorem [23, pp. 76]. We can further infer from (3.6) that there exists some
µ ∈ R>0 such that for all z ∈ X holds

‖B′(−A)−
1
2 z‖2U ≤ µ‖z‖2X.

Since this inequality holds clearly for all z ∈ D(A
1
2 ) we can perform the substitution

x = (−A)−
1
2 z to see that for all x ∈ D(A) = D(A∗) holds

‖B′x‖2U ≤ µ · ‖(−A)
1
2x‖2X = −µ · 〈x,Ax〉X .

That is, (3.4) holds true for Π = µ
2 IX , and we may apply Theorem 3.4 c) to conclude

admissibility of B.
Since A is negative compact resolvent, there exists some orthonormal basis (ei)i

of X and sequence of negative real numbers (λi)i with limi→∞ λi = −∞ such that
ei ∈ D(A) and Aei = λiei. Then

0 =2Re 〈Aei, P ei〉X + ‖B′ei‖2U
=2Re 〈λiei, P ei〉X + ‖B′ei‖2U = 2λi 〈ei, P ei〉X + 2‖B′ei‖2U .

Solving this equation for 〈ei, P ei〉X and using that B′(−A)−1/2 = ((−A)−1/2B)∗, we
obtain

〈ei, P ei〉X = − 1
2λi

· ‖B′ei‖2U = 1
2 · ‖B′(−λi)

−1/2ei‖2U
= 1

2 · ‖B′(−A)1/2ei‖2U = 1
2 ·
〈
ei, (−A)−1/2B

(
(−A)−1/2B

)∗
ei

〉
X
.

Since both P and (−A)−1/2B
(
(−A)−1/2B

)∗
are nonnegative, their nuclear norms

equal to their respective traces. Moreover, since we have that (−A)−1/2B ∈ S2(U,X)
if and only if (−A)−1/2B((−A)−1/2B)∗ ∈ S1(X) equivalence between P ∈ S1(X) and
(−A)−1/2B ∈ S2(U,X) follows immediately. In this case, we have

tr(P ) = 1
2 · tr((−A)−1/2BB′(−A)−1/2) = 1

2 · tr((−A)−1/2B((−A)−1/2B)∗)

= 1
2 · ‖(−A)−1/2B‖2S2(U,X) = − 1

2 · tr(B′A−1B).

Remark 3.7. Note that, under the assumptions that A : D(A) ⊂ X → X is neg-
ative and has compact resolvent, the input operator B fulfills (3.6) and, additionally,
the input space is finite-dimensional (i.e., w.l.o.g., U = Cm), we can immediately infer
from Proposition 3.6 that the Gramian P of (A,B) is nuclear. Namely,the expression
‖P‖S(X) = tr(P ) coincides with the trace of the matrix 1

2B
′A−1B ∈ Cm,m.
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4. Alternating direction implicit (ADI) iteration for operator Lya-
punov equations. We now present an algorithm, take a closer look to operator
Lyapunov equations, and set up an iterative scheme for their solution; we consider
the ADI iteration for the operator case and discuss convergence. Before presenting
results about convergence, we first present the algorithm, which exactly reads as in
the matrix case [32, p. 43]. Besides the pair (A,B) defining a control system, this
algorithm involves so-called shift parameters pi ∈ C, which have to be chosen a priori.
In the finite-dimensional case, they are known to determine the velocity of conver-
gence [32, pp. 43]. Their choice in the case of operator Lyapunov equations is discussed
at the end of this section.

Algorithm 1 ADI iteration for operator Lyapunov equations.

Input: The generator A of an exponentially stable semigroup T (·), an admissible
control operator B ∈ B(U,D(A∗)′), and shift parameters p1, . . . , pimax ∈ C−

Output: S = Simax ∈ B(U imax , X), such that SS∗ ≈ P , where P is the Gramian of
(A,B).

1: V1 = (A+ p1I)
−1B

2: S1 =
√
−2Re(p1) · V1

3: for i = 2, 3, . . . , imax do
4: Vi = Vi−1 − (pi + pi−1) · (A+ piI)

−1Vi−1

5: Si = [Si−1 ,
√
−2Re(pi) · Vi ]

6: end for

Remark 4.1.

a) In the case of finite-dimensional input space, i.e., U = Cm, we have Si ∈ B(Cm×i, X).
This means that, Pi = S∗

i Si has finite rank and, in the block operator notation, Si

is a m · i-tuple of elements of the state space X. These elements are obtained by
solving equations of type (piI + A)w = z. In practice, A is usually a differential
operator, and each step of ADI iteration consists of a (numerical) solution of the
corresponding differential equation (see Sec. 6).

b) We note that the choice of imax has of course not to be done a priori. Rather one
might use a suitable stopping criterion. Due to Pi − Pi−1 = ViV

∗
i , we have for

each ‖ · ‖ ∈ {‖ · ‖B(X), ‖ · ‖Sp(X)} that

‖Pi − Pi−1‖ = ‖ViV
∗
i ‖ = ‖V ∗

i Vi‖.

A suitable criterion for termination of the ADI iteration is therefore to check
whether the norm of the operator V ∗

i Vi ∈ B(U) (which is a matrix, if U = Cm) goes
below a given absolute or relative threshold. For an overview on stopping criteria
for the ADI iteration to solve matrix Lyapunov equations, we refer to [32, Sec. 4.6].
Note that, the case treated in Proposition 3.6, we will derive an explicit expression
for the approximation error P − Pi in the nuclear norm (see Proposition 4.8).

The main result of convergence is presented below. The remaining part of this
section mainly consists of its proof.

Theorem 4.2. Let U,X be Hilbert spaces and operators A : D(A) ⊂ X → X

be the generator of an exponentially stable semigroup T (·) and B ∈ B(U,D(A∗)′) be
an admissible control operator for T (·). Let P ∈ B(X) be the Gramian of (A,B) and,
for some J ∈ N, let (pi)i be a J-cyclic (that is, pJ+i = pi for all i ∈ N) sequence
in C−. Then Algorithm 1 is feasible and the operator sequence (Pi)i = (SiS

∗
i )i is
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strongly convergent to P , i.e.,

lim
i→∞

Pix = Px for all x ∈ X.

Moreover, the following holds true:
a) If the Gramian P is compact, then

lim
i→∞

‖P − Pi‖B(X) = 0.

b) If, for some p ∈ [1,∞), the Gramian P is of p-th Schatten class, then

lim
i→∞

‖P − Pi‖Sp(X) = 0.

The strategy for the proof is to exhibit that (Pi)i is monotone and bounded with
respect to the ordering induced by nonnegativity. Convergence will then be inferred
by using the results on monotone operator sequences in Appendix A.

Before starting to prove some auxiliary results needed for the proof of Theo-
rem 4.2, we state some preliminary facts and remarks.

Remark 4.3.
a) It follows from exponential stability that C− ⊂ ρ(−A) [42, Cor. 2.3.3]. The itera-

tion in Algorithm 1 is therefore feasible.
b) For q ∈ C and p ∈ C− the operator (A− qI)(A+ pI)−1 is in B(X) due to

(A− qI)(A+ pI)−1x = x− (p+ q)(A+ pI)−1x for all x ∈ X. (4.1)

c) The operator A : D(A) ⊂ X → X uniquely extends to an operator Ã : D(Ã) = X ⊂
D(A∗)′ → D(A∗)′ [42, Cor. 2.10.3]. In the sequel we will denote both A and Ã by
A. Consequently, for p ∈ ρ(A), the inverse of the shifted operator can be extended
as a bounded operator (pI −A)−1 : D(A∗)′ → X.

d) Using the previous observations, the operator

Li := (A+ piI)
−1

i−1∏

j=1

(A− pi−jI)(A+ pi−jI)
−1 (4.2)

fulfills Li ∈ B(D(A∗)′, X), hence LiB ∈ B(U,X). Furthermore, simple calculations
lead to (LiB)∗ = B′L∗

i

e) By simple arithmetics we obtain that

Si =
[√

−2Re(p1)L1B · · ·
√
−2Re(pi)LiB

]
∈ B(U i, X), (4.3)

hence (Pi)i = (SiS
∗
i )i fulfills

P0 = 0,

Pi = Pi−1 − 2Re(pi) · (LiB) · (LiB)∗, i ∈ N.
(4.4)

