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1. Introduction. The algebraic Riccati equation, which is - roughly spoken - a
matrix equation with a linear and a quadratic term, has attracted several authors.
Recent examples include books by D. A. Bini, B. Iannazzo, B. Meini, [2, 2012], and
by H. Abou-Kandil, G. Freiling, V. Ionescu, G. Jank, [1, 2003]. Another source is a
book by P. Lancaster, L. Rodman, [13, 1995]. For a newer, numerical contribution
see V. Simoncini, D. B. Szyld, M. Monsalve, [19, 2013]. In this paper we will present
a complete solution for the algebraic, one dimensional quaternionic Riccati equation
including one additional variation, which is not mentioned in the above literature of
Riccati equations. It turns out, that in all cases we can use tools, that were only
developed recently.

By Z,N,R, C, H we will denote the set of integers, positive integers, real numbers,
complex numbers and quaternions, respectively. By F™™" we denote the set of matrices
with entries from [F distributed over m rows and n columns, where F denotes one of the
mentioned number systems. The set of quaternions H should be regarded as the vector
space R? equipped with a special multiplication rule such that H becomes a skew field.
Quaternions a = (a1, as, as, as) have an isomorphic representation as special matrices
in C**? and as special matrices in R4 We may define these matrices by (see v. d.
Waerden, [20, p. 55], Giirlebeck and Sprossig, [6, p. 5])

(1.1) ic(a) := [% g] , o= ay +1iag, f 1= a3 + iaa,
ay —a9 —as —ay
. L ag a1 —Qaq as
(1.2) ig(a) := 4 as a1 —ay
a4 —as a2 ai

It should be noted, that the representation (1.2) is not unique. There are other,
equivalent forms. See Farebrother, GroB and Troschke, [4]. The first entry a; of a
quaternion a = (a1, az, as, as) will be called the real part of a and denoted by Ra. Let
b be another quaternion. Then the real part R has the property that R(ab) = R(ba).
By

laf := \Ja? + a3 + a3 + a3
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we denote the norm or length of a and @ = (a1, —as, —as, —a4) will be called the con-
Jugate of a. We will need a third matrix derived from a quaternion a = (a1, as, as, as),
namely

aq —ay —as —ay
. | a2 a as —as
(1.3) ip(a) := 0 —as a1 a

Q4 as —az ai

The set of these matrices will be denoted by Hp, and we will name these matrices
pseudo quaternions. See [8]. The column vector (ai,as,as,as)’, where T means
transposition, will be abbreviated by col(a). There is the following essential property.

Let a, b, c be three quaternions, then
(1.4) col(abc) = ig(a)ip(c)col(d).

That means roughly, that the middle factor b can be pulled out of the product abc.
See Giirlebeck and Sprossig, [6, p. 6], and Janovskd, Opfer, [9, Lemma 3.5]. Because
the product on the right hand side of (1.4) will appear several times later on, we will
abbreviate it by

(1.5) i3(a,b) := ir(a)ip(b),
such that (1.4) can be written as
(1.6) col(abe) = iz(a, c)col(b).

2. The algebraic Riccati equation. The Riccati differential equation in its
simplest, one dimensional, form reads

(2.1) i(t) = a(t) + b(t)z(t) + c(t)z*(t).

It is named after Jacopo Francesco Riccati (1676 - 1754). See [22]. This equation

can be reduced to a so-called Bernoulli differential equation if one could find a special

solution z(t) = wu(t) of (2.1), and a Bernoulli equation can be reduced to a linear

differential equation. This is all well known, and will not be pursued. See Reid, [18].
The algebraic Riccati equation reads (see [1, p. 22], [13, p. vii])

(2.2) p(X) :=A +BX + XC + XDX =0,

which apparently mimics the right hand side of (2.1) and the solutions of which
represent the stationary solutions of (2.1). We assume that the matrices A, B, C,D
are given matrices with A € C™*",B € C™*™,C ¢ C"*", D € C"™, and that
X € C™*™ is an unknown matrix such that p(X) € C"™*". The most important class
of algebraic Riccati equations is the Hermite, algebraic Riccati equation where m = n
and C = B*. See also [1, p. 21/22]. By B* we understand the transposed, complex
conjugate matrix of B. One is interested to find all X which solve (2.2). This is the
topic of the mentioned literature, [1, 2, 13, 19].

