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APPROXIMATE SOLUTIONS OF GENERALIZED RIEMANN PROBLEMS
FOR NONLINEAR SYSTEMS OF HYPERBOLIC CONSERVATION LAWS

CLAUS R. GOETZ AND ARMIN ISKE

Abstract. We study analytical properties of the Toro-Titarev solver for generalized Riemann problems (GRPs),
which is the heart of the flux computation in ADER generalized Godunov schemes. In particular, we compare
the Toro-Titarev solver with a local asymptotic expansion developed by LeFloch and Raviart. We show that for
scalar problems the Toro-Titarev solver reproduces the truncated Taylor series expansion of LeFloch-Raviart exactly,
whereas for nonlinear systems the Toro-Titarev solver introduces an error whose size depends on the height of the
jump in the initial data. Thereby, our analysis answers open questions concerning the justification of simplifying
steps in the Toro-Titarev solver. We illustrate our results by giving the full analysis for a nonlinear 2-by-2 system
and numerical results for shallow water equations.

1. Introduction. The classical Godunov method approximates the solution of a hyperbolic
conservation law by a piecewise constant function and then solves local Riemann problems exactly
to evolve that data. Clearly, piecewise constant approximation limits the order of accuracy, and so
the natural question to ask is: Can we construct more accurate schemes by using piecewise smooth
functions, e.g., polynomials of higher degree, rather than piecewise constant functions? To construct
a generalized Godunov scheme we need to solve the initial value problem with piecewise smooth
data. We call any Cauchy problem with piecewise smooth initial data (that may be discontinuous
at the origin) generalized Riemann problem (GRP).

While classical Riemann problems (RPs) can be solved exactly for many relevant cases, gene-
ralized Riemann problems (GRPs) are much more complicated. In the case of nonlinear systems,
analytical expressions for the solution of GRPs are usually not available. Toro and Titarev [36]
have proposed a computational method, Toro-Titarev solver, for approximately solving the GRP.
While the Toro-Titarev solver has been used quite successfully in a wide range of applications (see
[1, 14, 24, 29, 32, 34]), only very few contributions concerning the solver’s theoretical properties
have been provided so far. In fact, it is the demand for a more rigorous analysis on the properties
of the Toro-Titarev solver that has motivated this paper.

Starting with the pioneering work of Kolgan [15] and van Leer [37], piecewise linear reconstruc-
tion in space has become a commonly used tool for improving accuracy over the Godunov scheme.
An early example for the use of higher order polynomials is the piecewise parabolic method (PPM)
of Collela and Woodward [10] and indeed, the numerical flux proposed by Harten, Engquist, Osher
and Chakravarthy in their seminal work on ENO methods [12] can be interpreted in a generalized
Godunov framework. However, the scheme that has, from a conceptual point of view, the most in
common with what we discuss in this paper is the GRP scheme of Ben-Artzi and Falcovitz [3, 4].

A state-of-the-art variant of the generalized Godunov approach is the ADER scheme [28, 33].
The ADER scheme relies on a high order WENO-reconstruction [2, 13, 22] from cell-averages
and the solution of GRPs at the cell-interfaces. To solve GRPs numerically, Toro and Titarev [36]
proposed to build a Taylor approximation of the solution whose coefficients are computed by solving
a sequence of classical RPs.

In this paper, we focus on hyperbolic systems in conservation form in one spatial dimension, but
the ADER approach can be extended to a much broader set of problems, see e.g. [1, 14, 24, 29, 32,
34]. Stability and the order of accuracy can be verified numerically, see [30] and references therein.
However, it was reported by Castro and Toro [7] that the Toro-Titarev solver in [36] encounters
difficulties for nonlinear systems with large jumps. We analyse the Toro-Titarev solver by comparing
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it to the local asymptotic expansion for the solution of the GRP that was constructed by LeFloch
and Raviart [19]. We show analytically that both methods yield the same truncated Taylor series
expansion for nonlinear scalar problems, whereas there is a difference for nonlinear systems. Both
methods formally construct the same Taylor series expansion, but in the case of nonlinear systems
the Toro-Titarev solver uses an approximation to spatial derivatives at the origin that differs from
the values obtained in the LeFloch-Raviart expansion through the Rankine-Hugoniot conditions.
Moreover, that difference becomes larger when there is a large jump in the initial data.

The outline of this paper is as follows. In Section 2 we set up the analytic framework and review
well-known results on the structure of solutions to classical RPs and GRPs. We explain generalized
Godunov schemes in Section 3, before we discuss the Toro-Titarev solver in Section 4. Key steps
for the construction of the LeFloch-Raviart expansion are presented in Section 5. In Section 6 we
compare the resulting approximations to the solution of the GRP. We finally apply the two solution
strategies in Section 7, by using a 2 × 2 system arising from two-component chromatography to
illustrate the analytical techniques and provide numerical examples for shallow water equations.

2. Classical and Generalized Riemann Problems. Consider a nonlinear m ×m system
of hyperbolic conservation laws,

∂

∂t
u+

∂

∂x
f(u) = 0, x ∈ R, t > 0, u(x, t) ∈ U ⊂ R

m, (2.1)

where U ⊂ R
m is an open and convex subset and f : U → R

m is a smooth function. The classical
Riemann problem (RP) is the Cauchy problem for (2.1) with initial data

u(x, 0) =

{

û0
L, if x < 0,

û0
R, if x > 0.

(2.2)

The initial data is piecewise constant and given by the vectors û0
L, û0

R ∈ U . Assume (2.1) to
be strictly hyperbolic, i.e., the Jacobian A(u) = Df(u) has m distinct real eigenvalues

λ1(u) < λ2(u) < · · · < λm(u) for all u ∈ U .

We choose bases of left and right eigenvectors of A(u), i.e., bases of Rm, {ℓ1(u), . . . , ℓm(u)},
and {r1(u), . . . rm(u)}, such that for all u ∈ U we have

A(u)ri(u) = λi(u)ri(u), ℓi(u)
TA(u) = λi(u)ℓi(u)

T , i = 1, . . . ,m.

The eigenvectors are normalized to

|ri(u)| = 1, ℓj(u)
T ri(u) =

{

1, i = j,
0, i 6= j,

for all u ∈ U . (2.3)

We restrict our analysis to systems for which every characteristic field is either genuinely nonlinear,

∇λi(u)
T ri(u) 6= 0 for all u ∈ U ,

in the sense of Lax [18], or linearly degenerate, i.e.,

∇λi(u)
T ri(u) ≡ 0.
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Under these assumptions we have the following well-known result: Given two states û0
L, û

0
R ∈ U

with |û0
R − û0

L| > 0 sufficiently small, the classical RP (2.1), (2.2) has a unique entropy admissible
weak solution u(x, t) = u0(x/t) that is self-similar and consists of m+ 1 constant states

û0
L = u0, u1, . . . , um−1, um = û0

R,

separated by rarefaction waves, shock waves or contact discontinuities. For a comprehensive analysis
of the classical RP and the properties of its solution, see e.g. [25].