Monotonicity of (Pi)i thus immediately follows from pi ∈ C−.
f) An important class of infinite-dimensional systems are the so-called boundary con-

trol systems [13,25]. They are, in an abstract setting, of the form

ẋ(t) = Ux(t),

px(t) = u(t),
(4.5)
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where U : D(U) ⊂ X → X is densely defined and closed, and p ∈ B(D(U), U) is
onto. In case of well-posedness (that is, for all t ∈ R>0, x(t) ∈ X continuously
depends on x(0) ∈ X and u ∈ L2([0, t], U)), this system can be rewritten as ẋ(t) =
Ax(t) + Bu(t), where the operator A generates a strongly continuous semigroup
T (·) on X, and B is admissible for T (·), see [25]. If A generates an exponentially
stable semigroup, then we may use [13, Thm. 2.9] to infer that for all p ∈ C−,
z ∈ X, and u ∈ U the vectors x1 = (A+ pI)−1z and x2 = (A+ pI)−1Bu ∈ X are
the unique solutions of the so-called abstract elliptic problems

px1 + Ux1 = z, px2 + Ux2 = 0,

px1 = 0, px2 = u.
(4.6)

The Gramian P can therefore be computed by the ADI algorithm without explicit
use of A and B.
The subsequent two lemmas result in the fact that (Pi)i is bounded from above

by the Gramian P .
Lemma 4.4. Let U,X be Hilbert spaces, A be a generator of an exponentially

stable semigroup T (·) on X and B ∈ B(U,D(A∗)′) an admissible control operator for
T (·). Let P ∈ B(X) be the Gramian of (A,B), let p1, . . . , pi ∈ C− and define

Ti =

i−1∏

j=0

(A− pi−jI)(A + pi−jI)
−1. (4.7)

Then

(A+ piI)
−1Ti−1PT ∗

i−1 + Ti−1PT ∗
i−1(A

∗ + piI)
−1

=− (A+ piI)
−1Ti−1BB′T ∗

i−1(A
∗ + piI)

−1

+ 2Re(pi)(A+ piI)
−1Ti−1PT ∗

i−1(A
∗ + piI)

−1 ∈ B(X).

(4.8)

Proof. Using Remark 4.3 b) one sees that Ti−1 and (A+piI)
−1 (and thus also their

respective adjoints) commute. The operator Ti is hence well-defined by the expression
(4.7). Let x ∈ X . Then (A∗ + piI)

−1x ∈ D(A∗) and T ∗
i−1(A

∗ + piI)
−1x ∈ D(A∗).

Now using the Lyapunov equation (3.1) in the last reformulation, we obtain

〈
x,
(
(A+ piI)

−1Ti−1PT ∗
i−1 + Ti−1PT ∗

i−1(A
∗ + piI)

−1
)
x
〉
X

=
〈
x, (A+ piI)

−1Ti−1PT ∗
i−1x

〉
X
+
〈
x, Ti−1PT ∗

i−1(A
∗ + piI)

−1x
〉
X

=
〈
(A∗ + piI)

−1T ∗
i−1x, PT ∗

i−1x
〉
X
+
〈
PT ∗

i−1x, T
∗
i−1(A

∗ + piI)
−1x

〉
X

=2Re
〈
PT ∗

i−1x, T
∗
i−1(A

∗ + piI)
−1x

〉
X

=2Re
〈
T ∗
i−1x, PT ∗

i−1(A
∗ + piI)

−1x
〉
X

=2Re
〈
A∗T ∗

i−1(A
∗ + piI)

−1x, PT ∗
i−1(A

∗ + piI)
−1x

〉
X

+ 2Re
〈
piT

∗
i−1(A

∗ + piI)
−1x, PT ∗

i−1(A
∗ + piI)

−1x
〉
X

=− ‖B′T ∗
i−1(A

∗ + piI)
−1x‖2U

+ 2Re
〈
piT

∗
i−1(A

∗ + piI)
−1x, PT ∗

i−1(A
∗ + piI)

−1x
〉
X
.

Then, due to

‖B′T ∗
i−1(A

∗ + piI)
−1x‖2U =

〈
x, (A+ piI)

−1Ti−1BB′T ∗
i−1(A

∗ + piI)
−1x

〉
X
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and
〈
T ∗
i−1(A

∗ + piI)
−1x, PT ∗

i−1(A
∗ + piI)

−1x
〉
X

∈ R,

we obtain
〈
x,
(
(A+ piI)

−1Ti−1PT ∗
i−1 + Ti−1PT ∗

i−1(A
∗ + piI)

−1
)
x
〉
X

=−
〈
x, (A + piI)

−1Ti−1BB′T ∗
i−1(A

∗ + piI)
−1x

〉
X

+ 2Re(pi) ·
〈
x, (A+ piI)

−1Ti−1PT ∗
i−1(A

∗ + piI)
−1x

〉
X

=−
〈
x, (A + piI)

−1Ti−1BB′T ∗
i−1(A

∗ + piI)
−1x

〉
X

+
〈
x, 2Re(pi) · (A+ piI)

−1Ti−1PT ∗
i−1(A

∗ + piI)
−1x

〉
X
.

Since this holds true for all x ∈ X , the desired operator equation follows immediately.

Lemma 4.5. Let U,X be Hilbert spaces, A be a generator of an exponentially
stable semigroup T (·) on X and B ∈ B(U,D(A∗)′) an admissible control operator for
T (·). Let P ∈ B(X) be the Gramian, let p1, . . . , pi ∈ C−, Ti ∈ B(X) as in (4.7) and
Pi recursively defined as in (4.4). Then

P − Pi = TiPT ∗
i . (4.9)

In particular, there holds Pi ≤ P .
Proof. The statement is shown by induction on i. For i = 0, the assertion is

fulfilled due to T0 = IX and P0 = 0. Let i ∈ N and assume that (4.9) is fulfilled for
some i− 1. Making use of the induction assumption, Lemma 4.4 and

Ti = (A− piI)(A+ piI)
−1Ti−1 = Ti−1 − 2Re(pi)(A + piI)

−1Ti−1,

we obtain

TiPT ∗
i =Ti−1PT ∗

i−1 − 2Re(pi)
(
(A+ piI)

−1Ti−1PT ∗
i−1 + Ti−1PT ∗

i−1(A
∗ + piI)

−1
)

+ 4Re(pi)
2(A+ piI)

−1Ti−1PT ∗
i−1(A

∗ + piI)
−1

=P − Pi−1 + 2Re(pi)(A+ piI)
−1Ti−1BB′T ∗

i−1(A
∗ + piI)

−1 = P − Pi

We can already infer from Lemma 4.5 and the results from Appendix A that the
sequence (Pi)i obtained from Algorithm 1 is strongly convergent towards a nonneg-
ative operator that is below the Gramian. The following results will show that the
strong limit is indeed given by the Gramian P .

Lemma 4.6. Let the assumptions of Lemma 4.5 hold true. Further, assume that
the sequence (pi)i in C− is J-cyclic for some J ∈ N and let the operator sequence
(Ti)i be defined as in (4.7). Then for all x ∈ D(A∗) holds

lim
i→∞

T ∗
i x = 0 (in X). (4.10)

Proof. Let x ∈ X be given. J-cyclicity of the shift parameters implies TnJ+k =
Tk · T n

J for all n ∈ N, k ∈ {0, . . . , J − 1}. Thus it is clear that it suffices to show
that (T ∗

J )
kx converges to zero. To see this, consider the recursively defined operator

sequence (P̃ )i in B(X) with

P̃0 = 0,

P̃i = P̃i−1 − 2Re(pi)LiL
∗
i , i ∈ N.

(4.11)
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with Li as in (4.2), i.e., the recursion (4.4) for the case where the identity is the
control operator, i.e., B = IX . Hence, P̃(k+1)J ≥ P̃kJ for all k ∈ N, and we may apply
Lemma 4.5 to see that for all i ∈ N holds

P̃i ≤ P̃ ,

where P̃ is the Gramian of (A, IX). The J-cyclicity of the shift parameters gives rise
to

P̃(k+1)J = TJ P̃kJT
∗
J + P̃J .

By Lemma 4.5, we obtain P̃kJ ≤ P̃ for all k ∈ N, i.e., the sequence (P̃kJ )k is mono-
tonically increasing and bounded from above. Theorem A.1 now gives rise to strong
convergence of (P̃i)i towards some P̃ ∈ B(X), which leads to the discrete-time oper-
ator Lyapunov equation

P̃ = TJ P̃ T ∗
J + P̃J .

Now using [26, Prop. 8(b)], we obtain that for all z ∈ X holds

0 = lim
k→∞

〈
(T ∗

J )
kz, P̃J(T

∗
J )

kz
〉
X
.