3. The algebraic Riccati equation for quaternions. If we reduce (2.2) to
the one dimensional, quaternionic case we obtain

(3.1) p(z) :=a+bx+xc+axder =0, a,b,cdxeH
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The solutions of p(z) = 0 will also be called zeros of p. This polynomial p is a
quaternionic polynomial of degree two and we will show that this polynomial can be
reduced to a polynomial of the so-called one-sided type (sometimes also called simple,
or unilateral) quaternionic polynomial which is a polynomial of the form

(3.2) p(x) ::Zajzj, z,a; € H, =0,1,...,n.
7=0

The theory for quaternionic polynomials of the one-sided type was developed to a final
state by Janovskd, Opfer, [10]. In that paper it is shown, that the zeros may have two
different types, called isolated and spherical (see Definition 3.2) and it is also shown
how to compute all zeros. In addition, a result by Gordon and Motzkin, [5, 1965], that
the essential number of zeros is bounded by n is also included. For a definition of this
notion see a later part of this paper, Definition 4.4, p. 8. Quaternionic polynomials
of the two-sided type have the form

(3.3) p(x) ::Zajijj, x,a;,b; €eH, 5=0,1,...,n,
j=0

and they will also play a role in this paper. The classification of the zeros of quater-
nionic polynomials of the two-sided type was introduced by Janovska, Opfer, [9]. It
also allows multiple terms of the same degree and it was shown, that there are three
more types of zeros than in the one-sided case, and that the essential number of zeros
is not bounded by n.

We see, that the algebraic Riccati equation (3.1) is neither of the form (3.2) nor
of the form (3.3) because the quadratic term in (3.1) has the form zdx where in
comparison with (3.2) the quadratic term has the form asz? and with (3.3) it has the
form asx?bs.

If d = 0, the algebraic Riccati equation (3.1) reduces to a quaternionic, linear
equation of Sylvester’s type. The solution of this linear equation is given in [11,
Theorem 2.3].

THEOREM 3.1. Let d # 0. Then, (a) the algebraic, quaternionic Riccati equa-
tion (3.1) always has a solution. (b) The equation (3.1) can be simplified to

(3.4) r(z)i=a+Bz+22=0, «a,B€cH, R(B) =0, where
(3.5) r=d ' (z—c—e),
(3.6) o :=da—dbd "¢+ e(e — dbd™" + ¢),
(3.7) B:=dbd™" — ¢ 2e,
-1
(3.8) _ W'

Proof. Part (a) follows from [3, Eilenberg, Niven, 1944]. (b) Since d # 0 we can
introduce y = dz < x = d~'y into (3.1), and we obtain

dp(x) =ply) == a+by+yc+y*> =0, a=da, b=dbd™ ', é=rc.

A further simplification (see [9, formula (5.12)] and [14, p. 311]) by introducing
y = u — ¢ yields p(y) = p(u) := a+bu+u? a:=a—>bé b:=0b— ¢ Eventu-

ally, by putting u = z — %i’ we obtain the final form 7(2) := p(u) = a + Bz + 22,0 =

o N2 . .
a— bR 4+ (%) .3 =b— Rb and the real part of 3 is zero. O
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We have to introduce some terminology in order to explain the solution structure
of the Riccati equation (3.4).

DEFINITION 3.2. Let x,y € H. We call x,y equivalent if there is an h € H\{0}
such that y = h~'2zh and denote this by = ~ y. Let 2 € H. By

(3.9) 2] :={y:y~a}={y:y=h"tzh, for all h € H\{0}}

we denote the set of all elements equivalent to x. Let p be a one-sided or two-sided
quaternionic polynomial and z be a nonreal zero of p. If p(y) = 0 for all y € [z], the
zero ¢ and the equivalence class [z], as well, will be called a spherical zero of p. If x
is the only zero of p in [z], which includes real zeros, the zero will be called isolated
zero of p.

