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Structural properties of positive real and reciprocal rational matrices

Thomas Berger and Timo Reis

Abstract— We consider positive real rational matrix-valued
rational functions. We show that the pointwise kernel of
functions as well as the pointwise kernel of the Hermitian pa
is constant in the right complex half plane. These results &
the basis for a decomposition for positive real matrices uner
orthogonal similarity transformation.

We further consider positive real matrices which have
a certain symmetry property that is known as “reciprocity”.
A decomposition for reciprocal and positive real matrices wmder
block orthogonal transformation is derived.

We illustrate our results by applying them to transfer
functions arising in electrical circuit theory.

Index Terms— Passivity, positive realness, reciprocity, trans-
fer function, electrical circuit, modified nodal analysis.

Nomenclature:

N, Ng set of natural number&yo = NU {0}
Cy open set of complex numbers with
positive real part

INE the ring of real polynomials

R(s) the quotient field ofR[g]

RMM the set ofn x m matrices with
entries in a ringR

Gln(R) the group of invertible matrices iR™"

M* = MT, the conjugate transpose
of M e C™

In identity matrix of sizen x n

Omn zero matrix of sizenxn

Another crucial concept studied in the present article
is reciprocity. Loosely speaking, this is the property of a
transfer function to satisfy a certain symmetry property.

Definition 1.1 (Signature matrix, reciprocal matrix):-et
my,mp, me Ng be such thatm, +m, =m. Then

S=diag(im, —Im,) € Glm(R)

is called asignature matrix
A rational functionG(s) € R(s)™™ is calledreciprocal (with
signature(my, mp)), if for Sas in (1) it holds

G(s)S=SGs) .
Reciprocity means that the transfer function can be parti-

tioned as Gu(s) Guls)
S S
C9= | _Go9" Gaal9)’

whereGi1(s) € R(5)™™, Gpa(s) € R(s)™ ™ are symmetric.
This class of rational matrices occurs in electrical circui
theory, where the signature is determined by the numbers of
voltage and current sources [1], [2], [5].

In Section Il we focus on positive real matrices. We show
that keitG(A) + G(A)* is independent oA € C... We further
prove thatG(s)v is constant for allv € kerG(A) + G(A)*.
Upon these facts we derive a decomposition for positive real
matrices under orthogonal similarity transformation. sThi
form decomposes5(s) into a part which has a positive
definite Hermitian part inC,, and some constant skew-
Hermitian part.

Reciprocal matrices are then investigated in Section Il

(1)

)

Note that we neglect the subscripts in the case where tg@d another decomposition is derived for positive real and
sizes of the identity and zero matrices are clear frorfEciprocal rational matrices under similarity transfotima

context.

I. INTRODUCTION

We study positive real rational matrix functioi@(s) €
R(s)™™, that is
a) G(s) does not have poles i@, and
b) G(A)+G(A)*>0 VAeC,.

This class of rational matrices plays an important role in

with block-diagonal orthogonal matrices.

Finally, in Section IV passive electrical circuits mode&e
differential-algebraic systems. The transfer functiofihese
systems is positive real and reciprocal and hence we may
derive some consequences of the results from the previous
sections.

Il. POSITIVE REAL TRANSFER FUNCTIONS

linear systems theory, since they are transfer functions of

passive linear time-invariant systems [1]. In particuthgy

In this section we investigate positive real matrices and

are important for the analysis and synthesis of electriral c 4€rivé a decomposition under constant orthogonal trans-

cuits and mechanical systems, see [2]-[4] and the refesen

therein.
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dgrmations. First, we need the standard representation of

positive real matrices. To this end, recall tii(s) € R(s)™™
is calledproper; if lim 4 _,, G(A ) € R™™ exists;G(s) is called

Fach-strictly proper, if lim ) _,,G(A) =0.

Lemma 2.1 (Positive real functions [6, Sec. 2.7]et
G(s) € R(s)™™ be positive real. Theis(s) has no poles in



C;. FurthermoreG(s) has a representation
Ro R« R«

G(s) = Gs(s) +Mo +sMy + +Z i T st ®3)
where

- keN,

- W,...,x € R,

- Ry,...,Rc € C™™M are Hermitian and positive semi-

definite,

— Rop,M; € R™™M are symmetric and positive semi-definite,

— Mg € R™M such thatVg + MOT is positive semi-definite,
Gs(s) € R(s)™™M is strictly proper.

