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Introduction

In this article, we consider a stationary fluid-structure interaction (FSI) problem. The main contribution of
this paper will be the proof that there is at least one locally unique solution that is Fréchet-differentiable with
respect to the boundary data and volume forces.

Fluid-structure interactions are of great importance in many real-life applications, such as industrial processes,
aero-elasticity, and biomechanics. More specifically, fluid-structure interactions (FSI) are important to describe
flows around elastic structures as for instance in the flutter analysis of airplanes [23], parachute FSI [29], or
blood flow in the cardiovascular system and heart valve dynamics, see, e.g, [18, 21,27].

Derivatives of the solution to FSI problems with respect to given data such as volume forces or boundary
values have been used excessively in numerical papers concerned with sensitivity calculations, derivative based
minimization problems, see, e.g., [1,19,26,28,31]. In addition, sensitivity calculations are required for a posteriori
estimation. Studies with a particular emphasize on FSI problems are carried out, for instance in [11,15,25,32,33].
Optimization-related problems subject to FSI has not yet been tackled. Some first steps have been done in [4]
where the case of a nonstationary problem with fixed interface was considered. Further, stabilization of such
problems with a lower dimensional structure equations are considered [8, 24].

In the last years, several attempts have been made to prove existence of fully unsteady fluid-structure
interaction problems in three dimensions. The first results were derived for structures that were modeled
as a rigid body, e.g., [9], or it was modeled by a finite number of modal functions [10]. Existence results for
three dimensional fluid-structure interaction, where the structure was described as an elastic material, was
shown in [12–14]. The extension to nonstationary problems is far from being trivial. The well-known problem,
in the nonstationary case, is the regularity gap of the fluid and the structure velocity on the interface. First
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proofs of well-posedness and existence of nonstationary fluid-structure interaction have been derived by [6, 7].
Moreover, regularity properties of the FSI solution have been studied in [2, 3].

However, to the best of the authors knowledge no result on the differentiability of solutions to FSI problems
with respect to the data has been shown. Some work in this direction is contained in [20] where differentiability
of the solution-map for a lower-dimensional structure was considered.

The purpose of this work is to extend the existence theory for a stationary FSI problem given in [13] to
include local uniqueness of at least one solution under a small data assumption. Then, the main contribution
of this article, namely differentiability of the solution with respect to the problem data is shown.

Finally, we emphasize that the dilemma of non-matching coordinate systems of fluids and structures has to be
overcome. Consequently, in this work, the well-known arbitrary Lagrangian-Eulerian (ALE) frame of reference
(see, e.g., [16,17,22]) is used. Using this method, the fluid equations are reformulated on a fixed (but arbitrary)
reference configuration.

The paper is organized as follows. In Section 1, we will describe the considered setting for the FSI problem
under consideration. Then, some results on the fluid and structure problem will be collected in Section 2. Here,
special emphasis is placed on the fluid problem which is posed in the ALE framework, while the structure
equation is just standard linear elasticity. The paper concludes with Section 2.1; here the main result, namely
differentiability of solutions to the FSI problem, will be shown. This will be done using a fixed point argument
in combination with several applications of the implicit function theorem.

1. Problem Setting

In the sequel, let Ω ⊂ R
d with d = 2, 3 be a given domain with a C1,1 boundary. We decompose Ω into a fluid

part Ωf and a structure part Ωs. In Ωf the incompressible Stokes equations and on Ωs a linear elastic structure
equation is valid. We denote the interface between the two subdomains by Γi := Ωf ∩ Ωs. Boundary parts
where we prescribe Dirichlet conditions, are denoted by Γf and Γs (for fluid or structure, respectively). These
boundary parts are chosen such that ∂Ω = Γf ∪Γs. In order to avoid problems due to singularities arising from
the change of the boundary conditions, we assume that the interface Γi has positive distance to the boundary
∂Ω of the domain.

We use standard notation for the usual Lebesgue and Sobolev spaces. On the Hilbert space L2(Ω), we
denote the scalar product by (·, ·) and the corresponding norm by || · ||. The space Wm,p(Ω) contains those
functions whose weak derivatives up to order m are in Lp(Ω). We use Hm(Ω) := Wm,2(Ω). For any d − 1
dimensional set Γ ⊂ Ω we define Wm,p

0,Γ (Ω) ⊂ Wm,p(Ω) by zero Dirichlet conditions on Γ, assuming |Γ| �= 0 in
the d − 1 dimensional sense. For vector valued function spaces, we indicate this by adding the image space to
the definition, e.g., Hm(Ω;Rd) for Hm functions with values in R

d. Throughout, we assume p > d and hence
W 1,∞(Ω) ⊂ W 2,p(Ω) by standard embeddings.