Next, assume that the initial data

u(x, 0) =

{

ûL(x), if x < 0,
ûR(x), if x > 0,

(2.4)

with ûL, ûR : R → U , is piecewise smooth but discontinuous at x = 0. The Cauchy problem (2.1),
(2.4) is called generalized Riemann problem (GRP). We let û0

L = ûL(0) and û0
R = ûR(0). It is

well-known (see [21, 26]) that for sufficiently small |û0
R − û0

L| > 0, there exists a neighbourhood
around the origin in which (2.1), (2.4) has a unique entropy admissible weak solution.

Moreover, for sufficiently small T > 0, the strip R× [0, T ) can be decomposed into m+ 1 open
domains of smoothness Di, 0 ≤ i ≤ m, separated by smooth curves γj(t) passing throuh the origin,
or by rarefaction zones with boundaries γ

j
(t), γj(t), where γ

j
(t), γj(t) are smooth characteristic

curves passing through the origin. More precisely: We have curves γj(t) and rarefaction zones

Rj =
{

(x, t) ∈ R× [0, T )
∣

∣

∣ γ
j
(t) < x < γj(t)

}

.

For γj(t), we let γ
j
(t) = γj(t) = γj(t) for all t ∈ [0, T ). Then, we can write

D0 =
{

(x, t) ∈ R× [0, T ) | x < γ
1
(t)

}

, Dm = {(x, t) ∈ R× [0, T ) | γm(t) < x} ,

Di =
{

(x, t) ∈ R× [0, T ) | γi(t) < x < γ
i+1

(t)
}

, 1 ≤ i ≤ m− 1.

The solution u is smooth inside each domain Di and inside each rarefaction zone Rj . Moreover,
u has a shock or contact discontinuity across each curve x = γj(t) and is continuous across the
characteristic curves x = γ

j
(t), x = γj(t).

The solution of the GRP and the solution of the corresponding classical RP with the initial
states û0

L = ûL(0) and û0
R = ûR(0) have a similar wave structure, at least for small time t > 0.

That is, if the j-wave in the solution of the classical RP is a shock wave, a contact discontinuity or
a rarefaction wave, then the corresponding j-wave in the GRP is of the same respective type.

In this paper, we focus on the case where the solution contains only shock waves and contact
discontinuities. In this case, the connection between the wave structures can be described more
precisely: Denote the constant states in the solution of the RP with initial data û0

L, û0
R by u0

i , for
i = 0, . . . ,m, and the wave speeds by σ0

j , j = 1, . . . ,m. Then, the curves γj satisfy

γj(0) = 0 and lim
t→0

γ̇j(t) = σ0
j , for j = 1, . . . ,m,

and the solution u of the GRP satisfies within each domain of smoothness Di the convergence

lim
t→0

(x,t)∈Di

u(x, t) = u0
i for i = 0, . . . ,m.
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We remark that the solution of GRPs is a popular subject of ongoing research. Quite recently,
special emphasis has been placed on the global existence and the structural stability of solutions.
We refer to [8, 9, 16, 17] and references therein for an up-to-date account on the solution of GRPs.
For the following analysis in this paper, we can rely on available results on the local existence and
on the local structural stability.

3. Generalized Godunov Schemes. To solve the Cauchy problem

∂

∂t
u+

∂

∂x
f(u) = 0, x ∈ R, t > 0, u(x, 0) = û(x), (3.1)

numerically, we extend the classical Godunov finite volume scheme, with assuming a uniform grid

xi+1/2 = (i+ 1/2)∆x, tn = n∆t i ∈ Z, n ∈ N,

for simplicity, where ∆x > 0, ∆t > 0.
A generalized Godunov scheme consists of the following steps: Starting with cell averages

ū0
i =

1

∆x

∫ xi+1/2

xi−1/2

û(x) dx, i ∈ Z,

for any time step n = 0, 1, . . . , given the values {ūn
i }i∈Z, perform the following steps:

(1) Find a piecewise smooth, conservative reconstruction. That is, compute a function
ûn : R → U such that for all i ∈ Z we have:

ûn
i = ûn|[xi−1/2,xi+1/2] is smooth, and

1

∆x

∫ xi+1/2

xi−1/2

ûn(x) dx = ūn
i .

For ADER schemes this is usually done by a WENO-reconstruction [2, 13, 22], such that
each ûn

i is a polynomial of degree r − 1, where r > 1 is a given integer.
(2) Use the function ûn as initial data, i.e., pose the Cauchy problem

∂

∂t
u+

∂

∂x
f(u) = 0, x ∈ R, t > 0,

u(x, 0) = ûn
i (x), x ∈ [xi−1/2, xi+1/2], i ∈ Z.

Solve this problem exactly and evolve the data for one time step. Denote by E the exact
entropy evolution operator associated with (3.1) and by ∆t− the limit t → ∆t, t < ∆t.
We compute E(∆t−)ûn.

(3) Update the cell averages by

ūn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

E(∆t−)ûn(x) dx.

In a finite volume frame work we can perform evolution and averaging in one step by the update

ūn+1
i = ūn

i − ∆t

∆x

(

f̄n
i+1/2 − f̄n

i−1/2

)

.

Here, f̄n
i+1/2 is the exact averaged flux through the cell interface xi+1/2 during one time step:

f̄n
i+1/2 =

1

∆t

∫ ∆t

0

f
(

E(τ)ûn(xi+1/2)
)

dτ, (3.2)
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and τ = t − tn is the local time. However, computing the exact integral (3.2) may be exceedingly
complicated, if not impossible. Therefore, we are looking for an approximation to (3.2) based on
an approximate solution of the GRP.

4. The Toro-Titarev Solver for the Generalized Riemann Problem. We describe the
method of solution for the GRP proposed by Toro and Titarev [36], based on a state expansion
approach. That is, we use a Taylor series expansion of order r in time of the solution around τ = 0
right at the cell-interface xi+1/2,

u(xi+1/2, τ) ≈ u(xi+1/2, 0+) +

r−1
∑

k=1

∂ku

∂tk
(xi+1/2, 0+)

τk

k!
. (4.1)

Note that while the solution u may be discontinuous, the function u(xi+1/2, ·) for a fixed point
xi+1/2 in space as a function of time is smooth, provided that τ > 0 is small enough.

If we can solve the GRP and give a meaning to the time derivatives in (4.1), the easiest way to
define a numerical flux is to approximate the time-integral in (3.2) by a Gaussian quadrature,

fn
i+1/2 =

N
∑

γ=1

ωγf(u(xi+1/2, τγ)),

where ωγ , τγ are suitable weights and nodes and N is the number of nodes, which is chosen according
to the desired accuracy. The values u(xi+1/2, τγ) are computed by (4.1). For a discussion of more
refined numerical fluxes in the ADER context, see [31, 35].

The key idea in the method of Toro and Titarev [36] is to reduce the solution of the GRP to
a sequence of classical RPs. To find the sought value u(xi+1/2, 0+) we take the extrapolated values
û0
L = ûL(xi−1/2−) and û0

R = ûR(xi+1/2+) to solve the classical RP

∂

∂t
u+

∂

∂x
f(u) = 0, x ∈ R, t > 0, (4.2)

u(x, 0) =

{

û0
L if x < xi+1/2,

û0
R if x > xi+1/2.