Using that

PJ = −
J∑

i=1

Re(pi)LiL
∗
i ,

we particularly obtain

0 = lim
k→∞

〈
(T ∗

J )
kz, L1L

∗
1(T

∗
J )

kz
〉
X

= lim
k→∞

‖L∗
1(T

∗
J )

kz‖X = lim
k→∞

‖L∗
1(T

∗
J )

kz‖2X
= lim

k→∞
‖(A∗ + p1)

−1(T ∗
J )

kz‖2X = lim
k→∞

‖(T ∗
J )

k(A∗ + p1)
−1z‖2X ,

where the latter equality holds true since (T ∗
J )

k and (A∗ + p1)
−1 commute (see

Rem. 4.3 b)). Since this holds true for all z ∈ X the fact that im(A∗+p1)
−1 = D(A∗)

implies the desired result.
We are now prepared to formulate the proof of the main result:
Proof of Theorem 4.2:
We can infer from pi ∈ C− and (4.4) that Pi−1 ≤ Pi for all i ∈ N. Lemma 4.5

further implies that Pi ≤ P and we can apply Theorem A.1 to obtain that there exists
some self-adjoint and nonnegative Q ∈ B(X) with Q ≤ P and

lim
i→∞

Pix = Qx for all x ∈ X.

Assuming that P 6= Q, the density of D(A∗) in X gives rise to the existence of some
z ∈ D(A∗) with 〈z,Qz〉X 6= 〈z, Pz〉X . By Lemma 4.5, we have

〈z, Piz〉X − 〈z, Pz〉X = 〈z, TiPT ∗
i z〉X = 〈T ∗

i z, PT ∗
i z〉X .

Now taking the limits on both sides of the equation and using Lemma 4.6, we obtain

〈z,Qz〉X − 〈z, Pz〉X = lim
i→∞

〈z, Piz〉X − 〈z, Pz〉X = lim
i→∞

〈T ∗
i z, PT ∗

i z〉X = 0,
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which is a contradiction to 〈z,Qz〉X 6= 〈z, Pz〉X . The sequence (Pi)i therefore strongly
converges to the Gramian P .

If we now assume that P is moreover compact (p-th Schatten class), then Proposi-
tion A.2 (Proposition A.3) will imply that even convergence towards P in the operator
(p-th Schatten) norm holds true.

We finally present some remarks about the shift parameter choice:

Remark 4.7 (Shift parameters).

a) Equation (4.9) gives rise to he fact that the approximation Pi ≈ P is the better,
the “smaller is Ti”. In practice, one is interested in fast convergence, since this
gives rise to good approximants of low rank.

b) In the finite-dimensional case, the shift parameters are chosen in a way that the
spectral radius of TJ is minimized. With σ(A) = {λ1, . . . , λn}, this leads to the
optimization problem

min
p1,...,pJ∈C−

max
λ∈σ(A)

J∏

j=1

∣∣∣∣
pj − λ

pj + λ

∣∣∣∣ .

This optimization problem can be solved by using advanced techniques of complex
analysis, in particular the theory of elliptic integrals [17]. Furthermore, several
suboptimal choices of the shift parameters that do not require the full information
of the spectrum have been proposed and successfully applied (see [32, pp. 43] for an
overview).

c) In infinite dimensions and, in particular, in the case where A is unbounded any
choice of the shift parameters in C− will lead to an iteration operator fulfilling
ρ(TJ) = 1. In the numerical experiments, we will chose the shift parameters by
applying the existing approaches to a sufficiently accurate discretization of A.

d) It is worthwhile to place particular emphasis on systems with diagonalizable A,
the so-called Riesz-spectral operators [14, Sec. 2.3](which occur for the heat and
wave equation as well as at time-delay systems): That is, there exists a Riesz
basis of eigenvectors of A and, moreover σ(A) is totally disconnected. Roughly
speaking, a Riesz basis is a family of vectors which is topologically equivalent to an
orthonormal system. A Riesz-spectral operator A generates a strongly continuous
T (·) if and only if supRe(σ(A)) < ∞; exponential stability of T (·) is equivalent to
sup(Reσ(A)) < 0. Denoting σ(A) = {λi | i ∈ N}, let (φi)i is a Riesz basis of the
eigenvectors of A∗ (which exists due to [14, Lem. 2.3.2]) with A∗φi = λiφi for all
i ∈ N. Then the Lyapunov equation (3.5) gives rise to

0 = 〈Pφi, A
∗φj〉X + 〈A∗φi, Pφj〉X + 〈B′φi, B

′φj〉U
=(λj + λi) 〈Pφi, φj〉X + 〈B′φi, B

′φj〉U for all i, j ∈ N.
(4.12)

Then λi, λj ∈ C− implies λi + λj 6= 0, and thus

〈Pφi, φj〉X = − 1

λi + λj

· 〈B′φi, B
′φj〉U for all i, j ∈ N.

Note that, by the property of (φi)i being a Riesz basis, this relation uniquely deter-
mines P ; it can be considered as a Cauchy matrix representation [4] of P .
Assuming that, for s ∈ N, Π[s] ∈ B(X) is a projector onto the s-dimensional space
X[s] := span{φ1, . . . , φs}, we obtain (A+ pj)

−1Π[s]x = Π[s](A+ pj)
−1Π[s]x for all



ADI ITERATION FOR OPERATOR LYAPUNOV EQUATIONS 13

x ∈ X and j ∈ N, and thus also TiΠ[s]x = Π[s]TiΠ[s]x for all x ∈ X and all i ∈ N.
Then (4.9) implies

Π[s](P − Pi)(Π[s])
∗ = (Π[s]TiΠ[s])(Π[s]PΠ∗

[s])(Π[s]TiΠ[s])
∗. (4.13)

On the other hand, the spectral radius of the projected iteration matrix is given by

ρ(Π[s]TiΠ[s]) = max
l=1,...,s

i∏

j=1

∣∣∣∣
pj − λl

pj + λl

∣∣∣∣ < 1.

As a consequence, we have linear convergence of (Π[s]PiΠ
∗
[s])i to Π[s]PΠ∗

[s] in the

operator norm for any s ∈ N. If the Gramian P is compact (or even of Schatten
class), then there exists some s ∈ N such that “P is almost vanishing outside X[s]”;
that is, the norms of (I − Π[s])PΠ∗

[s], Π[s]P (I − Π[s])
∗ and (I − Π[s])P (I − Π[s])

∗

are small. Since Pi ≤ P , the norms of (I − Π[s])PiΠ
∗
[s], Π[s]Pi(I − Π[s])

∗ and

(I − Π[s])Pi(I − Π[s])
∗ are small as well (for a more mathematical justification

of this argumentation we refer to the proofs of Theorem A.2 and Theorem A.3).
One has therefore to find shift parameters that guarantee fast convergence on the
“dominant subspace of P”. Anyway, various open questions in the (optimal) shift
parameter selection are left; this is an interesting topic for further research.

We finally give an explicit representation of the ADI approximation error for the
class of systems considered in Proposition 3.6. On the basis of this result, suitable
stopping criteria, i.e., the determination of imax in Algorithm 1, may be designed (see
also Remark 4.1 b)).

Proposition 4.8. Let A : D(A) ⊂ X → X be self-adjoint with A ≤ 0 and 0 ∈
ρ(A). Further assume that A has compact resolvent and let B : U → D((−A)

1
2 )′ such

that (−A)−1/2B : U → X is Hilbert-Schmidt. Let P be the Gramian of (A,B) and
let shift parameters p1, . . . , pi ∈ C− be given. Then, in the notation of Algorithm 1,
there holds

‖P − Pi‖S1(X) = −1

2
· tr(B′A−1B) + 2

i∑

k=1

Re(pi) · tr(V ∗
k Vk). (4.14)

In particular, if U = Cn, then B′A−1B,S∗
kSk ∈ Cn×n are Hermitian matrices.

Proof. By Lemma 4.5, we have P − Pi ≥ 0, whence

‖P − Pi‖S1(X) = tr(P )− tr(Pi).

Then the desired result follows from (3.7) and

tr(Pi) = tr

(
i∑

k=1

−2Re(pk) · VkV
∗
k

)
= −2

i∑

k=1

Re(pk) · tr (VkV
∗
k )

= − 2

i∑

k=1

Re(pk) · tr (V ∗
k Vk) .
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5. Inexact ADI iteration. Algorithm 1 can, in general, not be implemented
for practical purposes, if the state spaceX is infinite-dimensional. Instead on will have
to work with suitable approximations of the equations arising in each step of the ADI
iteration. That is, we approximate (A + piI)

−1 by some operator acting on a finite-
dimensional subspace. This is in the sequel referred to as inexact ADI iteration. For
instance, if A is a differential operator, an approximation can be performed by using
(adaptive) finite-element methods (see Section 6).