REMARK 3.3. Two quaternions z,y are equivalent if and only if

(3.10) 2l = lyl, Re =Ry,

See [12, Lemma 2.2]. Thus, it is easy to recognize two equivalent quaternions. In
particular, two conjugate quaternions a,a are equivalent.
In order to see the possibility of infinitely many zeros, we consider the polynomial

(3.11) p(z) =22 +1,

regarded as a polynomial over H. There are apparently two complex zeros +i. For
all h € H\{0} we have h~'p(z)h = h=1(2? + 1)h = (h~'xh)? + 1 = p(h~1zh). Thus,
p(x) = 0 implies p(h~txh) = 0 for all h € H\{0}, and the infinite equivalence class [i] is
the set of all zeros of p. Thus, there are infinitely many zeros. According to Eilenberg
and Niven, [3], all quaternionic polynomials (regardless of their form) have at least one
zero, provided the term with the highest degree appears only once. A counterexample
is p(x) := az® —2%a+1 for a € H where there are two terms with the highest degree 2.
In this case R(p(z)) = R(az®—2%a+1) = R(az?)—R(z%a)+1 = 1 for all x € H, because
the real part of a product commutes. Thus, p has no zero. The theory developed by
Janovskd, Opfer, [9, 10] implies, that one-sided quaternionic polynomials only have
either isolated or spherical zeros, whereas two-sided quaternionic polynomials may
have three more types of zeros than isolated or spherical zeros.

Let us consider the polynomial r, defined in (3.4) which also represents the general
Riccati equation (3.1).

LEMMA 3.4. Let p be the quaternionic Riccati equation defined in (3.1) with given
coefficients a,b,c,d € H, d # 0, and let r be defined as in (3.4) with coefficients «, 8
defined in (3.6), (3.7), where we assume that o # 0. Then p(z) = 0 < r(z) = 0 where
the relation between z and x is given in (3.5).

Proof. The proof of Theorem 3.1 shows that the transformations applied to p
in order to arrive at r have the property that the variables of the newly developing
polynomials remain in a one to one relation to their predecessors. Thus, the variable
x of the original polynomial p is in a one to one relation to the final variable z in r. O

The problem of finding the zeros of p is thus, reduced to finding the zeros of r.
For this problem we already have the following result.

THEOREM 3.5. Let r be given as in (3.4): 7(2) = a+ Bz + 2%, a#0, R3 =0.

1. If both «, 8 are real (hence, § = 0), then r has either two different isolated
real zeros in H (if « < 0), or one spherical zero in H (if « > 0). The zeros
in the first case are £\/—a, the spherical zero is [ro], where ro := y/ai.
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2. If at least one of the coefficients a, B is not real, then r has either one or two
isolated zeros in H. It has one isolated zero if

(3.12) 2R(af) = (2Ra + |B]?)* — 4]al* = 0.

It has two isolated zeros, otherwise.

Proof. Janovskd, Opfer, [10, Theorem 6.1], and Niven, [15, Theorem 2].0

Thus, the polynomial r may have spherical zeros only in the case that both
coefficients «, § are real, and in this case the zeros are known. How do we find the
zeros in case 2 (which means that at least one of the coefficients «, 8 is not real) of
the above theorem?

THEOREM 3.6. Let r(z) == a+ B2+ 2%, a # 0,RB = 0, and let at least one of
the coefficients o, 3 be nonreal. Define the so-called companion polynomial

(3.13) q(u) == |af* + 2R(aB)u + 2Ra + |B[*)u? + u,

which has real coefficients and has degree four. Let there be a pair of complex conjugate
zeros v := 1 £ Y2l of q. Define the auxiliary quantity

(3.14) h = (B—l— 2’71)((1 — |’y|2) = (hl, ha, hs, h4)
Then

72| 172 72| T
(3.15) ro 1= (’71,— ——ho, —==h3, —==hq |, |h| = h%-ﬁ-h%—f—hi
Al |hl Al

is a zero of r.