(4.3)

As described in Section 2, this problem has a self-similar entropy solution that we denote by
u0((x−xi+1/2)/τ). The leading term of the expansion (4.1) is then given by u(xi+1/2, 0+) = u0(0).
We call this the Godunov state of (4.2), (4.3). For nonlinear systems of conservation laws, computing
the solution of the RP may be difficult, so we might need to employ a numerical (approximative)
Riemann solver (see [31]) to compute the leading term. However, in this paper we are mainly
interested in the analytical aspects of the scheme, so we assume the Godunov states of (4.2), (4.3)
can be computed exactly.

For higher order terms we formally perform a Cauchy-Kowalewskaya procedure to express all
time derivatives as functions of lower order spatial derivatives. That is, we use a recursive mapping

∂ku

∂tk
= Φk

(

u,
∂u

∂x
, . . . ,

∂ku

∂xk

)

, k = 0, . . . , r − 1, with Φ0(u) = u.

Since the classical Cauchy-Kowalewskaya theorem assumes analytical initial data, it does not
apply to the case of piecewise smooth data. But to illustrate the basic ideas, assume u was smooth.
In that case, the equations in the following can be obtained by simple manipulations of derivatives.
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We can compute the expansion (4.1) via Φk, provided that we can find the spatial derivatives

uk(0) = lim
x→xi+1/2

t→0+

∂ku

∂xk
(x, t).

To do so, we use the one-sided derivatives

ûk
L = lim

x→xi+1/2,−

∂kûL

∂xk
(x), ûk

R = lim
x→xi+1/2,+

∂kûR

∂xk
(x).

These values can be used as initial conditions for classical RPs. As regards the evolution equations
for the spatial derivatives, we can rely on the following result: Let u be a smooth solution of (3.1),
and for k ≥ 1, denote the k-th spatial derivative of u by uk. Then, all uk satisfy a semi-linear
hyperbolic equation of the form

∂

∂t
uk +A(u)

∂

∂x
uk = Hk(u, u1, . . . , uk), (4.4)

where A(u) = Df(u) is the Jacobian of the flux and the function Hk depends only on u, u1, . . . , uk.
We remark that for smooth u, (4.4) can be obtained by straightforward computation. For the

sake of brevity, however, we omit the details here. Moreover, it is easy to see that in the linear
case, where A(u) ≡ A is a constant matrix, the function Hk vanishes identically. Although we can
derive (4.4) for smooth u, we do not have a rigorous analysis yet to see whether these equations
can also be used for discontinuous solutions.

We simplify the problem (4.4) in two ways: Firstly, we neglect the source terms and secondly,
we linearise the equations:

∂

∂t
uk +ALR

∂

∂x
uk = 0, for k = 1, . . . , r − 1, x ∈ R, t > 0 (4.5)

uk(x, 0) =

{

ûk
L, if x < xi+1/2,

ûk
R, if x > xi+1/2.

(4.6)

Here ALR = A(u(xi+1/2, 0+)). Then, the self-similar solutions uk of these linear problems can be
computed easily. Note that for all k we have the same ALR.

Finally, we approximate the solution u along the t-axis by the truncated Taylor expansion

u(xi+1/2, τ) ≈ u0(0) +

r−1
∑

k=1

Φk
(

u0, u1, . . . , uk
)

(0)
τk

k!
.

5. Asymptotic Expansion of the Solution to the Generalized Riemann Problem.

5.1. Basics. We describe how to construct a local power series expansion for the solution of the
GRP. The main source for our work is the expansion constructed by LeFloch and Raviart [19]. See
[5] for an application of this techniques to the Euler equations of gas dynamics. Related approaches
are discussed in [11] and [20]. Another somewhat different approach to asymptotic expansion for
the Euler equations is given in [23]. We discuss the local properties of the solution of the GRP

∂

∂t
u+

∂

∂x
f(u) = 0, x ∈ R, t > 0,

u(x, 0) =

{

ûL(x), if x < 0,
ûR(x), if x > 0.
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Our goal is to construct an asymptotic expansion of the form

u(x, t) =
∑

k≥0

tkqk(ξ) (5.1)

with ξ = x/t. This is possible in any domain of smoothness Di, by simply taking a Taylor series
expansion of the solution u in that domain. So every qk is a polynomial of degree k. We return to
this point in Section 6.

It can be shown that such a series expansion can also be constructed inside a rarefaction zone
R. However, for our numerical scheme we only need detailed information about the solution along
the line segment {x = 0} × [0,∆t] (in local coordinates). We assume that the solution does not
contain a transonic rarefaction wave. In that case, the solution along that line segment is given by
some function ui∗ inside a domain of smoothness Di∗, 0 ≤ i∗ ≤ m, and we do not need the explicit
construction of the expansion inside a rarefaction zone.

Roughly speaking, the construction can be summarized as follows: Take a Taylor expansion
wherever the solution u is smooth and then investigate the jump conditions at the boundaries of
the domains of smoothness. As we are looking for an expansion in terms of self-similar functions,
it is useful to change the variables and work with ξ = x/t. We set ũ(ξ, t) = u(ξt, t) and check that

∂

∂x
=

1

t

∂

∂ξ
,

∂u

∂t
=

∂ũ

∂t
− ξ

t

∂ũ

∂ξ
. (5.2)

For illustration we will give more details for scalar problems and 2×2 systems of conservation laws,

u =

(

v
w

)

∈ U ⊂ R
2, f : U → R

2, f(u) =

(

f1(v, w)
f2(v, w)

)

,

in which case we denote the expansion by

v(x, t) =
∑

k≥0

tkvk(ξ), w(x, t) =
∑

k≥0

tkwk(ξ), qk(ξ) =

(

vk(ξ)
wk(ξ)

)

.

5.2. Step I: Derivation of the Differential Equations. At first we derive a series of
ordinary differential equations satisfied by the functions uk in (5.1). We change the variables
according to (5.2) and the conservation law becomes

t
∂

∂t
ũ− ξ

∂

∂ξ
ũ+

∂

∂ξ
f(ũ(ξ, t)) = 0.

Observe that the expansion

ũ(ξ, t) =
∑

k≥0

tkqk(ξ)

gives

t
∂ũ

∂t
− ξ

∂ũ

∂ξ
= −ξ

dq0

dξ
+

∑

k≥1

tk
(

kqk − ξ
dqk

dξ

)

. (5.3)
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Inserting this expansion into the flux function f yields

f(ũ(ξ, t)) = f(q0) +
∑

k≥1

tk
(

A(q0)uk + fk(Qk−1)
)

. (5.4)

Here, the function fk depends only on the previous terms Qk−1 = (q0, . . . , qk−1). We get fk by a
Taylor expansion of the flux in powers of t, such that fk accounts for all terms in that expansion
belonging to tk that do not depend on qk, i.e., all but A(q0)qk. This will be our standard trick in
the following analysis, so we discuss the method in somewhat more detail.

At first, consider the expansion of the flux around t = 0 for the scalar case:

f





∑

k≥0

tkqk(ξ)



 = f(q0) + t
∂

∂t
f





∑

k≥0

tkqk(ξ)





∣

∣

∣

∣

∣

∣

t=0

+
t2

2

∂2

∂t2
f





∑

k≥0

tkqk(ξ)





∣

∣

∣

∣

∣

∣

t=0

+ . . .