Due to the coupling of fluid and structure equations, the domains Ωf and Ωs are unknown a priori. Under
the assumption that the overall domain Ω is fixed we will reformulate the coupled system on a fixed domain
Ω̂ = Ω. To do so, we introduce a reference configuration by denoting Ω̂f ⊂ Ω and Ω̂s = Ω \ Ω̂f ⊂ Ω. The
interface Γ̂i = ∂Ω̂f ∩ ∂Ω̂s is assumed to be of class C1,1. Then, the problem of finding the domains Ωf,s is
equivalent to finding a transformation Â : Ω̂ → Ω̂ such that Â(Ω̂f ) = Ωf , Â(Ω̂s) = Ωs, and Â(Γ̂i) = Γi. This
transformation is called the ALE map [16, 17, 22]. A natural choice for Ω̂s is the domain initially occupied by
the structure, and hence Â : Ω̂s → Ωs ⊂ Ω̂ is given by the displacement ûs, e.g., Â

∣∣∣
̂Ωs

= I + ûs, where I denotes

the identity on R
d. To obtain its values on the fluid domain, one has to choose an arbitrary continuation, e.g.,

of harmonic type [17], to obtain a displacement ûf on the fluid reference domain Ω̂f that satisfies the following
geometrical coupling condition:

Â := Â(x̂) = ûs(x̂) on Γ̂i.
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Let R : W 2−1/p,p(Γ̂i;R
d) → W 2,p(Ω̂f ;R

d) ∩H1
0,̂Γf

(Ω̂f ;R
d) be a continuous (linear) extension operator. Then,

the ALE map on Ω̂f is determined by

Â
∣∣∣
̂Ωf

= I +R(γi(ûs)),

where γi denotes the trace operator over Γ̂i. This leads to ûf = ûs on Γ̂i. For reasons that will become clear
later, it is desirable to choose the continuation R such that ‖Â‖W 1,∞(̂Ωf ;Rd×d) is small.

For later purposes we define two terms the deformation gradient F̂ and its determinant Ĵ , related to the
ALE map, that we will use quite frequently, by

F̂ := F̂ (û) = ∇̂Â, Ĵ := Ĵ(û) = det(F̂ ). (1)

The existence proof is based on a fixed point argument. Hence we begin by stating some properties of the
fluid and structure problem.

Remark 1.1. Note that, by Sobolev embeddings and the assumptions on R, we have

‖ûf‖W 1,∞(̂Ωf ;Rd) ≤ c‖ûf‖W 2,p(̂Ωf ;Rd) ≤ c‖ûs‖W 2−1/p,p(̂Γi;Rd) ≤ c‖ûs‖W 2,p(̂Ωs;Rd).

In particular, Ĵ > 0 if ‖ûs‖W 2,p(̂Ωs;Rd) is sufficiently small and we see that this implies Â and Â−1 ∈
W 1,∞(Ω̂;Rd×d).

2. Properties of the subproblems

The fluid problem reads (in Eulerian coordinates):

Problem 2.1. Given a domain Ωf with a C1,1 boundary, and gf ∈ W 2−1/p,p(Γf ;R
d) with the compatibility

condition, see, e.g, [30, Theorem 2.4], ∫
Γf

gf · nf ds = 0. (2)

Denote, again by gf the continuation of gf in W 2,p(Ωf ;R
d) ∩H1

0,Γi
(Ωf ;R

d). Then we need to find (vf , pf ) ∈
H1

0,Γf∪Γi
(Ωf ;R

d) + (gf , 0)× L2(Ωf )/R such that

−d̂iv (σf ) = 0 in Ωf ,

d̂iv vf = 0 in Ωf ,

vf = 0 on Γi,

vf = gf on Γf .

Here, the constitutive tensor σf is given by

σf := σf (vf , pf ) = −pfI + νf∇vf .

where νf describes the kinematic viscosity of the fluid.

The existence and regularity of solutions to Problem 2.1 is studied in [30] under the assumption of a regular
domain Ωf . Unfortunately, since the domain Ωf is given by the unknown mapping ûs, i.e., Ωf = Â(Ω̂f ), this
can not be asserted a priori.

In order to proceed in the reference domain, we transform the fluid equations to a fixed arbitrary reference
configuration:
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Problem 2.2. Given a displacement ûs ∈ W 2−1/p,p(Γ̂i;R
d), and gf ∈ W 2−1/p,p(Γf ;R

d) satisfying (2). Define
F̂ and Ĵ by (1), and the transformed constitutive tensor as

σ̂f := σ̂f (v̂f , p̂f ) = −p̂fI + νf ∇̂v̂f F̂
−1.

Find (v̂f , p̂f ) ∈ H1
0,Γf∪Γi

(Ω̂f ;R
d) + (gf , 0)× L2(Ω̂f )/R such that

−d̂iv (σ̂f Ĵ F̂
−T ) = 0 in Ω̂f ,

d̂iv (Ĵ F̂−1v̂f ) = 0 in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf .

(3)

Under the assumption of W 2,p regularity for ûf = R(ûs), with sufficiently small norm, the solutions of the
Problems 2.1 and 2.2 coincide by setting v̂f = vf ◦ Â−1 and p̂f = pf ◦ Â−1. Since Γf = Γ̂f the boundary data
gf do not need to be transformed..

The structure problem (in Lagrangian coordinates) is defined by:

Problem 2.3. Given forces f̂s ∈ Lp(Ω̂s;R
d) and ĝs ∈ W 1−1/p,p(Γ̂i;R

d). Find ûs ∈ W 2,p(Ω̂s;R
d), such that

−d̂iv (Σ̂s) = f̂s in Ω̂s,

ûf = 0 on Γ̂s,

Σ̂sn̂s = ĝs on Γ̂i.

with the Piola-Kirchhoff stress tensor Σ̂s and the (linear) Green-Lagrange tensor Ê:

Σ̂s := Σ̂s(ûs) = λtr(Ê)I + 2μÊ, Ê := Ê(ûs) =
1

2
(∇̂ûs + ∇̂ûT

s ),

where the constants λ and μ denote the Lamé parameters.