It is the goal of this section to present an error analysis for inexact ADI: we will
derive estimates for the error in the obtained approximation of the Gramian operator.

In this part we assume finite-dimensionality of the input space, i.e., U = Cm

for some m ∈ N. Note that this assumption is justified by practice: only finitely
many actuating variables are available to control a given system. As a consequence,
we have a representation B = [b1, . . . , bm] ∈ (D(A∗)′)m; the operators in the ADI
iteration may be written as Vi = [vi1, . . . , vm] ∈ Xm. In the first step of the ADI
iteration we therefore have to solve m equations (A + p1I)v1k = bk ∈ D(A∗)′; the
following steps consist of the solving equations (A+piI)xk = vi−1,k ∈ X . To suitably
approximate the equations arising in the ADI iteration, let (X(i)) be a sequence of
(finite-dimensional) subspaces of X , let Π(1) ∈ B(D(A∗)′) be a projector onto X(1),
and, for i ≥ 2, let Π(i) ∈ B(X) be a projector onto X(i). Further, assume that, for

i ∈ N, the operators Ã
(i)
pi ∈ B(X(i)) are approximations on A + piI in the sense that

the solution x ∈ X of the equation Ã
(i)
pi x = b is “close to (Ã

(i)
pi )

−1Π(i)b” for suitable
right hand side b ∈ X or b ∈ D(A∗)′.

With these preparations we can formulate our inexact ADI iteration as follows:

Algorithm 2 Inexact ADI iteration for operator Lyapunov equations.

Input: A Hilbert spaceX , a sequence (X(i)) of subspaces ofX , operatorsA : D(A) ⊂
X → X and B ∈ B(U,D(A∗)′); projectors Π(i) onto X(i) with Π(1) ∈ B(D(A∗)′) and

Π(j) ∈ B(X) for i ≥ 2; operators Ã
(i)
pi ∈ B(X(i)); shift parameters pi ∈ C−.

Output: S̃ = S̃imax ∈ B(U imax , X), such that S̃S̃∗ ≈ P , where P is the Gramian of
(A,B).

1: Ṽ1 = (A
(i)
p1 )

−1Π(i)B

2: S̃1 =
√
−2Re(p1) · Ṽ1

3: for i = 2, 3, . . . , imax do

4: Ṽi = Ṽi−1 − (pi + pi−1)(Ã
(i)
pi )

−1Π(i)Ṽi−1

5: S̃i = [ S̃i−1 ,
√
−2Re(pi) · Ṽi ]

6: end for

We will now derive expressions and estimates for the error between exact and
inexact ADI iteration. We will first derive estimates for Vi − Ṽi. Thereafter, we
will provide upper bounds for the difference between Si and S̃i, and, respectively,
Pi = SiS

∗
i and P̃i = S̃iS̃

∗
i .

Denoting

Ei = Vi − Ṽi,

GE
i = (A+ piI)

−1 − (Ã(i−1)
pi

)−1Π(i)

the construction of Vi and Ṽi in Algorithm 1 and Algorithm 2 yields that the error
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recursively fulfills

Ei = (A+ piI)
−1(A− piI)Ei−1 + (pi + pi−1) ·GE

i Ṽi−1. (5.1)

Using that the operators (A+ pj)
−1, (A+ pk)

−1, (A− pjI) and (A− pkI) commute
for all j, k ∈ N, we may inductively conclude from (5.1) that for all i > 1, there holds

Ei = (A− p1I)(A+ piI)
−1

(
i−1∏

k=2

(A− pkI)(A+ pkI)
−1

)
·GE

1 B

+

i−1∑

j=2

(pj + pj−1) · (A− pjI)(A+ piI)
−1




i−1∏

k=j+1

(A− pkI)(A+ pkI)
−1


GE

j Ṽj−1

+ (pi + pi−1) ·GE
i Ṽi−1.

(5.2)
Proposition 5.1. Let X be a Hilbert space, let A : D(A) ⊂ X → X be the gener-

ator of an exponentially stable semigroup T (·) and B = [b1 , . . . , bm] ∈ B(Cm, D(A∗)′)
be an admissible control operator for T (·). Let J ∈ N, let (pi)i be a J-cyclic sequence
in C−. Assume that for all i ∈ N, the operator Vi = [vi1 , . . . , vim] ∈ B(Cm, X) is
obtained by Algorithm 1.
Let (X(i)) be a sequence of subspaces of X, let Π(1) ∈ B(D(A∗)′) be a projector
onto X(1), and, for i ≥ 2, let Π(i) ∈ B(X) be a projector onto X(i). Further, let

Ã
(i)
pi ∈ B(X(i)), and assume that the operators Ṽi = [ṽi1 , . . . , ṽim] ∈ B(Cm, X) are

obtained by Algorithm 2.
Assume that

‖(A+ p1I)
−1bl − (Ã(1)

p1
)−1Π(1)bl‖X ≤ c(1l) for l = 1, . . . ,m, and

‖(A+ piI)
−1vi−1,l − (Ã(i)

pi
)−1Π(i)vi−1,l‖X ≤ c(il) for l = 1, . . . ,m, i > 1.

(5.3)

Let either be ‖ · ‖ = ‖ · ‖B(X) or ‖ · ‖ = ‖ · ‖Sp(X) for some p ∈ [1,∞). Then the
following assertions hold true:
a) There exists some M > 0 such that for all i ∈ N holds

‖Ei‖ ≤ M ·
i∑

k=1

m∑

l=1

c(kl).

b) If A is a Riesz-spectral operator, then there exists some M > 0, an increasing se-
quence of finite-dimensional subspaces X[s] of X with X =

⋃
j∈N

X[s], a bounded se-
quence of projectors Π[s] with imΠ[s] = X[s] and some M > 0, such that for all
s ∈ N there exists some ρ[s] ∈ (0, 1), such that

‖Π[s]Ei‖ ≤ M ·
(

m∑

l=1

c(il) +

i−1∑

k=1

ρi−k−1
[s]

m∑

l=1

c(kl)

)
.

Proof. The following argumentation make use of the fact that any x ∈ X can be
identified as an operator x ∈ B(C, X) via scalar multiplication. It can be seen that
this operator is also belonging to any Schatten space with

‖x‖X = ‖x‖B(C,X) = ‖x‖Sp(C,X).
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By the triangular inequality, we obtain that for any x1, . . . , xm ∈ X , the operator
M = [x1, . . . , xm] ∈ B(Cm, X) fulfills

‖M‖B(C,X) ≤ ‖M‖Sp(C,X) ≤
m∑

l=1

‖xl‖X .

a) By Lemma 4.6, we know that for all j ∈ N, the sequence





i∏

k=j+1

(A− pkI)(A+ pkI)
−1




∗


i

strongly converges to zero. Then we can conclude from the Banach-Steinhaus
Theorem [27] that there exists some m > 0 such that for all i, j ∈ N holds

∥∥∥∥∥∥

i∏

k=j+1

(A− pkI)(A + pkI)
−1

∥∥∥∥∥∥
B(X)

≤ m.

Then, by setting

M =m ·max
(
{‖(A− p1I)(A+ piI)

−1‖B(X), |pi + pi−1|} ∪
{
|pj + pj−1| · ‖(A− p1I)(A+ pjI)

−1‖B(X) | j ∈ {1, . . . , i− 2}
})

,

(5.4)
the desired result follows by a combination of (5.2) and (5.3).

b) If A is a Riesz-spectral operator, then there exists some bounded and boundedly
invertible similarity transformation that results into a diagonal operator on ℓ2.
That is, there exists some bijective T ∈ B(ℓ2, X) such that T−1AT = DA, where
DA : D(DA) ⊂ ℓ2 → ℓ2 fulfills DA(x1, x2, . . .) = (λ1x1, λ2x2, . . .) with

D(DA) = T−1D(A) = {(x1, x2, . . .) ∈ ℓ2 | (λ1x1, λ2x2, . . .) ∈ ℓ2}.
Define the projectors by Π[s] = T−1ΠD

[s]T , where ΠD
[s] ∈ B(ℓ2) truncates after the

s-th position, i.e.,

ΠD
[s](x1, . . . , xj , xj+1, xj+2, . . .) = (x1, . . . , xj , 0, 0, . . .),

and set X[s] = imΠ[s]. Then we have dimX[s] = s and X =
⋃

s∈N
X[s]. The

sequence (Π[s])s is bounded by to ‖Π[s]‖B(X) ≤ ‖T ‖B(X) · ‖T−1‖B(X) =: C. The
construction of Π[s] leads to

Π[s](A+ pkI)
−1 = Π[s](A+ pkI)

−1Π[s] = (A+ pkI)
−1Π[s],

we can make use of (5.2) to see that

Π[s]Ei = (A− p1I)(A+ piI)
−1

(
i−1∏

k=2

Π[s](A− pkI)(A+ pkI)
−1Π[s]

)
·GE

1 B

+

i−2∑

j=1

(pj + pj−1) · (A− pjI)(A + piI)
−1

·




i−1∏

k=j+1

Π[s](A− pkI)(A+ pkI)
−1Π[s]


GE

j Ṽj−1

+ (pi + pi−1) ·GE
i Ṽi−1.