Furthermore, the proper transfer functidvip + Gs(s) €
R(s)™™ is positive real.

We show that, for a positive real matrig(s) € R(s)™™
and u,A € C,, the kernels ofG(A) + G(A)* and G(u) +
G(u)* coincide. We will conclude that the kernel &fs) is
constant.

Proposition 2.2:Let G(s) € R(s)™™ be positive real and
A € C4, ue C™be such that*G(A )u= 0. Thenu*G(s)u=
0 € R(s). FurthermoreG(s)u is constant.

Proof: Consider the scalar rational functiay(s) =
u*G(s)u € R(s). Then g(A) = 0 and, moreoverg(s) is
positive real. Assuming thag(s) # O gives that Yg(s) is
again positive real, cf. [7]. However, this contradicts thet
that 1/g(s) has a pole ak € C... As a consequencg(s) =0,
i.e., u'G(u)u=0 for all u € C;. Thus, for allu € C,, we
have

U (G(p)" + G(p))u= (G(p)u) u+u*(G(p)u) = 0.
Since G(u)* + G(u) is positive semi-definite, we find
(G(()* +G(u))u= 0, which is equivalent to

G(u)'u=—-G(pn)u forall peCy.

As a consequence, the entries@f-)u: C. — C are holo-

morphic and their complex conjugates are holomorphic as

such that e )
UTG(s)U = { (9 12]. @
—Lip Lo
Furthermore, we have
VA €Cy: kerG(A) = ({o}p y ker[t;ﬂ 5)
Proof: Step 1We show (4). Le{uy,...,u C R be

an orthonormal basis of k&(1) +G(1)*. By Corollary 2.3,

we have
spar{uy,...,uc} =kerG(A)+G(A)* forall A € Cy.
Let p=m—k and extend{uy,... ,uc} by {vq,...,vp} to an
orthonormal basis oR™, and set
U=[v Vp Up Ug] -

By Proposition 2.2, we have thab(s)u; is constant for
all i € {1,...,m}. SinceG(s)" is positive real as well, we
further obtain thaG(s) "u; is constant for ali € {1,...,m}.
Consequently) "G(s)U is of the form

(2 2]

Step 2 We show the properties of the blocks in (4). By
construction olU, we have, for allA € C,,

{* 0} —UT(G(A)+G(A))U

0 0
_uT Ty [GrA+CIA) Lia Ly
=U'G(A)U+(U'G(A)V) —[ Los+LJ, Lao+ Ly,

Hence, we obtain that,, is skew-symmetric and.12 =
—Lj;. Assuming thatw € CP\ {0} is such that(Gy(A) +
G1(A)*)w = 0 implies that(G(A) + G(A)*)u=0 for u:=
U(w',0)". Therefore,

uekerG(A)+G(A)" =sparfuy,...,u} =imU [Ii] )

well. The Cauchy-Riemann equations [8, pp. 231] now implyvhich yieldsu =0 and hencev= 0, a contradiction.

that G(s)u is constant. [ |

Step 3 It remains to prove (5). The inclusionC” is

We may immediately conclude that the kernel of a positivebvious. To show 2", assume thatu € kerG(1). Then

real function is constant.

Corollary 2.3: Let G(s) € R(s)™™ be positive real and
A € Cy, ue C™ be such thatG(A)u= 0. ThenG(sju =
0eR(9™.

u*(G(1) + G(1)*)u = 0 and, by semi-definiteness &(1),
we have(G(1) + G(1)*)u = 0. Partitioning

We now show that, via a similarity transformation with
an orthogonal matrix, any positive real rational transfeyye obtain thatu! kerGy(1) + G1(1)* and henceu; = 0.
function may be decomposed into a part which has positiv€onsequently
definite Hermitian part inC,, and some constant skew- Lio

. u, € ker .
symmetric part. [LZJ

Theorem 2.4:Let G(s) € R(s)™™ be positive real. Then
there exist numbers and matrices