Remark 2.4. We should note that in the above setting other boundary conditions can be considered as well.
The only strong requirement we have to enforce is that the solutions of the problems are sufficiently regular on
Γ̂i, i.e., ûf and v̂f need to be in W 2−1/p,p(Γ̂i). The choice of the particular boundary values here is guided by
the aim to have as little technicalities as possible. For the same reason it is possible to replace the equations
with appropriate nonlinear versions, e.g., Navier-Stokes, nonlinear elasticity, etc. However, we refrain from such
generalizations as we feel the proofs are already involved enough and not much value is added by an additional
fixed point argument to obtain solvability of the (non-coupled) fluid and structure equations.

Similar arguments can be made to incorporate additional volume forces or boundary values.

We will now derive some properties of solutions to the Problems 2.2 and 2.3. Before these are stated, we
recall two assumptions from [13, Page 83]. They are dealing with the regularity of the transformation F̂ and
its determinant Ĵ .

Remark 2.5. We simplify notation by setting Â := F̂−1Ĵ F̂−T and B̂ := Ĵ F̂−T in the following section.
Further, let Î be the identity matrix in R

d×d. The following assumptions are made on the Â and B̂ to proof
existence of the transformed Stokes problem. Assume:

a) Â is a symmetric positive definite matrix whose coefficients are elements of W 1,p(Ω̂f ). There exists
some positive constant α such that Â ≥ αÎ.

b) B̂ is invertible, with both B̂ and B̂−1 in W 1,p(Ω̂f ;R
d×d).
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c) There is Cu > 0 such that Â and B̂ verify

‖Î − Â‖W 1,p(̂Ωf ;Rd×d) ≤ Cu, ‖Î − B̂‖W 1,p(̂Ωf ;Rd×d) ≤ Cu, ‖Î − B̂T ‖W 1,p(̂Ωf ;Rd×d) ≤ Cu.

As both Â and B̂ are given by F̂ , we remark that the assumptions hold if Â is regular enough, i.e., for small
deformations of the fluid mesh (‖ûf‖W 2,p(̂Ωf ;Rd)  1), see also our Remark 1.1. Further, we note that the

mappings Â, B̂, B̂−1 : W 2,p(Ω̂f ;R
d) → W 1,p(Ω̂f ;R

d×d) are Fréchet-differentiable with

‖DuÂ(u)‖L(W 2,p(̂Ωf ;Rd),W 1,p(̂Ωf ;Rd×d)) ≤ Cu,

‖DuB̂(u)‖L(W 2,p(̂Ωf ;Rd),W 1,p(̂Ωf ;Rd×d)) ≤ Cu,

‖DU B̂
−1(u)‖L(W 2,p(̂Ωf ;Rd),W 1,p(̂Ωf ;Rd×d) ≤ Cu,

with a constant Cu depending on ‖u‖W 2,p(̂Ωf ;Rd). We note that, in fact, the constant satisfies Cu ≤ Cρ,M < ∞
as long as 0 < ρ ≤ Ĵ and ‖u‖W 2,p(̂Ωf );Rd ≤ M .

Before we come to the existence and regularity of solutions to Problem 2.2 we need to introduce a slightly
generalized problem that we will need frequently in the following proofs.

Problem 2.6. Given a displacement ûs ∈ W 2−1/p,p(Γ̂i;R
d), f̂f ∈ Lp(Ω̂f ;R

d), and gf ∈ W 2−1/p,p(Γf ;R
d)

satisfying (2) and P̂ ∈ W 1,p(Ω̂f ) with compatibility condition∫
̂Ωf

P̂ dx = 0,

or P̂ ∈ W 1,p(Ω̂f )/R. Define F̂ and Ĵ by (1).
Find (v̂f , p̂f ) ∈ W 2,p(Ω̂f ;R

d) ∩H1
0,Γf∪̂Γi

(Ω̂f ;R
d) + (gf , 0)×W 1,p(Ω̂f )/R such that

−d̂iv (σ̂f B̂) = f̂f in Ω̂f ,

d̂iv (B̂T v̂f ) = P̂ in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf ,

(4)

with B̂ given by Remark 2.5.

It is immediately clear that, Problem 2.2 can be obtained from Problem 2.6, by setting f̂f = 0 and P̂ = 0.

Theorem 2.7 (Existence of Stokes in the ALE framework). Let Ω̂f ⊂ R
d be any open domain, with a C1,1

boundary. Let ûs ∈ W 2−1/p,p(Γ̂i;R
d), f̂f ∈ Lp(Ω̂f ;R

d) and gf ∈ W 2−1/p,p(Γf ;R
d) be given. Define F̂ and Ĵ

by (1). In addition, let the assumptions a) - c) hold true, i.e., ûs ∈ W 2−1/p,p(Γ̂i;R
d) is small enough. Then,

there exists a unique solution to Problem 2.6 and it holds the estimate

‖v̂f‖W 2,p(̂Ωf )
+ ‖p̂f‖W 1,p(̂Ωf )/R

≤ C
(
‖f̂f‖Lp(̂Ωf ;Rd) + ‖gf‖W 2−1/p,p(Γf ;Rd) + ‖P̂‖W 1,p(̂Ωf )/R

)
. (5)

The constant C depends on the assumptions a) − c) and hence on ‖ûs‖W 2−1/p,p(̂Γi;Rd); it remains bounded by
Cρ,M as long as 0 < ρ ≤ Ĵ and ‖ûs‖W 2−1/p,p(̂Γi;Rd) ≤ M . In particular, it holds