Proof. See Janovska, Opfer, [10]. O

If in the above theorem, ¢ has two distinct pairs of complex conjugate zeros, then
each pair defines a zero of r. In this case r has two (isolated) zeros. If ¢ has a pair
of complex zeros v = v + 21 which is a double zero, then ¢(u) = (u —v)(u — 7)* =
(u? + |a])?. And this happens if and only if (3.12) is valid, which implies that ¢ is a
complete square and v = /|a|i. See [10, Lemma 6.2].

Let the Riccati equation, defined by p, have real coefficients a, b, ¢, d, d # 0. Then,
it is clear that the coefficients of the polynomial r are

(b+0)?
4 )
which are also real and the first part of Theorem 3.5 applies.

EXAMPLE 3.7. We study the Riccati equation p(x) := a+ bx + xc+ xdz with the
coefficients

a=ad— 5=0

a=(-9,21,-19,3), b=1i,c=j, d=k.

The quaternionic polynomial r(z) = a + B3z + 22 has the coefficients (apply (3.6),

(3.7))
a=(-3,19,21,-8), B=(0,—1,—1,0).

The second part of Theorem 3.5 applies, where condition (3.12) is not satisfied. Thus,
there are two isolated zeros. The companion polynomial ¢ reads here

q(u) = 875 — 80u — 4u® + u*
= (u—y)(u—7)(u—08)(u—70),vy=—4+V19i, § = 4 — 3i.
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Formula (3.15) for the zero « of ¢ yields the isolated zero ro = (—4,3,3,—1) of r and
the zero 0 of ¢ yields the second isolated zero r; = (132, —58,—74,31)/33 of r. The
two corresponding isolated zeros zg, z; of the original Riccati equation p are computed
from rg, 1, respectively, by applying (3.5) which yields

20 =(—1,2,-3,4), =z = (31,-107,58, —132)/33.

EXAMPLE 3.8. We study the Riccati equation p(x) := a+ bx + xc+ xdx with the
coefficients

a=(1,2,—1,1), b= (-2,-2,—1,0), c=j, d = (1,0, —1, —1).
The quaternionic polynomial r(z) := a+ 2+ 22 has by (3.6) and (3.7) the coefficients
a=(1,-2,-2,0), p=1(0,0,0,1)

with |a] = 3. The second part of Theorem 3.5 applies, where in this example con-
dition (3.12) is satisfied. As a consequence, the companion polynomial ¢ of r is a
complete square

q(u) = 9+ 6u® +u' = (Ja] +u?)?

with zeros ++/|c|i. The polynomial r has, by using (3.14), (3.15), only the isolated
zero at 1o = (0,—1,1,1) and the given polynomial p has also only one isolated zero at

ZOZk,

which can be computed from (3.5).

We note, that examples where the Riccati equation has exactly one (isolated) zero
are not so easy to find.

We see, that apart from finding the zeros of the companion polynomial ¢, which
is of degree four, no numerical tools are necessary in order to find the zeros of the
given Riccati polynomial p defined in (3.1).

4. A variation of the algebraic Riccati equation for quaternions. If we
have a look at the transition from the Riccati differential equation (2.1) to the alge-
braic Riccati equation (2.2), the occurrence of the quadratic term in the form XDX
is not implied by logic. A quadratic term of the form DX?E could be justified as
well. However, because of the term X2, the corresponding algebraic Riccati equation
must consist of square matrices of the same size, and it would read

(4.1) p(X):= A+BX + XC +DX’E, A,B,C,D,E, X cC"*".

If we reduce this equation to the quaternionic case, then the quaternions corresponding
to D, E can be assumed to be nonzero, because otherwise, the remaining part is linear.
Thus, the corresponding quaternionic Riccati equation can be written in the form

(4.2) p(z) := a + brc + dve + 22, a,b,c,d,e,x € H.