= f(q0) + tf ′





∑

k≥0

tkqk(ξ)





∣

∣

∣

∣

∣

∣

t=0





∑

k≥0

ktk−1qk(ξ)





∣

∣

∣

∣

∣

∣

t=0

+
t2

2











f ′′





∑

k≥0

tkqk(ξ)





∣

∣

∣

∣

∣

∣

t=0





∑

k≥0

ktk−1qk(ξ)





2
∣

∣

∣

∣

∣

∣

∣

t=0











+
t2

2







f ′





∑

k≥0

tkqk(ξ)





∣

∣

∣

∣

∣

∣

t=0





∑

k≥0

k(k − 1)tk−2qk(ξ)





∣

∣

∣

∣

∣

∣

t=0







+ . . .

So we have

f(ũ(ξ, t)) = f(q0) + tf ′(q0)q1 + t2
{

f ′(q0)q2 +
1

2
f ′′(q0)(q1)2

}

+O(t3) for t → 0,

and we see that f1(q0) = 0 and f2(q0, q1) = 1
2f

′′(q0)(q1)2. For a 2× 2 system, we have

∂2fℓ(u)

∂t2

∣

∣

∣

∣

t=0

=

(

∂2fℓ(q
0)

∂v2
(

v1
)2

+ 2
∂fℓ(q

0)

∂v
v2 + 2

∂2fℓ(q
0)

∂v∂w
v1w1 +

∂2fℓ(q
0)

∂w2

(

w1
)2

+ 2
∂fℓ(q

0)

∂w
w2

)

,

for ℓ = 1, 2, and thus

f(u(x, t)) = f(q0) + tA(q0)q1 + t2
{

A(q0)q2 + f2(q0, q1)
}

+O(t3) for t → 0,

where

f2(q0, q1) =
1

2

(

∂2fℓ
∂v2

(q0)
(

v1
)2

+ 2
∂2fℓ
∂v∂w

(q0)v1w1 +
∂2fℓ
∂w2

(q0)
(

w1
)2
)

ℓ=1,2

.

By that Taylor expansion of f in powers of t it is easy to see that fk is a polynomial of degree at
most k, if every qℓ is a polynomial (in ξ) of degree at most ℓ, for all 0 ≤ ℓ ≤ k − 1.

Next, we combine (5.3) and (5.4) to find

−ξ
dq0

dξ
+

d

dξ
f(q0) +

∑

k≥1

tk
(

kqk − ξ
dqk

dξ
+

d

dξ

(

A(q0)qk + fk
)

)

= 0,
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which yields for k = 0 :

−ξ
dq0

dξ
+

d

dξ
f(q0) = 0, (5.5)

and for k ≥ 1 :

kqk − ξ
dqk

dξ
+

d

dξ

(

A(q0)qk + fk
)

= 0.

Letting hk(ξ) = − d
dξf

k
(

q0, . . . , qk−1
)

, this becomes

kqk − ξ
dqk

dξ
+

d

dξ

(

A(q0)qk
)

= hk. (5.6)

We remark that in (5.6) the coefficient A(q0) depends on q0 but not on qk. Thus, (5.6) is a semi-
linear equation. Moreover, recall that fk is a polynomial in ξ of degree at most k, so hk is a
polynomial of degree at most k − 1.

5.3. Step II: Jump Conditions. The above construction is valid wherever u is smooth. So
next we need to investigate the jump conditions satisfied by qk at the boundaries of the domains
of smoothness of u. Take a curve x = γ(t) that separates two domains of smoothness of u. Since
these curves are all smooth, we can use a Taylor expansion to write

γ(t) = σ0t+ σ1t2 + · · ·+ σk−1tk + . . . .

In fact, the solution u is smooth, not only in Di, but also in the closure Di, see [21]. So we can
use, again, a Taylor expansion in powers of t around the origin to obtain from (5.1) that

u(γ(t), t) =
∑

k≥0

tkqk
(

γ(t)

t

)

=
∑

k≥0

tkqk





∑

ℓ≥0

tℓσℓ





= q0(σ0) + t

{

q1(σ0) + σ1 dq
0

dξ
(σ0)

}

+ t2
{

q2(σ0) + σ2 dq
0

dξ
(σ0) + z2(Σ1, Q1)

}

+ . . .

+ tk
{

qk(σ0) + σk dq
0

dξ
(σ0) + zk(Σk−1, Qk−1)

}

+ . . . , (5.7)

where the functions zk depend only on Σk−1 = (σ0, . . . , σk−1) and Qk−1 = (q0, . . . , qk−1). Similar
to the fk in (5.4), we plug all terms belonging to tk that do not depend on σk or qk in a Taylor
expansion into this zk. In particular, z1 = 0 and

z2(Σ1, Q1) =
1

2
(σ1)2

d2q0

dξ2
(σ0) + σ1 dq

1

dξ
(σ0). (5.8)

We denote the jump of a function u at a point ξ0 by

[[u]](ξ0) = u(ξ0+)− u(ξ0−).

Therefore, if u is continuous across the curve x = γ(t), we simply get

[[q0]](σ0) = 0 (5.9)
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from (5.7) for k = 0. Moreover, for k ≥ 1 we get
[[

qk + σk dq
0

dξ
+ zk(Σk−1, Qk−1)

]]

(σ0) = 0. (5.10)

We see that q0 is continuous at the point σ0, whereas qk is in general discontinuous at σ0 for k ≥ 1.
Now let u have a jump across the curve x = γ(t). Then, by the Rankine-Hugoniot conditions,

γ̇(t)[[u]](x) = [[f(u)]](x), x = γ(t).

To derive the correct jump conditions satisfied by the functions qk, we will take the expansions for
f(u) and γ̇u along x = γ(t), respectively. We start with the flux along that curve of discontinuity:
By a Taylor expansion around t = 0 we get

f(u(γ(t), t))

= f





∑

k≥0

tk
{

qk(σ0) + σk d

dq0ξ
(σ0) + zk(Σk−1, Qk−1)

}





= f
(

q0(σ0)
)

+ tA
(

q0(σ0)
)

(

q1(σ0) + σ1 dq
0

dξ
(σ0)

)

+ t2
{

A
(

q0(σ0)
)

(

q2(σ0) + σ2 dq
0

dξ
(σ0)

)

+ a2(Σ1, Q1)

}

+ . . .

+ tk
{

A
(

q0(σ0)
)

(

qk(σ0) + σk dq
0

dξ
(σ0)

)

+ ak(Σk−1, Qk−1)

}

+ . . . ,

where for the 2× 2 system we can express a2 explicitly as

a2(Σ1, Q1)

=
1

2

(

∂fℓ
∂v

(q0(σ0))

{

(σ1)2
d2v0

dξ2
(σ0) + σ1 dv

1

dξ
(σ0)

}

+
∂fℓ
∂w

(q0(σ0))

{

(σ1)2
d2w0

dξ2
(σ0) + σ1 dw

1

dξ
(σ0)

}

+
∂2fℓ
∂v2

(q0(σ0))

{

v1(σ0) + σ1 dv
0

dξ
(σ0)

}2

+
∂2fℓ

∂w2
(q0(σ0))

{

w1(σ0) + σ1 dw
0

dξ
(σ0)

}2

+2
∂2fℓ
∂v∂w

(q0(σ0))

{

v1(σ0) + σ1 dv
0

dξ
(σ0)

}{

w1(σ0) + σ1 dw
0

dξ
(σ0)

})

ℓ=1,2

. (5.11)

Further, we have

γ̇(t)u(γ(t), t)

= σ0q0(σ0) + t

{

σ0

(

q1(σ0) + σ1 dq
0

dξ
(σ0)

)

+ 2σ1q0(σ0)

}

+ t2
{

σ0

(

q2(σ0) + σ2 dq
0

dξ
(σ0)

)

+ 3σ2q0(σ0) + b2(Σ1, Q1)

}

+ . . .