‖σ̂f B̂n̂f‖W 1−1/p,p(̂Γi;Rd) ≤ C
(
‖f̂f‖Lp(̂Ωf ;Rd) + ‖gf‖W 2−1/p,p(Γf ;Rd) + ‖P̂‖W 1,p(̂Ωf )/R

)
.
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Further, the mapping G : W 2−1/p,p(Γ̂i;R
d)×Lp(Ω̂f ;R

d)×W 2−1/p,p(Γf ;R
d)×W 1,p(Ω̂f )/R → W 1−1/p,p(Γ̂i;R

d)
defined by

(ûs, f̂f , gf , P̂ ) �→ σ̂f B̂n̂f

is continuously differentiable.

Proof. The existence of a unique solution (v̂f , p̂f ) ∈ H1
0 (Ω̂f ;R

d) + (gf , 0) × L2(Ω̂f )/R to Problem 2.6 can be
seen by transformation back to the physical domain Ωf , noting that the mean value of the back transformed P̂
is preserved, see for instance [30, Prop. 2.2] (compare Problem 2.1).

The regularity follows as in [13, Lemma 4] with the obvious modifications for non-homogeneous Dirichlet data
and inhomogeneity P̂ . To show differentiability it is sufficient to consider the map (ûs, f̂f , gf , P̂ ) �→ σ̂f B̂n̂f .

In order to show differentiability, we employ an implicit function type argument. To this end, for given values
ûs, f̂f , gf , P̂ the solution (v̂f , p̂f ) is given by the equation (4), which we abbreviate as

a(ûs, f̂f , gf , P̂ , v̂f , p̂f ) = 0,

where

a : W 2−1/p,p(Γ̂i;R
d)× Lp(Ω̂f ;R

d)×W 2−1/p,p(Γf ;R
d)×W 1,p(Ω̂f )/R

×W 2,p(Ω̂f ;R
d) ∩H1

0,Γf∪Γi
(Ω̂f ;R

d)×W 1,p(Ω̂f )/R

→ Lp(Ω̂f ;R
d)×W 1,p(Ω̂f )/R.

To show differentiability of (v̂f , p̂f ) with respect to the given data, we employ the implicit function theorem.
To do this end, we note that

Dv,pa(ûs, f̂f , gf , P̂ , v̂f , p̂f ) : W
2,p(Ω̂f ;R

d) ∩H1
0,Γf∪Γi

(Ω̂f ;R
d)×W 1,p(Ω̂f )/R → Lp(Ω̂f ;R

d)×W 1,p(Ω̂f )/R,

corresponds to the transformed Stokes Problem 2.6, since it is linear in v̂f , p̂f . Thus, by what we have seen
above, the operator
Dv,pa(ûs, f̂f , gf , v̂f , p̂f ) is invertible. This shows the assertion. �

For later purposes, we intend to derive some properties of the derivative DuG. To do so, we start with a
Theorem calculating the derivative of (v̂f , p̂f ) with respect to the domain transformation ûf = Rûs.

Theorem 2.8. The mapping

S : W 2,p(Ω̂f ;R
d) ∩H1

0,Γf
(Ω̂f ;R

d) → W 2,p(Ω̂f ;R
d) ∩H1

0,Γf∪Γi
(Ω̂f ;R

d) + (gf , 0)×W 1,p(Ω̂f )/R

ûf �→ (v̂f , p̂f )

given by Problem 2.6 with fixed (f̂f , gf , P̂ ) is Fréchet-differentiable and the derivative

S′(ûf ) : W
2,p(Ω̂f ;R

d) ∩H1
0,Γf

(Ω̂f ;R
d) → W 2,p(Ω̂f ;R

d) ∩H1
0,Γf∪Γi

(Ω̂f ;R
d)×W 1,p(Ω̂f )/R,

is given as follows. For any given δu ∈ W 2,p(Ω̂f ;R
d), the pair

(δv, δp) = S′(ûf )δu ∈ W 2,p(Ω̂f ;R
d) ∩H1

0,Γf∪Γi
(Ω̂f ;R

d)×W 1,p(Ω̂f )/R
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is given as the unique solution to the problem

−d̂iv ((−δpI + νf∇δvF̂−1)B̂) = d̂iv
(−p̂fDuB̂δu+ νf∇v̂fDuÂδu

)
in Ω̂f ,

d̂iv (B̂T δv) = −d̂iv ((DuB̂
T δu)v̂f ) in Ω̂f ,

δv = 0 on Γ̂i ∪ Γf ,

(6)

where (v̂f , p̂f ) = S(ûf ) and Â and B̂ are given in Remark 2.5. In particular, if ‖ûf‖W 2,p(̂Ωf ;Rd) is sufficiently
small (compare Remark 2.5) then

‖S′(ûf )‖L(W 2,p(̂Ωf ;Rd),W 2,p(̂Ωf ;Rd)∩H1
0,Γf∪Γi

(̂Ωf ;Rd)×W 1,p(̂Ωf )/R)
≤ C(ûf ),

where C(ûf ) depends on ‖ûf‖W 2,p(̂Ωf ;R2), and the data (f̂f , gf ) only. Further, it holds

C(ûf ) → 0 if (ûf , f̂f , gf ) → 0.