(5.5)
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As in Remark 4.7 d), we can infer that the spectral radius of the operator products
in the above expression are given by

ρ




i−1∏

k=j+1

Π[s](A− pkI)(A+ pkI)
−1Π[s]


 = max

l=1,...,s

i−1∏

k=j+1

∣∣∣∣
pj − λl

pj + λl

∣∣∣∣ .

The latter expression is below one, since the function z 7→ pj−z
pj+z maps C− onto the

open complex unit circle. By J-cyclicity of the shift parameters, we can now infer
that there exists some ρ[s] ∈ (0, 1), such that for all i, j ∈ N, there holds

max
l=1,...,s

i−1∏

k=j+1

∣∣∣∣
pj − λl

pj + λl

∣∣∣∣ ≤ ρ
i−j−1
[s] .

This gives rise to

∥∥∥∥∥∥

i−1∏

k=j+1

Π[s](A− pkI)(A + pkI)
−1Π[s]

∥∥∥∥∥∥
B(X)

≤ ‖T ‖B(X,ℓ2) · ‖T−1‖B(ℓ2,X)︸ ︷︷ ︸
=:m

·ρi−j−1
[s] .

Now defining M as in (5.4), we obtain the desired result.

As an immediate consequence of Proposition 5.1 and the fact

‖Si − S̃i‖ ≤ −
i∑

k=1

Re(pk) · ‖Vk − Ṽk‖, (5.6)

we may formulate the following estimates for ‖Si − S̃i‖:
Corollary 5.2. Under the assumptions and notation of Proposition 5.1, Algo-

rithm 1 and Algorithm 2, the following assertions hold true:
a) There exists some M > 0 such that for all i ∈ N holds

‖Si − S̃i‖ ≤ M ·
i∑

k=1

m∑

l=1

(i− k) · c(kl).

b) If A is a Riesz-spectral operator, then there exists a sequence of finite-dimensional
subspaces X[s] of X with X =

⋃
j∈N

X[s], a sequence of projectors Π[s] with imΠ[s] =
X[s], such that for all s ∈ N there exists some M[s] > 0, such that

‖Π[s](Si − S̃i)‖ ≤ M[s] ·
(

i∑

k=1

m∑

l=1

c(kl)

)
.

Proof. Statement a) follows from the triangular inequality in (5.6), and accord-
ingly using the error bound from Proposition 5.1 a). To prove b), we construct X[s]

and Π[s] as in the proof of Proposition 5.1 b). Thereafter, making use of

‖Π[s](Si − S̃i)‖ ≤ −
i∑

k=1

Re(pk) · ‖Π[s](Vi − Ṽi)‖,
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the error bound in Proposition 5.1 b) and the formula for geometric sums give rise to
the result.

Now we present estimates for the difference between approximative Gramians
provided by exact and inexact ADI iteration.

Corollary 5.3. Under the assumptions and notation of Proposition 5.1, Algo-
rithm 1 and Algorithm 2, the following assertions hold true:
a) There exists some M > 0 such that for all i ∈ N and

Li =

i∑

k=1

m∑

l=1

(i− k) · c(kl),

there holds

‖Pi − P̃i‖ ≤ M ·
(
Li + L2

i

)
.

b) If A is a Riesz-spectral operator, then there exists a sequence of finite-dimensional
subspaces X[s] of X with X =

⋃
j∈N

X[s], a sequence of projectors Π[s] with imΠ[s] =
X[s], such that for all s ∈ N there exists some M[s] > 0, such that for

Ki :=

i∑

k=1

m∑

l=1

c(kl),

there holds

‖Π[s](Pi − P̃i)Π
∗
[s]‖ ≤ M[s] ·

(
Ki +K2

i

)
.

Proof. In the case of ‖ · ‖ = ‖ · ‖Sp(X), statement a) follows from Corollary 5.3 a),
together with

‖Pi − P̃i‖Sp(X) = ‖SiS
∗
i − S̃iS̃

∗
i ‖Sp(X)

≤‖Si(S
∗
i − S̃∗

i )‖Sp(X) + ‖(Si − S̃i)S̃
∗
i ‖Sp(X)

≤‖Si‖S2p(Cim,X) · ‖S∗
i − S̃∗

i ‖S2p(X,Cim) + ‖Si − S̃i‖S2p(Cim,X) · ‖S̃∗
i ‖S2p(X,Cim)

=
(
‖Si‖S2p(Cim,X) + ‖S̃i‖S2p(Cim,X)

)
· ‖Si − S̃i‖S2p(Cim,X)

=
(
2‖Si‖S2p(Cim,X) + ‖Si − S̃i‖S2p(Cim,X)

)
· ‖Si − S̃i‖S2p(Cim,X)

≤
(
2‖Pi‖1/2Sp(X) + ‖Si − S̃i‖S2p(Cim,X)

)
· ‖Si − S̃i‖S2p(Cim,X).

(5.7)

If ‖ · ‖ is the standard operator norm, then we can analogously estimate

‖Pi − P̃i‖B(X) ≤
(
2‖Pi‖B(X) + ‖Si − S̃i‖B(X)

)
· ‖Si − S̃i‖B(X),

and we can argument as for Schatten norms.
To prove b), we first construct X[s] and Π[s] as in the proof of Proposition 5.1 b).

Then, by determining bounds for ‖Π[s](Pi − P̃i)Π
∗
[s]‖ analogous to (5.7), the desired

result follows immediately from Corollary 5.2 b).
Remark 5.4.

a) If A is unbounded, then the construction of ρ[s] in Proposition 5.1 leads to sups∈N ρ[s] =
1. According to their construction in Corollary 5.2, the constants M[s] in Corol-
lary 5.3 b) are therefore not uniformly bounded.
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b) Under the assumptions of Corollary 5.3 b) and, additionally

K := lim
i→∞

Ki =
∞∑

k=1

m∑

l=1

c(kl) < ∞,

the error bound in b) can be slightly reformulated to

‖Π[s](Pi − P̃i)Π
∗
[s]‖ ≤ N[s] ·Ki,

for some N[s] > 0.
Under the assumption that inexact ADI iteration converges, we now present esti-

mates for the difference between the limit of inexact ADI iteration and the Gramian
operator P .

Theorem 5.5. Let X be a Hilbert space, let A : D(A) ⊂ X → X be a Riesz-
spectral operator that generates an exponentially stable semigroup T (·), and let B =
[b1 , . . . , bm] ∈ B(Cm, D(A∗)′) be an admissible control operator for T (·). Let J ∈ N,
let (pi)i be a J-cyclic sequence in C−. Assume that for all i ∈ N, the operator
Vi = [vi1 , . . . , vim] ∈ B(Cm, X) is obtained by Algorithm 1.
Let (X(i)) be a sequence of subspaces of X, let Π(1) ∈ B(D(A∗)′) be a projector
onto X(1), and, for i ≥ 2, let Π(i) ∈ B(X) be a projector onto X(i). Further, let

Ã
(i)
pi ∈ B(X(i)), and assume that the operators Ṽi = [ṽi1 , . . . , ṽim] ∈ B(Cm, X) are

obtained by Algorithm 2.

a) Assume that the Gramian P of (A,B) is compact and let ε ∈ R>0. Then for all
inexact ADI iterations with the property that the error bounds (5.3) are fulfilled in

each step, and ‖P̃i‖B(X) ≤ C ∈ R for all i ∈ N, there exist M ∈ R>0, k ∈ N with
the following property: For all i ∈ N with i ≥ k, there holds

‖P − P̃i‖B(X) ≤ ε+M ·
∞∑

k=1

m∑

l=1

c(kl).

b) Assume that the Gramian P of (A,B) is of p-th Schatten class and let ε ∈ R>0.
Then for all inexact ADI iterations with the property that the error bounds (5.3) are

fulfilled in each step, and ‖P̃i‖Sp(X) ≤ C ∈ R for all i ∈ N, there exist M ∈ R>0,
k ∈ N with the following property: For all i ∈ N with i ≥ k, there holds

‖P − P̃i‖Sp(X) ≤ ε+M ·
∞∑

k=1

m∑

l=1

c(kl).