The quadratic polynomial p is now two-sided where the linear part appears twice.
The corresponding equation with one and two linear terms has been treated in [9],
and it was shown that besides isolated and spherical zeros, there are three more types
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of zeros. We assume for the remaining part of the paper that p, given in (4.2), cannot
be reduced to the one-sided case. Otherwise, the theory just developed would apply.
This would happen if both ¢, d or both b, e are real. In order to be able to treat this
case we replace the quaternions a, b, ¢, d, e, x by the isomorphic, real (4 x 4) matrices
as defined in (1.2). We will denote the corresponding matrix space by Hi. We use
the fact, that arbitrary powers A7, j > 0 of (real or complex) square matrices A of
order n which have a minimal polynomial of degree v < n, can be represented in the
form

AJ G <I7 A"A27" '7A'U71>’ ] Z 0’

where (- --) indicates the span of - - - See Horn and Johnson, [7, p. 87]. All matrices in
Hpg which do not correspond to real quaternions have a minimal polynomial of degree
two. Let A :=ir(a), a = (a1,as2,as,as) be defined as in (1.2). The explicit form of
the minimal polynomial of A is given in [8, formula (2.16)]. It reads

(4.3) w(z) = 2% — 2a12 + |al?.
Thus,
(4.4) AV =u;I+v;A, A €Hg, j>0and in particular

I=A"=1.140-A=uy=1, vg=0,
A=A'=0-IT41-A=u; =0,v9 =1,
A% = —|af* T+ 2a1A = uy = —|a|?, vo = 2ay,
where the last formula follows via Hamilton’s theorem from (4.3). From here it is

easy to derive a recursion formula for all u;,v;,j > 0, but we don’t need it here. See
[9, Lemma 3.1]. Since H and Hp are isomorphic, we can rewrite (4.4) as

(4.5) 2 =uj+viz, zeH, j>0,

where uj,v;, j > 0 are the same factors as in (4.4). See also [17]. If we apply (4.5)
for j =2 and (1.4) to the polynomial p defined in (4.2) we obtain

(4.6) col(p(z)) : = col(a) +i3(b, ¢)col(z) + iz(d, €)col(z) + 2x1col(z) — |z|*col(1)
col(a) — |z|*col(1) + (i3(b, ¢) + iz(d, e) 4 221T) col(x)
=: B(z) + A(x)col(z),

where i3 was defined at (1.5), and where B(z) € R**! and A(x) € R***,

Conditions (3.10) characterize the equivalence of two quaternions. Therefore we
have:

COROLLARY 4.1. Let xg be a nonreal zero of p, defined in (4.2). Then, the vector
B(z) and the matriz A(x) are constant on x € [xo]. This implies that all zeros of p
in [xo] can be found by solving the linear system B(xo) + A(xg)col(xz) = 0.

The restriction that zp should be nonreal excludes the trivial case that [zo] =
{zo}, which means that the equivalence class [z¢] consists only of one point. This
corollary gives rise to the classification of the zeros of p.

DEFINITION 4.2. Let xp be a zero of p. We call xg a zero of rank k if
rank(A(xo)) =k, k=0,1,2,3,4 where A(zg) is defined in (4.6).

If 2 is a zero of rank 4, then it is clear, that the linear system B(zq)+ A (zq)col(z)
= 0 has a unique solution in [x¢], namely x¢, and the zero zy is isolated. If it happens
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that xq is a zero of rank zero, which implies A () = 0, B(z9) = 0 then all z € [z(]
will be zeros of p. Zeros of this type are spherical. The examples 5.1, (a), (b), (¢) in
[9] show, that all ranks 2, 3, 4 can appear. Whether rank 1 is also possible is unknown
to the authors.

The task to find one zero is still remaining. The application of Newton’s method
is in many cases very successful. In order to employ Newton’s method the Jacobi
matrix of the mapping defined by the polynomial p is needed.

THEOREM 4.3. Let p be given as in (4.2). Then the Jacobi matriz, J, of p is

(4.7) J(x) = i3(b,c) + i3(d, e) + ig(x, 1) + i3(1, x),
where i3 is defined in (1.5).
Proof. The Jacobi matrix is the matrix which defines the linear mapping given

by p(x + h) with respect to h. Now

p(@+h)=a+bx+ h)c+d(x+ h)e+ (x+h)(x+h)
= a + bxc + bhe + dxe + dhe + 2% + zh + hx + h2.