Proof. To see that problem (6) has a unique solution, we show that the prerequisites of Problem 2.6 are
fulfilled, which shows the claimed existence using Theorem 2.7. The regularity requirements for the right hand
side are given by definition of F̂ and (v̂f , p̂f ) (using that W 1,p and W 2,p are algebras). Further to see that
d̂iv ((DuB̂

T δu)v̂f ) ∈ W 1,p(Ω̂f ) we note that due to the Piola identity, see, e.g., [5, Chapter I, p 39], it holds
d̂iv (Ĵ(u)F̂−T (u)) = 0 for all u and thus also d̂iv ((DuB̂

T δu)) = 0. This implies

d̂iv ((DuB̂
T δu)v̂f ) = DuB̂

T δu : ∇v̂f ∈ W 1,p(Ω̂f ).

Thus, the only question remaining is the compatibility condition
∫
̂Ωf

d̂iv ((DuB̂
T δu)v̂f ) dx = 0.

To this end, one applies the Gauss divergence theorem, which shows the compatibility condition using v̂f = 0

on Γ̂i and DuB̂
T δu = 0 on Γf ; by definition that Â = I on Γf for all u ∈ W 2,p(Ω̂f ;R

d) ∩H1
0,Γf

(Ω̂f ;R
d).

The claimed bound on ‖S′(ûf )‖ follows from the stability estimate (5) in Theorem 2.7 and the bounds on
DuF̂

−1, DuĴ , v̂f , and f̂f . For the bounds on DuF̂
−1 and DuĴ the smallness assumption in Remark 2.5 is

required. Moreover, because (v̂f , p̂f ) in the right hand side of the defining equations of (δv, δp) tends to zero if
(ûf , f̂f , gf ) → 0 it holds C(ûf ) → 0 if all data tends to zero. Note that Cu in Remark 2.5 c), and thus C in (5),
is non increasing as ûf → 0.

Now, to show differentiability we define (v̂f , p̂f ) = S(ûf ) and (v, p) = S(ûf + δu) where δu is sufficiently
small to assert the smallness assumption for ûf + δu following Remark 2.5.

Then, from strong convergence of the coefficients in Problem 2.6, i.e.,

F̂ (ûf + δu)−1 → F̂ (ûf ) as ‖δu‖W 2,p(̂Ωf ;Rd) → 0,

it follows easily, by comparing the defining equations and application of the stability estimate in Theorem 2.7,
that (v, p) → (v̂f , v̂p) in W 2,p(Ω̂f ;R

d)×W 1,p(Ω̂f ) as ‖δu‖W 2,p(̂Ωf ;Rd) → 0.
Now, we show that in fact (δv, δp) given in the statement of the Theorem is the claimed derivative S′(ûf )δu.

We define the linearization error

(ev, ep) = S(ûf + δu)− S(ûf )− S′(ûf )δu = (v − v̂f − δv, p− p̂f − δp).
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By the following Lemma 2.9 we obtain

∥∥ev∥∥W 2,p(̂Ωf ;Rd)
+

∥∥ep∥∥W 1,p(̂Ωf )/R
≤ o(‖δu‖W 2,p(̂Ωf ;Rd)).

This shows the asserted differentiability. �

Lemma 2.9. Let ûf ∈ W 2,p(Ω̂f ;R
d)∩H1

0,Γf
(Ω̂f ;R

d) be small enough such that the mapping S from Theorem 2.8
is well defined in ûf . Further, let ε be such that S is well defined for all ûf + δu where ‖δu‖W 2,p(̂Ωf ;Rd) ≤ ε.

Let (v̂f , p̂f ) = S(ûf ) and (v, p) = S(ûf + δu) and (δv, δp) be given by (6).
Then the linearization error (ev, ep) = (v − v̂f − δv, p− p̂f − δp) satisfies:

∥∥ev∥∥W 2,p(̂Ωf ;Rd)
+

∥∥ep∥∥W 1,p(̂Ωf )/R

≤ C
(
‖v − v̂f‖W 2,p(̂Ωf ;Rd) + ‖p− p̂f‖W 1,p(̂Ωf )/R

)
‖δu‖W 2,p(̂Ωf ;Rd) + o

(
‖δu‖W 2,p(̂Ωf ;Rd)

)
= o

(
‖δu‖W 2,p(̂Ωf ;Rd)

)
.

Proof. We compare the equation (4) for (v̂f , p̂f )

−d̂iv ((−p̂fI + νf ∇̂v̂f F̂
−1)B̂) = f̂f in Ω̂f ,

d̂iv (B̂T v̂f ) = P̂ in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf ,

where B̂ = Ĵ F̂−T , and (v, p) where F = ∇̂Â(ûf + δu), J = detF and B = JF−T

−d̂iv ((−pI + νf ∇̂vF−1)B) = f̂f in Ω̂f ,

d̂iv (BT v) = P̂ in Ω̂f ,

v = 0 on Γ̂i,

v = gf on Γf ,

with the equation (6) for (δv, δp)

−d̂iv ((−δpI + νf∇δvF̂−1)B̂) = d̂iv
(−p̂fDuB̂δu+ νf∇v̂fDuÂδu

)
in Ω̂f ,

d̂iv (B̂T δv) = −d̂iv ((DuB̂
T δu)v̂f ) in Ω̂f ,

δv = 0 on Γ̂i ∪ Γf .