+ tk
{

σ0

(

qk(σ0) + σk dq
0

dξ
(σ0)

)

+ (k + 1)σkq0(σ0) + bk(Σk−1, Qk−1)

}

+ . . .
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with

b2(Σ1, Q1) = 2σ1

(

q1(σ0) + σ1 dq
0

dξ
(σ0)

)

+ σ0z2(Σ1, Q1). (5.12)

In summary, at ξ = σ0 the jump conditions are

σ0[[q0]] = [[f(q0)]] at σ0, (5.13)

for k = 0, and for k ≥ 1 we get

[[

(A(q0)− σ0)qk
]]

+ σk

[[

(A(q0)− σ0)
dq0

dξ

]]

− σk
[[

(k + 1)q0
]]

+
[[

ck
]]

= 0 at σ0, (5.14)

with a function ck(Σk−1, Qk−1) = ak(Σk−1, Qk−1)− bk(Σk−1, Qk−1).
Finally, we remark that for |ξ| large enough, say |ξ| ≥ ξ0,

q0(ξ) =

{

û0
R, ξ > ξ0,

û0
L, ξ < −ξ0.

(5.15)

We now can summarize the above construction:
Lemma 5.1. The function q0 satisfies the relations (5.5),(5.9),(5.13),(5.15), which characterize

the piecewise continuous self-similar entropy solution q0(x, t) = q0(ξ) of the Riemann problem

∂

∂t
q0(x, t) +

∂

∂x
f
(

q0(x, t)
)

= 0, x ∈ R, t > 0 (5.16)

q0(x, 0) =

{

û0
L, if x < 0,

û0
R, if x > 0.

(5.17)

Therefore, we can conclude that the Toro-Titarev solver sets up "the right problem", when it
comes to computing the leading term of the expansion.

5.4. Step III: Higher Order Terms. Assume that the solution of (5.16),(5.17) contains
no transonic rarefaction wave. Then line segment {x = 0} × [0,∆t] is contained in a domain
of smoothness, say in Di∗. Since we do not explicitly need the expansion inside the rarefaction
zones, we only consider the simplified case that the solution q0 of contains only shock waves or
contact discontinuities. The full problem requires similar techniques, although some of the details
are more involved (again, see [19] for the full construction). When we only have shocks and contact
discontinuities, the solution q0 of (5.16),(5.17) has the form

q0(ξ) =







q00 = û0
L, for ξ ∈ (−∞, σ0

1),
q0i , for ξ ∈ (σ0

i , σ
0
i+1), 1 ≤ i ≤ m− 1,

q0m = û0
R, for ξ ∈ (σ0

m,∞).

Now consider the domains in which q0 takes the constant value q0i ,

D0
i = {(x, t)|σ0

i < ξ < σ0
i+1}, i = 0, . . . ,m.

As a convention, we let σ0
0 = −∞, σ0

m+1 = +∞. Then equation (5.6) in D0
i becomes

kqk +
(

A(q0i )− ξ
) d

dξ
qk = hk. (5.18)
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Recall that hk is a polynomial of degree at most k − 1. It is then straightforward to show that the
general solution of (5.18) is given by

qk(ξ) =
(

ξ −A(q0i )
)k

qki + pki (ξ), (5.19)

where qki ∈ R
m is an arbitrary vector and pki : R → R

m is a polynomial of degree at most k − 1
with coefficients that depend only on q0, . . . , qk−1.

More precisely, (ξ − A(q0i )
kqki is a solution of the homogeneous part of (5.18) and pki is a

particular solution of (5.18). Since f1 = 0, we have h1 = 0, and therefore, p1 = 0. For the 2 × 2
system, this means that

(

v1(ξ)
w1(ξ)

)

=

(

ξq1i,1 − ∂f1
∂v (q0i )q

1
i,1 − ∂f1

∂w (q0i )q
1
i,2

ξq1i,2 − ∂f2
∂v (q0i )q

1
i,1 − ∂f2

∂w (q0i )q
1
1,2

)

,

where we denote q1i = (q1i,1, q1i,2)
T . Then we get

h2(ξ) = −v1(ξ)

(

∂2fℓ
∂v2

(q01)q
1
1,1 +

∂2fℓ
∂v∂w

(q01)q
1
1,2

)

ℓ=1,2

−w1(ξ)

(

∂2fℓ
∂v∂w

(q01)q
1
1,1 +

∂2fℓ
∂w2

(q01)q
1
1,2

)

ℓ=1,2

.

In general, writing

hk
i (ξ) =

k−1
∑

ℓ=0

βℓ
i ξ

ℓ and pki (ξ) =

k−1
∑

ℓ=0

θℓiξ
ℓ,

the coefficients θℓi of the polynomial pki can be obtained as follows (cf. [19, Lemma 2]).

θk−1
i = βk−1

i

(ℓ+ 1)A(q0i )θ
ℓ+1
i + (k − ℓ)θℓi = βℓ

i for 0 ≤ ℓ ≤ k − 2.

Moreover, since the function q0 is piecewise constant, this allows us to simplify some of the above
expressions. Let u have a jump across the curve x = γi(t), then we have

q0(σ0
i−) = q0i−1, q0(σ0

i+) = q0i ,
dq0

dξ
(σ0

i−) =
dq0

dξ
(σ0

i+) = 0,

and thus, using the representation (5.19), we get from (5.8) for the 2× 2 system

z2(Σ1, Q1) = σ1
i

dq1

dξ
(σ0) = σ1

i q
1
i .

This gives b2(Σ1, Q1) = σ1
i

(

2q1(σ0
i ) + σ0

i q
1
i

)

. Moreover (5.11), reduces to

a2(Σ1, Q1) =
1

2

(

σ1

{

∂fℓ
∂v

(q0(σ0))
dv1

dξ
(σ0) +

∂fℓ
∂w

(q0(σ0)
dw1

dξ
(σ0)

}

+
∂2fℓ
∂v2

(q0(σ0))
(

v1(σ0)
)2

+
∂2fℓ
∂w2

(q0(σ0))
(

w1(σ0)
)2

+2
∂2fℓ
∂v∂w

(q0(σ0))v1(σ0)w1(σ0)

)

ℓ=1,2

.
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6. Connecting the Toro-Titarev Solver with the LeFloch-Raviart Expansion. Let
us take a look at the Taylor expansion that we used to define the functions qk: We consider the
domains

Di =

{

ξ

∣

∣

∣

∣

γi−1(t)

t
< ξ <

γi(t)

t

}

.