The part which is linear in A is
L(h) := bhc + dhe + zhl + 1hx,
where 1 stands for the quaternion (1,0,0,0). An application of (1.6) to L yields
col(L(h)) = (is(b, ¢) +i3(d, e) + is(x, 1) + i3(1, x)) col(h),

whiche proves (4.7). O
Let « = (x1, 22,23, 24). The last two terms of (4.7) can be combined to

X1 —X2 —I3 — T4

. . o i) X1 0 0
is(x,1) +i3(1l,z) =2 5 0 ) 0
Tq 0 0 X1

This matrix is a so-called arrow matriz. See [21]. Since this matrix is occurring in a
sum with matrices of other types, this arrow structure is, however, not so important
here.

Newton’s method consists of repeatedly solving the linear system

p(xold) + J(zold)h = 07 Tnew ‘= Told + h'; Told < Tnew

for h, where the first x,q has to be guessed.

The simple technique, shown in the proof of Theorem 4.3, for finding the (exact)
Jabobi matrix applies to many other cases, as well, in particular, for p being a general
polynomial in quaternions or in matrices or in other noncommutative algebras. It is
much superior to what we have shown in [9, Section 7].

We will mention another topic. How many solutions can be expected from quater-
nionic Riccati equations? Since it is possible that a whole equivalence class consists of
zeros (see the example on p. 4), it does not make sense to count the individual zeros.

DEFINITION 4.4. Let p be a quaternionic Riccati polynomial, either of the
form (3.1) or of the form (4.2). The number of equivalence classes which contain
zeros of p will be called the essential number of zeros of p.
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The already mentioned result by Gordon and Motzkin, [5] is, that n is the maximal
essential number of zeros for one-sided polynomials of degree n. Thus, the essential
number of zeros of a Riccati polynomials of type (3.1) is two. For two-sided quater-
nionic polynomials a bound of the essential number of zeros is not known. We will
discuss an example from [9].

EXAMPLE 4.5. Let

(4.8) p(x) =1+ ixj + 2°.

In [9, Lemma 4.1] it was shown, that the zeros of all quadratic polynomials of the
type p(x) = a + bzc + 2% can have only even ranks. This applies to p of (4.8) as well.
In order to find the zeros we employ Newton with the exact Jacobi matrix, (4.7), and
obtain the following zeros:

TABLE 4.6. Zeros of Riccati polynomial p of (4.8).

Z€ero | rank | equivalent zero | rank

z1 =0.5(1,1,1,-1) 2| 20=05(1,-1-1,-1) 2
23 =0.5(1 — Bk 4
z1=0.5(1+ 5k 4

z5 = —0.5(1,1,-1,1) 2|26 =05(-1,1,—-1,-1) 2

Thus, the essential number of zeros of p of (4.8) is at least four. We cannot prove,
that the above list of zeros is exhaustive. But there is strong evidence from many
numerical tests. This example shows that the essential number of zeros of two-sided
quaternionic polynomials is not bounded by the degree n.

Rather than counting the zeros, it is possible (see [16, Section 4 ]) to find a region
Z in R* which must contain all zeros of p, where

(4.9) Z:={zeR*:r<|z| <R},

and the two quantities r, R are determined in the next theorem.
THEOREM 4.7. Let

p(z) := a+ bxc +dre+ 22, a,b,c,dc H, a #0.

Put Ag = |a|, Ay = |bc| + |de|. Denote the only positive zero of —Ag + Arx + 2% by 7,
and define R := max{1, Ag + A1}. Then, all zeros of p are located in Z, defined in

(4.9). For r we have r = 0.5 (\/A% +4A0 — Al).

Proof. [16, Corollary 4.4 and Corollary 4.5]. O

If we apply this theorem to the polynomial p(z) := 1 + izj + 2 of Example 4.5,
we obtain 7 = 0.5(v/5 — 1) &~ 0.6180, R = 2. And for the 6 zeros of p we have
1 = |z1| = |22| = |25| = |26], |23 = 7, |2a] = 0.5(1 + v/5) ~ 1.6180. Thus, the lower
bound r is attained.
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