TITLE WILL BE SET BY THE PUBLISHER 9

Comparing the first of each of the three equations yields, using Â = F̂−1B̂ and A = F−1B,

−d̂iv ((−epI +∇evF̂
−1)B̂) = −d̂iv ((−pI + νf ∇̂vF̂−1)B̂)− f̂f

− d̂iv
(−p̂fDuB̂δu+ νf∇v̂fDuÂδu

)
= −d̂iv ((−pI + νf ∇̂vF̂−1)B̂) + d̂iv ((−pI + νf ∇̂vF−1)B)

− d̂iv ((−pI + νf ∇̂vF−1)B)− f̂f

− d̂iv
(−p̂fDuB̂δu+ νf∇v̂fDuÂδu

)
= −d̂iv (−p(B̂ −B)− p̂fDuB̂δu)

− νf d̂iv (∇̂v(Â−A) +∇v̂fDuÂδu)

=: R1.

(7)

Noting that W 1,p is an algebra, we see that R1 ∈ Lp(Ω̂f ;R
d) and by Frechét-differentiability of

Â, B̂ : W 2,p(Ω̂f ;R
d) → W 1,p(Ω̂f ;R

d×d),

Ĵ : W 2,p(Ω̂f ;R
d) → W 1,p(Ω̂f ),

in a neighborhood of ûf ; we can estimate the Lp-norm of R1 as follows, using the constant Cu given in
Remark 2.5,

‖R1‖Lp(̂Ωf ;Rd) ≤ ‖ − p(B̂ −B)− p̂fDuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂v(Â−A) +∇v̂fDuÂδu‖W 1,p(̂Ωf ;Rd×d)

≤ ‖p‖W 1,p(̂Ωf )/R
‖B − B̂ −DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ ‖p− p̂f‖W 1,p(̂Ωf )/R
‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂v‖W 1,p(̂Ωf ;Rd×d)‖A− Â−DuÂδu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂(v − v̂f )‖W 1,p(̂Ωf ;Rd×d)‖DuÂδu‖W 1,p(̂Ωf ;Rd×d)

≤ Cu‖p− p̂f‖W 1,p(̂Ωf )/R
‖δu‖W 2,p(̂Ωf ;Rd)

+ νfCu‖∇̂(v − v̂f )‖W 1,p(̂Ωf ;Rd×d)‖δu‖W 2,p(̂Ωf ;Rd) + o(‖δu‖W 2,p(̂Ωf ;Rd)).

(8)

Now, we compare the second of each of the three equations; with the Piola identity, as in the proof of Theo-
rem 2.8, we obtain

d̂iv (B̂T ev) = d̂iv (B̂T v)− d̂iv (BT v) + d̂iv (BT v)− P̂ + d̂iv ((DuB̂
T δu)v̂f )

= d̂iv ((B̂T −BT )v + (DuB̂
T δu)v̂f )

= (B̂T −BT ) : ∇̂v +DuB̂
T δu : ∇̂v̂f

=: R2.

(9)
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Further, we have the compatibility condition∫
̂Ωf

R2 dx =

∫
̂Ωf

d̂iv ((B̂T −BT )v + (DuB̂
T δu)v̂f ) dx

=

∫
̂Γi

(B̂T −BT )vn̂f + (DuB̂
T δu)v̂f n̂f ds

+

∫
Γf

(B̂T −BT )vn̂f + (DuB̂
T δu)v̂f n̂f ds = 0

since v, v̂f = 0 on Γ̂i and B̂T = BT on Γf and thus DuB̂
T δu = 0 on Γf .

Again, using the algebra properties of W 1,p and the properties of B̂, we assert R2 ∈ W 1,p(Ω̂f ) and we
calculate

‖R2‖W 1,p(̂Ωf )
≤ ‖BT − B̂TDuB̂

T δu‖W 1,p(̂Ωf ;Rd×d)‖v‖W 2,p(̂Ωf ;Rd)

+ ‖v − v̂f‖W 2,p(̂Ωf ;Rd)‖DuB̂
T δu‖W 1,p(̂Ωf ;Rd×d)

≤ Cu‖v − v̂f‖W 2,p(̂Ωf ;Rd)‖δu‖W 2,p(̂Ωf ;Rd) + o(‖δu‖W 2,p(̂Ωf ;Rd)).

(10)

Combining the above calculations asserts that (ev, ep) solves the problem

−d̂iv ((−epI +∇evF̂
−1)B̂) = R1 in Ω̂f ,

d̂iv (B̂T ev) = R2 in Ω̂f ,

ev = 0 on Γ̂i ∪ Γf ,

with R1 and R2 given by (7) and (9). From the estimates (8) and (10) the assertion follows by Theorem 2.7. �
Now, we can state the next preliminary result concerning the derivative of the ‘Dirichlet-to-Neumann’ map

given in Theorem 2.7:

Theorem 2.10. For the mapping G given by Theorem 2.7 it holds; for any given constant ε > 0, one can assert
that

‖DuG(ûs, f̂f , gf )‖ ≤ ε

where the norm is taken with respect to

DuG(ûs, f̂f , gf ) : W
2−1/p,p(Γ̂i;R

d) → W 1−1/p,p(Γ̂i;R
d)

provided that f̂f ∈ Lp(Ω̂f ;R
d), gf ∈ W 2−1/p,p(Γf ;R

d), satisfying (2), and ûs ∈ W 2−1/p,p(Γ̂i;R
d) are sufficiently

small.