- pe{0,...,m},

— orthogonald € R™™,

— positive realGy(s) € R(s)P-P with kerGy(A) + Gy (A )*

Ill. RECIPROCAL TRANSFER FUNCTIONS

Passive electrical circuits modelled by the MNA method

{0} for all A e C4,
— Lippe Rp,mfp,
— skew-symmetric matrixp, € R™ PM-P,

feature a special symmetry property, that is their transfer
matrix is reciprocal. In this section we aim for decompasiti
of positive real and reciprocal rational matrices. Firsg w



have a closer look at the representation (3) of a reciprochénce, using1S=SM/, we find MS=SM, .
matrix. It remains to show that (7) is positive semi-definite. This

Theorem 3.1:Let G(s) € R(s)™™ be positive real and follows from
reciprocal with signaturémy,my). Then the matrices in (3) Ri11 Rz
are of the form T -

Rii2 Rz

Mo — [ MO,_]F-l MO,lZ] My = [Ml,ll 0 ] 7 _ Im1 0 Rj,ll iRj,12 |m1 01"

~Mo12 Moz 0 M 10 ilm| |-iR[ 1, Rjzz) [0 ilm
_|Roaz O —

R |5 o0 | ©) =
R iR . "

Rj = {_”%1 Rjzlﬂ for je{1,...,k}, Since the matriceM; andRy vanish outside the diagonal

bz blocks, we can conclude the following.
where Corollary 3.2: Let G(s) € R(s)™™ be positive real and

reciprocal with signaturém;, m) and letG(s) be partitioned
as in (2). Then the rational functid®, »(s) is proper and has
no pole at zero.

If G(s) € R(s)™™ is positive real and reciprocal with
signature (my,mp), then the functiongGyi(s) € R(s)™ ™,

- Mo11,M111,Ro11,R111,...,Re11 € R™M and
Mo22,M122,R022,R1.22,...,Re22 € RM™M™ are
symmetric and positive semi-definite,

- Mg12,R112,...,Re12 € R™M2],

Furthermore, the matrices G22(s) € R(s)™™ are both symmetric and positive real. By
R R Proposition 2.2, the latter property implies that the kérne
[R#ll R’_‘ﬂ (7) of Gi1(A) and Gy(A) are independent ok € C. In the
12 722 following result, we show tha®/,(s) andGi(s) are constant

are positive semi-definite for ajle {1,...,k}. on these kernels.
Proposition 3.3:Let G(s) € R(s)™™ be positive real and
reciprocal with signaturém;, my) and letG(s) be partitioned
M;S= lim EG()\)S: lim ESG(/\)T:SI\/I_IT. as in (2). Ifu; € R™ is such thatu{ Gi1(s)u; = 0, then
A A Ao A Gi1(s)up = 0 andGy»(s) "uy is constant. Ifu, € R™ is such
Together with the symmetry propertyl; = M, we now that u; Gaa(s)uz = 0, then Gap(s)uz = 0 and Gro(s)u; is

Proof: By reciprocity ofG(s), we find

obtain that this matrix is of the form constant.
i Proof: By Theorem 2.4, there exists some orthogonal
My = diagMy.11, M1 22)- matrix U; € R™™  such that

By furthermore using the limit representations

U Gu(gus = | 1)
Ro=lmAG(A), Rj= lim (A —iw)G(A),
A—=0 A—iwj

—L{, Lo

where Hi1(s) € R(s)PrP1 has the property thabHi1(A) +
we can infer from the reciprocity db(s) that Hi1(A)* is positive definite for allA € C,, and Li» €
ReS— SR RPLM—P1 | 55 ¢ RM~PLM—P1 js such thal), = —Lp,. The
- ’ symmetry ofGs1(s) now implies thatl;, =0 andL,, = 0.

and R;S=SR forall je{1,...,k}. Assuming thatu; G(s)u; = 0, we obtain from the above

Hence, Ry has a block diagonal structure by the sam&natrix decomposition that
reason as forM;. We can furthermore apply this argu-

mentation to the symmetric and positive semi-definite ma- U =Us [U12:|
trices R€Ry),...,Re(R¢) to see that they are of a block