Since we have γi(0) = 0, γ̇i(0) = σ0
i , the domains remain close to the domains D0

i in which
u0 is constant, for small t > 0. Inside each domain of smoothness Di we may take a Taylor
expansion around some (x0, t0) ∈ Di and define the Taylor expansion at the origin by the limit
(x0, t0) → (0, 0+) ∈ Di. In that sense the Taylor expansion around the origin gives

u(x, t) =

∞
∑

k=0

k
∑

ℓ=0

∂ℓ

∂xℓ

∂k−ℓ

∂tk−ℓ

u(0, 0+)

ℓ!(k − ℓ)!
xℓtk−ℓ = u(0, 0+) +

∞
∑

k=1

tk
k
∑

ℓ=0

∂ℓ

∂xℓ

∂k−ℓ

∂tk−ℓ

u(0, 0+)

ℓ!(k − ℓ)!

(x

t

)ℓ

Thus, the vector qki in (5.19), which gives the leading coefficient of this polynomial, defines the

value ∂ku
∂xk (0, 0+).

To determine the vectors qki , we first describe qk0 and qkm, as in [19, Lemma 6]. Using the
notation from before, we can write for the initial data

ûL(x) = û0
L +

r−1
∑

k=1

ûk
L

k!
xk, ûR(x) = û0

R +

r−1
∑

k=1

ûk
R

k!
xk.

In D1, the solution is given by the functions

qk(ξ) = (ξ −A(q00))
kqk0 + pk0(ξ).

Since pk0 is a polynomial of degree at most k − 1, we find

lim
t→0

x<γ1(t)

tkqk
(x

t

)

= xkqk0 .

Hence, it follows that

u(x, 0) = lim
t→0

x<γ1(t)

u(x, t) = q00 +

r−1
∑

k=1

qk0x
k.

Therefore, we have

qk0 =
ûk
L

k!
, for k = 0, . . . , r − 1.

Analogously, we get qkm = ûk
R/k!, k = 0, . . . , r − 1.

Now consider the scalar case. For a strictly convex flux, f ′′ > 0, we only have two domains of
smoothness. In that case, all coefficients qki , i = 0, 1, and k = 0, . . . , r − 1 are uniquely determined
by the initial data and its derivatives. Assuming that there is no transonic wave, solving linear
RPs merely means picking the left or the right side, depending on the sign of the coefficient in
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the evolution equation. Thus, to build the expansion, we first have to solve one nonlinear RP to
determine which domain of smoothness contains the line segment {x = 0} × [0,∆t]. Then, use the
data from that side, which is equivalent to solving linear RPs. So the solver of Toro and Titarev
reproduces the first r − 1 terms of the expansion of LeFloch and Raviart exactly. In summary, we
can state one main result of this paper.

Theorem 6.1. Consider the generalized Riemann problem for a scalar, non-linear hyperbolic
conservation law in one spatial dimension with strictly convex flux. Let the initial data consist
of piecewise polynomials of degree r − 1. Assume the solution does not contain a transonic wave.
Then, the Toro-Titarev solver and the LeFloch-Raviart expansion yield the same truncated Taylor
expansion in time at x = 0,

r−1
∑

k=0

Φk
(

u0, . . . , uk
)

(0)
τk

k!
=

r−1
∑

k=0

qk(0)τk = E(τ)û(0) +O(∆tr)

for 0 < τ < ∆t as ∆t → 0+. �

Indeed, both methods are computing the same truncated Taylor expansion. The difference is,
however, that the Toro-Titarev solver uses an approximation to the spatial derivatives at the origin.
For illustration, we check that for a scalar problem both methods formally construct the expansion
up to quadratic terms. Assume that σ0

i < 0 < σ0
i+1 and consider the Taylor approximation inside Di,

u(x, t) ≈ u(0, 0+) + t

{

∂u(0, 0+)

∂x

x

t
+

∂u(0, 0+)

∂t

}

+ t2
{

1

2

∂2u(0, 0+)

∂x2

(x

t

)2

+
∂2u(0, 0+)

∂x∂t

(x

t

)

+
1

2

∂2u(0, 0+)

∂t2

}

,

where function evaluations and derivatives at (0, 0+) are regarded as limits Di ∋ (x, t) → (0, 0+).
The Cauchy-Kowalewskaya procedure now gives:

∂u

∂t
= −f ′(u)

∂u

∂x
,

∂2u

∂x∂t
= −f ′′(u)

(

∂u

∂x

)2

− f ′(u)
∂2u

∂x2
,

∂2u

∂t2
= 2f ′(u)f ′′(u)

(

∂u

∂x

)2

+ (f ′(u))
2 ∂2u

∂x2
.

Inserting this into the above Taylor approximation yields

u(x, t) ≈ u(0, 0+) + t

{

(x

t
− f ′ (u(0, 0+))

) ∂u

∂x
(0, 0+)

}

+ t2

{

(x

t
− f ′ (u(0, 0+))

)2 1

2

∂2u

∂x2
(0, 0+)− f ′′ (u(0, 0+))

(

∂u

∂x
(0, 0+)

)2
(x

t

)

+f ′ (u(0, 0+))f ′′ (u(0, 0+))

(

∂u

∂x
(0, 0+)

)2
}

. (6.1)

Now let us compute us the terms up to q2 in the LeFloch-Raviart expansion. We have

q1i (ξ) =
(

ξ − f ′(q0i )
)

q1i .
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For q2, we first compute

h2(ξ) = − d

dξ
f2

(

q0i (ξ), q
1
i (ξ)

)

= −1

2

d

dξ

(

f ′′(q0i )
(

q1i (ξ)
)2
)

= −f ′′(q0i )
(

ξ − f ′(q0i )
) (

q0i
)2

= β1
i ξ + β0

i ,

where β1
i = −f ′′(q0i )

(

q1i
)2

and β0
i = f ′(q0i )f

′′(q0i )
(

q1i
)2

. With letting p2i (ξ) = θ1i ξ + θ0i , we get

θ1i = β1
i , θ0i =

1

2

(

β0
i − f ′(q0i )θ

1
i

)

= f ′(q0i )f
′′(q0i )

(

q1i
)2

.

Thus, we have

q2i (ξ) =
(

ξ − f ′(q0i )
)2

q2i − f ′′(q0i )
(

q1i
)2

ξ + f ′(q0i )f
′′(q0i )

(

q1i
)2

.

Noting that qki = 1
k!

∂ku
∂xk (0, 0+), we see that q0 + tq1 + t2q2 agrees with (6.1).

Naturally, the question arises whether this result can be extended to the case of systems. What
we compare are the coefficient qki∗ and the Godunov state for the k-th spatial derivative in the
Toro-Titarev solver. To do so, at first we write each coefficient qki in the form

qki =
m
∑

j=1

αk
ijrj(q

0
i ).

Note that the coefficients αk
0,j , α

k
m,j , j = 1, . . . ,m are known from the initial data. To characterize

the coefficients αk
ij , i = 1, . . . ,m− 1, we need the following two results.

Lemma 6.2. (cf. [19, Lemma 4]) Assume that the i-th wave is a shock wave or a contact discon-
tinuity. Then for all k ≥ 1, there exists a vector ski ∈ R

m, depending only on q0, . . . , qk, σ0
i , . . . , σ

k−1
i

such that

(

A(q0i )− σ0
i

)k+1
qki =

(

A(q0i−1)− σ0
i

)k+1
qki−1 + (−1)k(k + 1)σk

i (q
0
i − q0i−1) + ski . (6.2)

More precisely, (6.2) holds with

ski = (−1)k+1
((

A(q0i )− σ0
i

)

pki (σ
0
i )−

(

A(q0i−1)− σ0
i

)

pki−1(σ
0
i )
)

+ cki (σ
0
i+)− cki (σ

0
i−).