Proof. We note that G is given as a composition of the following three maps:

R : W 2−1/p,p(Γ̂i;R
d) → W 2,p(Ω̂f ;R

d)

ûs �→ R(ûs) = ûf ,

S : W 2,p(Ω̂f ;R
d)× Lp(Ω̂f ;R

d)×W 2−1/p,p(Γf ;R
d) → W 2,p(Ω̂f ;R

d)×W 1,p(Ω̂f )/R,

(ûf , f̂f , gf ) �→ (v̂f , p̂f ) solving Problem 2.2,

τ : W 2,p(Ω̂f ;R
d)×W 2,p(Ω̂f ;R

d)×W 1,p(Ω̂f )/R → W 1−1/p,p(Γ̂i;R
d),

(ûf , v̂f , p̂f ) �→ Ĵ σ̂f F̂
−T n̂f .

Here, for fixed f̂f and gf the operator S is the same as defined in Theorem 2.8.
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This means
G(ûs, f̂f , gf ) = τ

(
R(ûs), S(R(ûs), f̂f , gf )

)
.

Noting that R is linear and bounded, and thus has no influence on the differentiability, we neglect the influence
of R and write ûf instead of R(ûs). By the chain rule, we get for any direction δu that

DuG(ûf , f̂f , gf )δu = Duτ(ûf , S(ûf , f̂f , gf ))δu

+Dv,pτ(ûf , S(ûf , f̂f , gf ))DuS(ûf , f̂f , gf )δu.

Because τ is linear in v and p, it follows

DuG(ûf , f̂f , gf )δu = Duτ(ûf , S(ûf , f̂f , gf ))δu

+ τ(ûf , DuS(ûf , f̂f , gf )δu).

We take a closer look on the summands on the right hand side.
For the first term Duτ , we note

τ(ûf , S(ûf , f̂f , gf )) = τ(ûf , v̂f , p̂f ) = (−p̂fI + νf ∇̂v̂f F̂
−1)B̂n̂f .

Then, for the derivative, we obtain

Duτ(ûf , S(ûf , f̂f , gf ))δu = (−p̂fI + νf ∇̂v̂f F̂
−1)(DuB̂δu)n̂f + (νf ∇̂v̂fDuF̂

−1δu)B̂n̂f .

From this, using that W 1−1/p,p(Γ̂i;R
d) is the trace space of W 1,p(Ω̂f ;R

d), and an algebra for p > d, we calculate:

‖Duτ(ûf , S(ûf , f̂f , gf ))δu‖W 1−1/p,p(̂Γi;Rd) ≤ ‖σ̂f (DuB̂δu)n̂f‖W 1−1/p,p(̂Γi;Rd)

+ ‖(νf ∇̂v̂fDuF̂
−1δu)B̂n̂f‖W 1−1/p,p(̂Γi;Rd)

≤ C‖σ̂f‖W 1,p(̂Ωf ;Rd×d)‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ C‖v̂f‖W 2,p(̂Ωf ;Rd)‖B̂‖W 1,p(̂Ωf ;Rd×d)‖DuF̂
−1δu‖W 1,p(̂Ωf ;Rd×d).

Using the definitions of Ĵ and F̂−T , we get that for ‖ûf‖W 2,p(̂Ωf ;Rd) sufficiently small, there is a constant,
depending on the size of the norm only, such that

‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d) + ‖DuF̂
−1δu‖W 1,p(̂Ωf ;Rd×d) ≤ C‖δu‖W 2,p(̂Ωf ;Rd).

Hence,
‖Duτ(ûf , S(ûf , f̂f , gf ))‖L(W 2,p(̂Ωf ;Rd),W 1−1/p,p(̂Γi;Rd)) → 0 ((ûf , f̂f , gf ) → 0)

uniformly in ‖δu‖W 2,p(̂Ωf ;Rd) ≤ 1 since ‖σ̂f‖W 1,p(̂Ωf ;Rd), ‖v̂f‖W 2,p(̂Ωf ;Rd) → 0.
Now, we come to the second term

τ(ûf , DuS(ûf , f̂f , gf )δu).

We note that by definition DuS(ûf , f̂f , gf )δu = S′(ûf )δu is given in Theorem 2.8. By the definition of τ it
holds with (δv, δp) = DuS(ûf , f̂f , gf )δu

‖τ(ûf , δv, δp)‖W 1−1/p,p(̂Γi;Rd) ≤ C‖S′(ûf )‖‖δu‖W 2,p(̂Ωf ;Rd).
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Thus, by Theorem 2.8 we get

‖τ(ûf , DuS(ûf , f̂f , gf )δu)‖W 1−1/p,p(̂Γi;Rd) → 0 ((ûf , f̂f , gf ) → 0)

uniformly in ‖δu‖W 2,p(̂Ωf ;Rd) ≤ 1. This yields the assertion. �

Theorem 2.11 (Existence of the structure problem). Let f̂s ∈ Lp(Ω̂s;R
d) and ĝs ∈ W 1−1/p,p(Γ̂i;R

d). Then,
there exists a unique solution ûs ∈ W 2,p(Ω̂s;R

d)∩W 1,p

0,̂Γs
(Ω̂s;R

d) to Problem 2.3. Further, it holds the estimate:

‖ûs‖W 2,p(̂Ωs;Rd) ≤ C
(
‖f̂s‖Lp(̂Ωs;Rd) + ‖ĝs‖W 1−1/p,p(̂Γi;Rd)

)
.