Proof. We only prove a), since b) is analogous:

The sequence (P̃i) is bounded by assumption. By construction we further have P̃i ≤
P̃i+1 for all i ∈ N. Since each P̃i has finite-dimensional range, we even have P̃i ∈ K(X)
for all i ∈ N. Proposition A.2 now gives rise to convergence in B(X). That is, there

exists some P̃ ∈ K(X) such that

lim
i→∞

‖P̃ − P̃i‖B(X) = 0.

The monotonicity of the sequence further implies that for all i ∈ N holds

Pi ≤ P, and P̃i ≤ P̃ .
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Let ε > 0 and let k ∈ N such that for all i ≥ k, there holds

‖P − Pi‖B(X) <
ε

5
and ‖P̃ − P̃i‖B(X) <

ε

5
.

Spectral decomposition implies that that there exists some orthogonal projector Π ∈
B(X), such that

‖P − P̃‖B(X) < ‖Π∗(P − P̃ )Π‖B(X) +
ε

5
.

Let (Π[s])s be constructed as in the proof of Proposition 5.1, i.e., for the sequence (λi)i
of eigenvalues of A, Π[s] projects onto the eigenspace corresponding to the eigenval-
ues λi, . . . , λs, and along the complementary eigenspace. By the property of A being
a Riesz-spectral operator, the sequence (Π[s])s converges in the strong operator topol-
ogy towards the identity operator. In particular, the Banach-Steinhaus Theorem [27]
implies the existence of some C > 0 with ‖Π[s]‖ < C for all s ∈ N. Another conse-
quence of strong convergence of (Π[s])s to I is that the sequence of complementary
projectors (I − Π[s])s converges to zero in the strong operator topology. Since imΠ
is finite-dimensional, we have

lim
s→∞

‖(I −Π[s])Π‖B(X) = 0.

Consequently, there exists some s ∈ N with

‖(I −Π[s])Π‖B(X) ·
(
‖P‖B(X) + L

)
· (3C + 1) <

ε

5
.

Further, by making use of the monotonicity of (inexact) ADI iteration, we have

‖Pi − P̃i‖B(X) ≤ ‖P‖B(X) + ‖P̃‖B(X) ≤ ‖P‖B(X) + L.

Incorporating the above findings, we find that for all i ≥ k, there holds

‖P − P̃i‖B(X)

≤‖P − P̃‖B(X) + ‖P̃ − P̃i‖B(X)︸ ︷︷ ︸
< ε

5

<‖Π∗(P − P̃ )Π‖B(X) +
2ε

5

≤‖Π∗(P − Pi)Π‖B(X)︸ ︷︷ ︸
< ε

5

+‖Π∗(Pi − P̃i)Π‖B(X) + ‖Π∗(P̃i − P̃ )Π‖B(X)︸ ︷︷ ︸
< ε

5

+
2ε

5

<
3ε

5
+ ‖Π∗(Pi − P̃i)Π‖B(X)

<
4ε

5
+ ‖Π∗(Π[s])∗(Pi − P̃i)Π

[s]Π‖B(X) + 2‖Π∗(Π[s])∗(Pi − P̃i)(I −Π[s])Π‖B(X)

+ ‖((I −Π[s])Π)∗(Pi − P̃i)((I −Π[s])Π)‖B(X)
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≤4ε

5
+ ‖(Π[s])∗(Pi − P̃i)Π

[s]‖B(X) + 2 ‖Π[s]‖B(X)︸ ︷︷ ︸
≤C

‖Pi − P̃i‖B(X)︸ ︷︷ ︸
≤‖P‖B(X)+L

‖(I −Π[s])Π‖B(X)

+ ‖Π(I −Π[s])‖B(X)︸ ︷︷ ︸
≤1+C

‖Pi − P̃i‖B(X)︸ ︷︷ ︸
≤‖P‖B(X)+L

‖(I −Π[s])Π)‖B(X)

≤4ε

5
+ ‖(Π[s])∗(Pi − P̃i)Π

[s]‖B(X) + (3C + 1) ·
(
‖P‖B(X) + L

)
· ‖(I −Π[s])Π)‖B(X)︸ ︷︷ ︸

< ε
5

<ε+ ‖(Π[s])∗(Pi − P̃i)Π
[s]‖B(X).

Now using Corollary 5.3 (see also Remark 5.4 b)), there exists some M > 0 such that

‖Π[s](Pi − P̃i)Π
∗
[s]‖ ≤ M ·

∞∑

k=1

m∑

l=1

c(kl),

which implies a).
Remark 5.6. The above assumption on inexact ADI iteration are for instance

fulfilled, if the projectors Π(i) = Π̃ and spaces X(i) = X̃ are finite-dimensional and
constant, with, moreover

(Ã(i)
pi
)−1 = (Ã+ piM̃)−1 · M̃,

where M̃, Ã ∈ B(X̃) are invertible operators with the additional property that Ã+ pM̃

is invertible for all p ∈ C−. This follows from the results in [6].

6. Systems governed by the heat equation. To demonstrate the appli-
cability of the so far presented operator theoretic results, we consider an infinite-
dimensional system that is governed by the heat equation with spatially (but not
time) constant Robin boundary conditions; the latter is assumed to be the input
variable u(·) : R≥0 → R of the system.

More precisely, for a bounded domain Ω ⊂ Rn with piecewise C2 boundary ∂Ω [1],
we consider the heat equation

∂x

∂t
(ξ, t) = ∆x(ξ, t), (ξ, t) ∈ Ω× R≥0 (6.1a)

with boundary condition

ν(ξ)T∇x(ξ, t) + αx(ξ, t) = u(t), (ξ, t) ∈ ∂Ω× R≥0, (6.1b)

where ν(ξ) denotes the outward normal to ∂Ω in ξ ∈ ∂Ω, α ∈ R>0, and u ∈ L2(R≥0)
is the input of the system.

In the first step, we rewrite this as a system ẋ(t) = Ax(t) + Bu(t), where the
state is given by the spatial temperature function at time t, that is, x(t) := x(·, t) ∈
L2(Ω) := X ; the input is one-dimensional, i.e., U = C. The construction of A and
B has been performed in [12] in the case where α = 0; our case can be treated
analogously (it can, for instance, be derived from the results in [12] by additionally
employing the output feedback theory presented in [41]). The operators A and B are
given by

D(A) = {x ∈ H1(Ω) |∆x ∈ L2(Ω), νT∇x+ αx = 0 on ∂Ω},
Ax =∆x for all x ∈ D(A),

〈Bu, z〉D(A∗)′,D(A∗) =u ·
∫

∂Ω

z(ξ)dσξ,

(6.2)
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where by dσξ we denote the surface measure on ∂Ω. It follows by the Gauß Theorem
that A is self-adjoint with A ≤ 0. Furthermore, 0 ∈ ρ(A), since the elliptic problem

−∆x(ξ) = z(ξ), ξ ∈ Ω,

ν(ξ)T∇x(ξ) + αx(ξ) = 0, ξ ∈ ∂Ω

has a unique solution for all z ∈ L2(Ω). By the Rellich-Kondrachov Theorem [1,
Thm. 6.3], H1(Ω) is compactly embedded in L2(Ω). This gives rise to A−1 ∈
K(L2(Ω)), whence, by the resolvent identity [42, Rem. 2.2.5], A has compact resolvent.
The construction of B in (6.2) further leads to

B′z =

∫

∂Ω

z(ξ)dσξ for all z ∈ D(A∗) = D(A).