Lemma 6.3. (Corollary from Theorem 1 in [19]) Assume the i-th wave is a shock wave or a
contact discontinuity. Then, we have for i 6= j:

m
∑

p=1

(

λp(q
0
i )− σ0

i

)k+1
ℓj(q

0
i−1) · rp(q0i )αk

ip −
(

λj(q
0
i−1)− σ0

i

)k+1
αk
i−1,j =

ℓj(q
0
i−1) ·

(

q0i − q0i−1

)

li(q0i−1) ·
(

q0i − q0i−1

)

{

m
∑

p=1

(

λp(q
0
i )− σ0

i

)k+1
ℓi(q

0
i−1) · rp(q0i )αk

ip (6.3)

−
(

λi(q
0
i−1)− σ0

i

)k+1
αk
i−1,i − ℓi(q

0
i−1) · ski

}

+ ℓj(q
0
i−1) · ski .

Both statements are derived from the jump relation (5.14). LeFloch and Raviart show that this
leads to a uniquely solvable system of linear equations for the coefficients αk

ij (cf. [19, Theorem 1]).
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The question whether this gives coefficients qki that agree with the intermediate states in the linear
RPs of the Toro-Titarev solver is answered by the following theorem, which is the other main result
of this paper.

Theorem 6.4. Consider the generalized Riemann problem for a strictly hyperbolic m × m
system of conservation laws, such that every characteristic field is either genuinely nonlinear or
linearly degenerate. Let the initial data consist of polynomials ûL , ûR of degree r − 1 with suffi-
ciently small |ûL(0)− ûR(0)| > 0. Assume that the solution contains only shock waves and contact
discontinuities. Then, for k ≥ 1 the coefficients qki in the LeFloch-Raviart expansion and the states
uk
i in the linear Riemann problems of the Toro-Titarev solver satisfy the relation

qki =
1

k!
uk
i for i = 0 and for i = m.

This does, in general, not hold for 1 ≤ i ≤ m− 1.
Proof. The statement that

qk0 =
1

k!
uk
0 , qkm =

1

k!
uk
m, k = 1, . . . , r − 1,

was already shown in our discussion of the scalar case. Now take (5.14) for k = 1, in which case we
have c1 = 0 and s1i = 0, so (5.14) becomes

[[(

A(q0)− σ0
i

)

q1
]]

− σ1
i

[[

(

A(q0)− σ0
i

) d

dξ
q0 − 2q0

]]

= 0 at σ0
i . (6.4)

We note that

q0(σ0
i − 0) = q0i−1, q0(σ0

i + 0) = q0i ,
d

dξ
q0(σ0

i ± 0) = 0,

and thus the jump condition (6.4) becomes

(

A(q0i )− σ0
i

)

q1i −
(

A(q0i−1)− σ0
i

)

q1i−1 − 2σ1
i

(

q0i − q0i−1

)

= 0. (6.5)

Now consider the Toro-Titarev solver. We denote the solution of the linearised RP (4.5) by uk and
let uk

i , i = 0, . . . , n be the constant states in that solution. If u0
i∗ is the Godunov state for u0, then

solving the RPs linearised around u0
i∗ is equivalent to imposing the jump conditions

(

A(u0
i∗)− λi(u

0
i∗)

) (

u1
i − u1

i−1

)

= 0, i = 1, . . . ,m. (6.6)

Clearly, (6.5) and (6.6) do not have the same solution. �

We remark, however, that when all states q0i are close, the solutions of (6.5) and (6.6) are close.
This depends only on the leading term q0, but not on higher order terms. Thus, when the jump in
the initial data |û0

L − û0
R| is small we expect (6.6) to give a good approximation to (6.5).

7. Applications and Numerical Examples.

7.1. Two-Component Chromatography. Consider the system

∂

∂t

(

v
w

)

+
∂

∂x

(

v(1 + v + w)−1

w(1 + v + w)−1

)

, v, w > 0 (7.1)
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and denote u = (v, w)T , u ∈ U = (0,∞) × (0,∞) ⊂ R
2. This example is inspired by the analysis

of two-component chromatography, as described by Temple [27]. A discussion on the RP for (7.1)
can be found in [6]. The Jacobian of the flux is given as

A(v, w) =
1

(1 + v + w)2

(

1 + w −v
−w 1 + v

)

with eigenvalues

λ1(u) =
1

(1 + v + w)2
, λ2(u) =

1

1 + v + w
.

The corresponding (normalized) right eigenvectors are

r1(u) =
1√

v2 + w2

(

−v
−w

)

, r2(u) =
1√
2

(

1
−1

)

,

and the left eigenvectors, normalized to ℓj(v, w) · ri(v, w) = δij , are

ℓ1(v, w) = −
√
v2 + w2

v + w

(

1
1

)

, ℓ2(v, w) = −
√
2

v + w

(

−w
v

)

.

The first characteristic field is genuinely nonlinear, while the second is linearly degenerate.
For this system, shock and rarefaction curves coincide in the sense that each point in the i-

Hugoniot set (i = 1, 2) of a given point u− lies on the integral curve of ri through u−. Due to
the simple nature of the eigenvectors, the integral curves here are straight lines in the space of
conserved variables.

Now consider the RP with initial data uL = (vL, wL)
T , uR = (vR, wR)

T . Then the Riemann
solution contains the states u0 = uL, u1 = (v1, w1)

T , and u2 = uR, so that
(

v1
w1

)

=

(

v0
w0

)

+
ε1

√

v20 + w2
0

(

−v0
−w0

)

, (7.2)

(

v2
w2

)

=

(

v1
w1

)

+
ε2√
2

(

1
−1

)

, (7.3)

for some ε1, ε2. Since the second field is linearly degenerate, we have λ2(u1) = λ2(u2) and therefore

v1 + w1 = v2 + w2. (7.4)

Further, it follows from (7.2) that

v0w1 = v1w2. (7.5)

Combing the conditions (7.4) and (7.5), we can explicitly compute

v1 =
v0(v2 + w2)

v0 + w0
, w1 =

w0(v2 + w2)

v0 + w0
,

and the wave strength ε1 is

ε1 =

(

1− v2 + w2

v0 + w0

)

√

v20 + w2
0 .
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Recall that the type of wave associated with the first characteristic family depends on the sign of
ε1: We get a 1-shock for ε1 ≤ 0 and a 1-rarefaction for ε1 > 0 (the second wave is always a contact
discontinuity, independent of the sign of ε2).

Thus, if v2 +w2 ≥ v0 +w0, the solution contains a 1-shock and a 2-contact discontinuity. The
shock speed σ1 can be computed from the Rankine-Hugoniot conditions:

σ1 =

∫ 1

0

λ1(θu1 + (1 − θ)u0) dθ =
1

(1 + v0 + w0)(1 + v1 + w1)
.