In addition mapping H : Lp(Ω̂s;R
d)×W 1−1/p,p(Γ̂i;R

d) → W 2,p(Ω̂s;R
d) defined by

(f̂s, ĝs) �→ ûs

is continuously differentiable.

Proof. The proof can be found in Ciarlet [5, Theorem 6.3.6] noting that Γ̂i has positive distance to Γ̂s; and thus
no singularities from non-matching boundary conditions may arise. �

2.1. Existence of a solution to the fluid-structure problem

In this section, we state the forward problem under consideration, and give some results on existence of a
locally unique solution. We consider the stationary Stokes equations involving a nonlinear coupling with linear
elasticity. Due to the employed fixed-point arguments it is not surprising that we will obtain existence, local
uniqueness and regularity of a solution under a small data assumption only.

We are now prepared to show that there exists a (unique) solution to the coupling of the Problems 2.2 and 2.3.
Here the principal unknowns are the fluid velocity v̂f , the fluid pressure p̂f , the structure displacement ûs, and
the fluid domain displacement (mesh motion) ûf . For the convenience to the reader, we recall the coupling
conditions on Γ̂i. The first one is the geometry coupling condition (to specify the ALE map Â) such that the
unknown fluid domain follows the interface. The next is a velocity condition for the fluid problem and finally,
the stress balance on the interface. Thus, we have

ûf = R(γi(ûs)) on Γ̂i,

v̂f = 0 on Γ̂i,

Σ̂sn̂s − Ĵ σ̂f F̂
−T n̂f = 0 on Γ̂i.

(11)

It can be inferred from the third condition that ĝs = Ĵ σ̂f F̂
−T n̂f in Problem 2.3.

Then, the coupled problem reads:

Problem 2.12. Find (v̂f , p̂f ) ∈ W 2,p(Ω̂f ;R
d)×W 1,p(Ω̂)/R such that

−d̂iv (σ̂f B̂) = 0 in Ω̂f ,

d̂iv (B̂T v̂f ) = 0 in Ω̂f ,

v̂f = gf on Γf ,
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and find ûs ∈ W 2,p(Ω̂s;R
d), such that

−d̂iv (Σ̂s) = f̂s in Ω̂s,

ûf = 0 on Γ̂s,

using the coupling conditions (11).

The following proof of existence for the FSI problem is similar to [13]. However, a major extension is the
differentiability of the solution map.

Theorem 2.13. Let gf ∈ W 2−1/p,p(Γf ;R
d), and f̂s ∈ Lp(Ω̂s;R

d) be given with 3 < p < ∞. Assuming that gf ,
and f̂s are small enough, meaning that for a certain constant M > 0,

‖gf‖W 2−1/p,p(Γf ) + ‖f̂s‖Lp(̂Ωs)
≤ M.

Then there exists a solution Û = (v̂f , p̂f , ûs) ∈ Ŵ + (gf , 0, 0) with

Ŵ = W 2,p(Ω̂f ;R
d) ∩W 1,p

0,Γf∪̂Γi
(Ω̂f ;R

d)×W 1,p(Ω̂f )/R×W 2,p(Ω̂;Rd) ∩W 1,p

0,∂̂Ω
(Ω̂;Rd)

to the coupled Problem 2.12 with F̂ and Ĵ are defined by (1).
Assuming that M is sufficiently small, the solution is uniquely determined under the additional condition:

‖v̂f‖W 2,p(̂Ωf ;Rd) + ‖p̂f‖W 1,p(̂Ωf )/R
+ ‖ûs‖W 2,p(̂Ωs;Rd) ≤ M. (12)

In addition, the herewith defined mapping

F : W 2−1/p,p(Γf ;R
d)× Lp(Ω̂s;R

d) → Ŵ + (gf , 0, 0)

(gf , f̂s) �→ (v̂f , p̂f , ûs)

is continuously differentiable in a neighborhood of (0, 0).

Proof. The existence of a solution can be obtained by the arguments in [13], in particular Theorem 1. Hence
all we need to show is differentiability of the thus defined mapping F .

To do this, we note that
(v̂f , p̂f , ûs) = F(gf , f̂s)

iff the displacement ûs satisfies
ûs = H(f̂s,G(ûs, 0, gf , 0)). (13)

Then, the velocity and pressure (v̂f , p̂f ) depend continuously differentiable on (ûs, gf ) by Theorem 2.7. Thus,
it is sufficient to show differentiability of the mapping

(gf , f̂s) �→ ûs

given by the above fix point relation (13). To see that this defines a differentiable mapping, we employ the
implicit function theorem. We note that

DgH(f̂s,G(ûs, 0, gf , 0)) : W
1−1/p,p(Γ̂i;R

d) → W 2,p(Ω̂s;R
d)

corresponds to the solution operator to the linear elasticity problem 2.3 and is thus bounded, see Theorem 2.11.
The second part

DuG(ûs, 0, gf , 0)) : W
2,p(Ω̂s;R

d) → W 1−1/p,p(Γ̂i;R
d)
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corresponds to the shape derivative of the flow and from Theorem 2.10, we know that ‖DuG‖ can be made
arbitrarily small by choosing M possibly smaller. Thus, I + DgH ◦ DuG is invertible. The implicit function
theorem yields the asserted local uniqueness of (v̂f , p̂f , ûs) and differentiability of F . �
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