Since we can infer from the Gauß Theorem that

‖z‖2
D((−A)

1
2 )

= ‖z‖2L2(Ω) − 〈z, Az〉L2(Ω) = ‖z‖2L2(Ω) −
∫

Ω

z(ξ)∆z(ξ)dξ

=‖z‖2L2(Ω) + ‖∇z‖2L2(Ω) + α

∫

∂Ω

z2(ξ)dσξ for all z ∈ D(A),

the control operator fulfills B ∈ B(C, D((−A)
1
2 )), whence, due to the one-dimensio-

nality of the input space, there further holds B ∈ S2(C, D((−A)
1
2 )). Altogether, we

are now in the situation of Proposition 3.6 and are able formulate the following result:
Corollary 6.1. Assume that Ω ⊂ Rn is a bounded domain with piecewise C2

boundary ∂Ω. Then the operator A as defined in (6.2) generates an exponentially
stable semigroup T (·). The control operator B as in (6.2) is moreover admissible for
T (·). Furthermore, the Gramian P of (A,B) is nuclear with

‖P‖S1(X) =
1

2
·
∫

∂Ω

x(ξ)dσξ , (6.3a)

where x ∈ H1(Ω) solves

−∆x(ξ) = 0, ξ ∈ Ω,

ν(ξ)T∇x(ξ) + αx(ξ) = 1, ξ ∈ ∂Ω
(6.3b)

Proof. The considerations in front of this theorem imply that A is self-adjoint
with compact resolvent, A ≤ 0, 0 ∈ ρ(A) and (−A)−

1
2B ∈ S2(C, L2(Ω)). Exponential

stability of the semigroup T (·) generated by A, admissibility of B for T (·), and nu-
clearity of the Gramian P are then immediate consequences of Proposition 3.6.
Formula (6.3) follows by an application of the findings in Remark 4.2 f) to the ex-
pression in (3.7).

We now consider the ADI iteration for the heat equation (6.1). Since A is self-
adjoint in this case, it makes sense to only choose real shift parameters. A substitution
qi = −pi of the shift parameters leads, according to Remark 4.2 f), to the ADI
algorithm in the following form:

Remark 6.2. Algorithm 3 requires the solution of a sequence of Helmholtz equa-
tions. These can be solved via a finite element method. Note that, if the grid is chosen
to be the same in all equations, then Algorithm 3 will be arithmetically equivalent to
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Algorithm 3 ADI iteration for heat equation with one-dimensional Robin boundary
control (6.1).

Input: Bounded domain Ω ⊂ Rn with piecewise C2 boundary ∂Ω, negatives of the
shift parameters q1, . . . , qimax ∈ R>0

Output: S = Simax ∈ B(Rimax , X), such that SS∗ ≈ P , where P is the Gramian of
(A,B) (with A,B as in (6.2)).

1: Solve

q1 · v1(ξ)−∆v1(ξ) = 0, ξ ∈ Ω,

ν(ξ)T∇v1(ξ) + αv1(ξ) = 1, ξ ∈ ∂Ω

for v1 ∈ L2(Ω).
2: Define S1 =

√
2q1 · v1 ∈ B(C, L2(Ω))

3: for i = 2, 3, . . . , imax do
4: Solve

qi · v̂(ξ)−∆v̂(ξ) = vi−1(ξ), ξ ∈ Ω,

ν(ξ)T∇v̂(ξ) + αv̂(ξ) = 0, ξ ∈ ∂Ω

for v̂ ∈ L2(Ω).
5: Set vi = vi−1 − (qi + qi−1) · v̂
6: Si = [Si−1 ,

√
2qi · vi ] ∈ B(Ri, L2(Ω))

7: end for

the approach of semi-discretizing the heat equation with respect to space, and an ac-
cordant application of the matrix version of the ADI method to the semi-discretized
system.

Applying Proposition 4.8 to the heat equation considered in this part, we can
derive the following expression for the error of the ADI iteration:

Corollary 6.3. Assume that Ω ⊂ Rn is a bounded domain with piecewise C2

boundary ∂Ω. Then, in the notation of Algorithm 3, there holds

‖P − Pi‖S1(X) =
1

2
·
∫

∂Ω

x(ξ)dσξ − 2

i∑

k=1

qk ·
∫

Ω

|vk(ξ)|2dξ, (6.4)

where x ∈ H1(Ω) solves (6.3b).

6.1. Numerical Results. Now, we illustrate our findings with a short numerical
example. To this end we consider (6.1) on the L-shaped domain (0, 1)2 \ (0.5, 1)2. We
fix α = 1 and can evaluate (6.3) exactly as ‖P‖S1(X) = 2 because the solution to (6.3b)

is given by x(·) ≡ 1
α = 1. Now, we can apply the inexact version of Algorithm 3,

compare Algorithm 2 to calculate approximate values Ṽi and S̃i. To do so, we use a
finite element discretization of the PDE’s given in Algorithm 3. The discretization
is done using a Cartesian mesh consisting of square elements with maximal diameter
h. On this mesh we define a subspace Vh ⊂ H1(Ω) using piecewise bilinear finite
elements. The calculations are done using the toolkit DOpElib [16] based upon the
C++-library deal.II, see [7,8]. In order to assert that the approximation error during
the solution of the discrete PDE is below a given tolerance TOL > 0 we employ a
standard residual based L2-error estimator η, see, e.g., [2]. Thus we can allow for
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refinement of the discretization if the error is too large, i.e., η > TOL and for optional
coarsening of the discretization once the error is too small, i.e., η < 0.1TOL. Note,
that this means that the different approximations are not obtained with the same
discretization and thus the software needs to work with solutions given on different
meshes which is done in the library DOpElib.

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35 40

‖P̃
i‖

Iteration

Fixed-mesh TOL = 10−4

Coarsend-mesh TOL = 10−4

Coarsend-mesh TOL = 10−3

Fig. 6.1. Behavior of the approximated Gramians for different algorithmic settings

As a first test case we consider the behavior of ‖P̃i‖S1(X) for various settings in the
algorithm. The results are depicted in Figure 6.1. The shift parameters where chosen
by applying the method of Wachspress [40] on the basis of the lowest hundred
eigenvalues of the Robin Laplacian, which are given by π2(i2 + j2) where i, j =
1, . . . , 10.

Here, the solid black line corresponds to the case when one (fixed) uniform mesh
of mesh size h is used to discretize the PDE. Then from a priori error estimates we
can conclude that the approximation errors in (5.3) satisfy

c(il) ≤ Ch2‖ṽi−1‖

Thus by the fact that the elements ‖ṽi‖ are summable we deduce that the error
‖P − P̃i‖S1(X) will be bounded which can seen as well in the numerical result.

Further, to qualitatively test our error estimates we in addition employed refine-
ment and coarsening during the ADI-iteration. To this end employed a standard
residual based L2-error estimator η. By the well known reliability and efficiency of η
we can steer the meshes in such a way that the approximation errors c(il) (i = 1, . . .;
l = 1) given in (5.3) satisfy

c(il) ≈ TOL .
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Since the
∑∞

i=1 c
(il) = ∞ we expect the error to grow as i → ∞.

Finally, we have a more fine grained look onto the iteration. As is shown in

Table 6.1
Convergence of the ADI-iterations with fixed mesh (left) and adjusted to tolerance 10−4 (right)

Iter. (i) unknowns ‖P̃i‖S1(X) ‖ṽi‖ unknowns ‖P̃i‖S1(X) ‖ṽi‖

0 49665 1.21309 0.030728 49665 1.21309 0.030728
1 49665 1.62615 0.00910443 49665 1.62615 0.00910443
2 49665 1.74612 0.00121557 3201 1.74606 0.00121501
3 49665 1.79888 0.000267274 3201 1.79899 0.000268148
4 49665 1.82545 6.76124e-05 3201 1.82592 6.85014e-05
5 49665 1.841 2.18725e-05 225 1.8459 2.81147e-05
6 49665 1.85054 7.57344e-06 225 1.85887 1.02857e-05
7 49665 1.85676 2.61384e-06 225 1.86706 3.44507e-06
8 49665 1.86073 1.22589e-06 225 1.87312 1.87149e-06
9 49665 1.86353 7.09549e-07 225 1.87935 1.57927e-06
10 49665 1.94405 0.00203958 65 1.95994 0.00204132
11 49665 1.97195 0.000614905 833 1.98789 0.00061603
12 49665 1.97869 6.83044e-05 833 1.99473 6.93052e-05
13 49665 1.98125 1.29659e-05 833 1.99748 1.39308e-05
14 49665 1.98244 3.0429e-06 833 1.99903 3.94527e-06
...

...
...

...
...

...
...

Table 6.1 including the possibility to coarsen the mesh allows an almost identical
approximation of the Gramian with severely fewer unknowns needed in the calculation.

7. Conclusion and Outlook. In this work, the alternating direction implicit
(ADI) iteration has been generalized to operator Lyapunov equations. It is shown
that, for finite-dimensional input space, this method provides finite-rank approxi-
mations of the Gramian. Conditions for convergence in strong operator topology,
operator and Schatten norms have been presented. Motivated by the fact that com-
putations in infinite-dimensional spaces (such as, the solution of differential equations)
can usually only be done approximatively, we have also presented an error analysis
for inexact ADI iteration.