For the contact discontinuity we have σ2 = λ2(u1) = λ2(u2).
Now consider the GRP with piecewise linear initial data,

ûa(x) =

(

v̂a(x)
ŵa(x)

)

=

(

v̂0a
ŵ0

a

)

+ x

(

v̂1a
ŵ1

a

)

,

for a = L, R. Denote ûk
a = (vka , wk

a)
T for a = L,R, and k = 0, 1 and let u0 be the solution of

the classical RP for (7.1) with initial data û0
L, û0

R. Denote the intermediate state in that solution
by u0

1. Then, the simplified problem in the Toro-Titarev solver for the spatial derivatives is

∂

∂t
u1 +ALR

∂

∂x
u1 = 0, u1(x, 0) =

{

û1
L, if x < 0,

û1
R, if x > 0.

Here, ALR = A(u0
0). We express the vectors û1

L, û1
R in terms of the basis {r1(u0

0), r2(u
0
0)}, i.e.,

û1
L = β1r1(u

0
0) + β2r2(u

0
0), û1

R = θ1r1(u
0
0) + θ2r2(u

0
0).

Then, the intermediate state u1
1 can be computed as

u1
1 = θ1r1(u

0
0) + β2r2(u

0
0) =





(

v12 + w1
2

) v0
0

v0
0
+w0

0

+
(

v10 + w1
0

) w0
0

v0
0
+w0

0

− w1
0

(

v12 + w1
2 − v10 − w1

0

) w0
0

v0
0
+w0

0

+ w1
0



 .

Next, we compute the first two terms of the expansion

u(x, t) = q0(ξ) + tq1(ξ) + . . . .

As above, we find q0 by solving the classical RP with initial states û0
L, û0

R and we denote the
constant states in that solution by û0

L = q00 , q01 , q02 = û0
R. The function q1(ξ) is given in each

domain D0
i by

q1(ξ) =
(

ξ −A(q0i )
)

q1i , 0 ≤ i ≤ 2,

where we express the unknown vectors q1i as q1i = α1
i,1r1(q

0
i ) + α1

i,2r2(q
0
i ).

The coefficients α1
0,j , α

1
2,j , for j = 1, 2, are determined by the initial data û1

L and û1
R respectively,

while the remaining coefficients α1
1,1, α2

1,2 are found by solving a linear 2 × 2 system of algebraic
equations, as given by Lemma 6.3. We arrive at the system

(

λ1(q
0
1)− σ0

1

)2
ℓ2(q

0
0) · r1(q01)α1

1,1 +
(

λ2(q
0
1)− σ0

1

)2
ℓ2(q

0
0) · r2(q01)α1

1,2 −
(

λ2(q
0
0)− σ0

1

)2
α1
0,2

=
ℓ2(q

0
0) · (q01 − q00)

ℓ1(q00) · (q01 − q00)

{

(

λ1(q
0
1)− σ0

1

)2
ℓ1(q

0
0) · r1(q01)α1

1,1+ (7.6)

(

λ2(q
0
1)− σ0

1

)2
ℓ1(q

0
0) · r2(q01)α1

1,2 +
(

λ1(q
0
0)− σ0

1

)2
α1
0,1

}
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(

λ1(q
0
2)− σ0

2

)2
ℓ1(q

0
1) · r1(q02)α1

2,1 +
(

λ2(q
0
2)− σ0

2

)2
ℓ1(q

0
1) · r2(q02)α1

2,2 −
(

λ1(q
0
1)− σ0

2

)2
α1
1,1

=
l1(q

0
1) · (q02 − q01)

ℓ2(q01) · (q02 − q01)

{

(

λ1(q
0
2)− σ0

2

)2
ℓ2(q

0
1) · r1(q02)α1

2,1+ (7.7)

(

λ2(q
0
2)− σ0

2

)2
ℓ2(q

0
1) · r2(q02)α1

2,2 +
(

λ2(q
0
1)− σ0

2

)2
α1
1,2

}

Now recall that q00 , q
0
1 , q

0
2 are the constant states in the solution of a classical RP. By (7.2)-(7.3)

for the intermediate state q01 , we find q01 − q00 = ε1r1(q
0
0) and q02 − q01 = ε2r2(q

0
1). Therefore, we get

from condition (2.3)

ℓ2(q
0
0) · (q01 − q00) = 0, ℓ1(q

0
0) · (q01 − q00) = ε1,

ℓ1(q
0
1) · (q02 − q01) = 0, ℓ2(q

0
1) · (q02 − q01) = ε2.

Then we can solve (7.6), (7.7) to find

α1
1,1 = −

(

v12 + w1
2

)

√

(v01)
2 + (w0

1)
2

v02 + w0
2

, α1
1,2 =

√
2

(

v02 + w0
2

v00 + w0
0

)2 (

(v10 + w1
0)

w0
0

v00 + w0
0

− w1
0

)

.

Thus, the coefficient q11 is given by

q11 = α1
1,1r1(q

0
1) + α1

1,2r2(q
0
1) =







(

v12 + w1
2

) v0
0

v0
0
+w0

0

+
(

v0
2+w0

2

v0
0
+w0

0

)2 (
(

v10 + w1
0

) w0
0

v0
0
+w0

0

− w1
0

)

(

v12 + w1
2

) v0
0

v0
0
+w0

0

−
(

v0
2+w0

2

v0
0
+w0

0

)2 (
(

v10 + w1
0

) w0
0

v0
0
+w0

0

− w1
0

)






.

The only difference between u1
1 and q11 is the factor ((v02 +w0

2)/(v
0
0 +w0

0))
2 whose size only depends

on the distance of the states û0
L and û0

R.

7.2. Shallow Water Equations. We consider the GRP for the shallow water equations,

∂

∂t

(

h
hu

)

+
∂

∂x

(

hu
hu2 + 1

2gh
2

)

= 0,

where g is a constant, with initial data ĥL = ĥR = 1 and

ûL(x) = aLx
2 + bLx+ cL, ûR(x) = aRx

2 + bRx+ cR.

When cR < 0 < cL, this data leads to a solution with two shock waves.
We compare the resulting approximations up to terms of second order obtained by the LeFloch-

Raviart expansion and the Toro-Titarev solver, respectively. Reference solutions are obtained by
a random choice method (RCM) on a very fine grid using an exact Riemann solver and van der
Corput pseudo random numbers. We perform two series of tests:

(i) Large jumps in the initial data, fixed derivatives. We fix aL = 0.02, aR = −0.01 and
bL = 0.4, bR = −0.2. We solve the GRP for cR = −1 and cL = 0, 2, 4, respectively. Results are
shown in Figure 7.1. Denoting v = h and w = hu, the plots show the reference solution (thick black
line), the LeFloch-Raviart approximation (circles) and the Toro-Titarev approximation (crosses)
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Fig. 7.1. Jumps in the initial states

along the line ξ = 0 for times 0 ≤ t ≤ 0.05. The difference in the two approximations increases
with the size of the jump. We observe that the LeFloch-Raviart approximation is almost identical
to the reference solution.

(ii) Large jumps in the derivatives, fixed jump in states. We fix aL = 0.02, aR = −0.01
and cL = 0.2, cR = −0.2, so we have a fixed jump |û0

L − û0
R| = 0.4. We let bR = −1 and test for

different values of bL, see Figure 7.2. For all test cases both approximations are very close to the
reference solution.

We conclude that the Toro-Titarev solver gives a very good approximation when the jump in
the initial data is small (independent of the jumps in derivatives), but it introduces a larger error
when the jump in the states is large. Note that this behaviour is consistent with our analysis, see
the remark after Theorem 6.4.
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Fig. 7.2. Jumps in the derivatives
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