The presented theory and methods have been applied to a heat equation with
boundary control. It turned out that, for this class, the ADI iteration for determina-
tion of Gramians requires the numerical solution of a sequence of Helmholtz equations.
This has been done by employing an adaptive finite-element solver.

One of the most important application of Gramian operators is in model reduc-
tion of infinite-dimensional systems by balanced truncation [15, 18], i.e., the finite-
dimensional approximation of infinite-dimensional input-output systems. The possi-
ble application of the presented ADI iteration to numerically solve operator Lyapunov
equations is however not limited to only balanced truncation model reduction: For
instance, the problem of linear-quadratic optimal control of infinite-dimensional sys-
tems requires the solution of operator Riccati equations [43]. A typical approach to
numerical solution is the so-called Kleinman iteration [11], which consists of the (nu-
merical) solution of a sequence of operator Lyapunov equations. A combination of the
presented method with Kleinman iteration results in an algorithm for the solution of
operator Riccati equations. A more detailed consideration of this class of problems is
subject of further research.
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Appendix A. Monotone operator sequences.

We present convergence results for sequences self-adjoint operators which are
monotonic and bounded. These results are the basis for the proof that the ADI
iteration converges for operator Lyapunov equations. First we repeat a classical result.
Thereafter we focus on sequences of compact and p-th Schatten class operators.

Theorem A.1. [29, p. 263] Let X be a Hilbert space and (Pi)i be a sequence of
self-adjoint operators in B(X) with Pi+1 ≥ Pi for all i ∈ N. Moreover, assume that
there exists some Q ∈ B(X) such that Pi ≤ Q for all i ∈ N. Then there exists some
self-adjoint P ∈ B(X) such that (Pi)i converges to P in the strong operator topology,
that is,

lim
i→∞

Pix = Px for all x ∈ X.

Proposition A.2. Let X be a Hilbert space and (Pi)i be a sequence of nonnega-
tive bounded operators such that Pi ≤ Pi+1 for all i ∈ N. Moreover, assume that there
exists some Q ∈ K(X) with Pi ≤ Q for all i ∈ N. Then there exists some P ∈ K(X)
such that (Pi)i converges to P in the operator norm, that is,

lim
i→∞

‖Pi − P‖B(X) = 0.

Proof. We know from Theorem A.1 that (Pi)i converges to some P ∈ B(X) in the
strong operator topology. Using 0 ≤ Pi ≤ P ≤ Q ∈ K(X), the min-max-Theorem of
Courant-Fischer [28, Sec. 7.5] gives rise to Pi, P ∈ K(X). It remains to be shown that
the sequence (‖P −Pi‖B(X) converges to zero: The sequence (P −Pi)i is nonnegative
and decreasing. Since P is compact and self-adjoint, spectral decomposition implies
that there exists some orthogonal projector Πk ∈ B(X) with k-dimensional range and
‖(I−Πk)P (I−Πk)‖B(X) <

ε
4 . Since (Πk(P −Pi)Πk)i consists of operators with range

contained in the finite-dimensional space imΠk and, moreover, (Pi) converges to P

in the strong operator topology, we obtain

lim
i→∞

‖Πk(P − Pi)Πk‖B(X) = 0.

Let ε > 0. Then there exists some N ∈ N such that for all i > N holds

‖Πk(P − Pi)Πk‖B(X) <
ε

4
.

Let x1 ∈ imΠ, x2 ∈ kerΠ with ‖x1‖X = ‖x2‖X = 1 and

〈x1, (I −Πk)(P − Pi)Πkx2〉X ≤ −‖(I −Πk)(P − Pi)Πk‖L(X).
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Defining x = x1 + x2, the expansion

0 ≤〈x, (P − Pi)x〉X
= 〈x,Πk(P − Pi)Πkx〉X + 2Re 〈x, (I −Πk)(P − Pi)Πkx〉X
+ 〈x, (I −Πk)(P − Pi)(I −Πk)x〉X

≤〈x1,Πk(P − Pi)Πkx1〉X + 2Re 〈x2, (I −Πk)(P − Pi)Πkx1〉X
+ 〈x2, (I −Πk)P (I −Πk)x1〉X

≤‖Πk(P − Pi)Πk‖B(X) − 2‖(I −Πk)(P − Pi)Πk‖B(X)

+ ‖(I −Πk)P (I −Πk)‖B(X)

<
ε

4
− 2‖(I −Πk)(P − Pi)Πk‖B(X) +

ε

4

implies

‖(I −Πk)(P − Pi)Πk‖B(X) <
ε

4
.

By Πk(P − Pi)(I −Πk) = ((I −Πk)(P − Pi)Πk)
∗ we further obtain

‖Πk(P − Pi)(I −Πk)‖B(X) <
ε

4
,

which, altogether, leads to

‖P − Pi‖B(X) ≤‖Πk(P − Pi)Πk‖B(X) + ‖(I − Πk)(P − Pi)Πk‖B(X)

+ ‖Πk(P − Pi)(I −Πk)‖B(X) + ‖(I −Πk)(P − Pi)(I −Πk)‖B(X)

<
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε.

Proposition A.3. Let X be a Hilbert space and (Pi)i be a sequence of nonneg-
ative operators such that Pi ≤ Pi+1 for all i ∈ N. Moreover, assume that p ∈ [1,∞)
and there exists some Q ∈ Sp(X) with Pi ≤ Q for all n ∈ N. Then there exists some
P ∈ Sp(X) such that (Pi)i converges to P in the nuclear norm, that is,

lim
n→∞

‖Pi − P‖Sp(X) = 0.

Proof. Theorem A.1 implies that (Pi)i converges to some P ∈ B(X) in the strong
operator topology. Since 0 ≤ Pi ≤ P ≤ Q ∈ Sp(X), we can infer from the “min-max-
Theorem” that Pi, P ∈ Sp(X). Let ε > 0. Spectral decomposition implies that there
exists some orthogonal projector Πk ∈ B(X) with k-dimensional range and

‖(I −Πk)P (I −Πk)‖Sp(X) <
ε

4
.

Let σj and ςj be the j-th singular value (of decreasing order) of (I−Πk)P (I−Πk) and
(I −Πk)(P −Pi)(I −Πk), respectively. Since 0 ≤ P −Pi ≤ P , the min-max-Theorem
of Courant-Fischer implies σj ≤ ςj for all j ∈ N, and thus

‖(I −Πk)(P − Pi)(I −Πk)‖Sp(X) ≤ ‖(I −Πk)P (I −Πk)‖Sp(X) ≤
ε

4
.
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Operators of Schatten class are compact, whence we can apply Proposition A.2 to see
that

lim
i→∞

‖Πk(P − Pi)Πk‖B(X) = lim
i→∞

‖Πk(P − Pi)(I −Πk)‖B(X) = 0. (A.1)

The expressions ‖Πk(P −Pi)Πk‖B(X) and ‖Πk(P −Pi)(I−Πk)‖B(X) are given by the
largest (out of k) singular values of Πk(P−Pi)Πk and Πk(P−Pi)(I−Πk), respectively.
Hence we may estimate

‖Πk(P − Pi)Πk‖Sp(X) ≤ p
√
k · ‖Πk(P − Pi)Πk‖B(X),

‖Πk(P − Pi)(I −Πk)‖Sp(X) ≤ p
√
k · ‖Πk(P − Pi)(I −Πk)‖B(X).

Relation (A.1) gives rise to the existence of some N ∈ N such that for all i ≥ N , there
holds

‖Πk(P − Pi)Πk‖B(X) <
ε

4 p
√
k

and ‖Πk(P − Pi)(I −Πk)‖B(X) <
ε

4 p
√
k
.

Thus we have

‖P − Pi‖Sp(X) ≤‖Πk(P − Pi)Πk‖Sp(X) + 2 · ‖Πk(P − Pi)(I −Πk)‖Sp(X)

+ ‖(I −Πk)(P − Pi)(I −Πk)‖Sp(X)

≤ p
√
k · ‖Πk(P − Pi)Πk‖B(X) + 2

p
√
k · ‖Πk(P − Pi)(I −Πk)‖B(X)

+ ‖(I −Πk)P (I −Πk)‖Sp(X)

<
p
√
k · ε

4 p
√
k
+ 2

p
√
k · ε

4 p
√
k
+

ε

4
= ε.
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