) hbe p1-my '
diagonal structure. On the other hand the imaginary parf@’ Someurz € RPr=. Consequently, we obtain

Im(Ry),...,Im(R) are skew-symmetric and reciprocal with Gra(9)u=U Hii(s) O[O |
signature(mg,mp). This implies that IniR;) has a block WHE=1 00 0| ue| —
structure

0 R It remains to show thaG(s) "u; is constant: By defining
Im(R;)) = {—R,le 1612} for j € {1,...,k}, u=(u{,0)", we have

whereRl,lz, R Rk‘12 € RMuMme, UTG(S)U - UIG]_]_(S)U]_ =0
To verify the block structure ofMg, observe that by By Proposition 2.2, we obtain the desired result from
Lemma 2.1 the matriMg + MJ is positive semi-definite. 0

Furthermore, G(sju= [ } .

—Gi2(s) "'u
Mo = J'TW(G(M —AMy), The proof of the last statement is analogous. [ |



As a consequence of Proposition 3.3, we can infer thatherefore,

a positive real and reciprocal rational matrix admits aaart
form under similarity transform with orthogonal matrices.

Theorem 3.4:Let G(s) € R(s)™™ be positive real and

U'G(sUS=U"G(s)SU=U "SGs)'U =SU'G(s)"U,

which means that) "G(s)U is reciprocal with signature

reciprocal with signaturém, mp). Then there exist numbers (mg,m). This implies

and matrices

pr€{0,....,m}, p2 €{0,...,mp},

orthogonald; € R™™ U, € R™M2,

positive real and symmetrid;1(s) € R(s)PLP1, Haa(s) €
R(s)P2P2 such thatH11(A )+ H11(A)* > 0 andHsgz(A ) +
Ha3(A)* >0 forall A € Cy,

Lig € RPLM=P2 | 5o c RM~PLP2 | 5, ¢ R™~P1M2—P2

such that, fold = diag(U;,Us), it holds

H11(s) 0 Hiz(s) Lia
0 0 Los  Log
UTG(s)U = 8
( ) —H13(S)T —Lgs H33(S) 0 ( )
S - o o

Furthermore, for all € C, we have
-
kerG(A) =U" - ({O}Pl < ker [L%ﬂ x {0}P2 x ker {Ll D |
Lo L2

Proof: Step 1 We show the form (8). Let
{U11,...,ua} € R™, {ugy,...,u2} € R™ be orthonormal
bases of keB11(1) + G11(1)* and keiGa2(1) + Gz2(1)*, resp.
We can infer from Proposition 3.3, that for alle C.

spar{ull, RN ukl} = kerGll(/\) = kerGll(/\ ) + Gll(A )*,

spaqUiy,..., U2} = kerGoa(A) = kerGoa(A ) + Goo(A)*.
Let py=m —k, po =mp—1 and extend{uyy,...,u} by
{v11,... ,Vpll} and {ugy,...,u2} by {via,... ,Vp22} to or-

thonormal bases @&™ andR™, resp. Define the orthogonal

matrices

Uy = [via U] ,

Uz = [vi2 Uiz .
By Proposition 3.3, we have thaG;i(s)uj; = 0 and
GlZ(S)TUjl is constant for allj € {1,...,k}. Analogously,

we find thatGyx(s)uj> = 0 and Glz(S)TUjl is constant for
all j € {1,...,k}. Consequently "G(s)U is of the form

Vp;1 Ul

Vpy,2  U12

Hii(s) 0 Hiz(s) Lua
0 0 Loz Log
UTG(s)U =
(8 Hai(s) Ls2 Has(s) O
La1  La 0 0
for some

Hi1(s) € R(s)PrP2,
Haa(s) € R(9)P2PL,
Lig € Rpl-,mzﬂ)z7
Log € Rmrplamzfpz7

|_41 c RmZ*p23p17

ng(S) c R(S) 131-,1327
H22(S) c R(S) FJ2~,FJ27
|_23 c Rmrpl-,Dz7

L3 € sz,mrpl7
|_42 c RM2—P2,M—pP1

Reciprocity ofG(s) means thaG(s)S= SG(s)". SinceU =
diagU;,U,), we obtain thatUS= SU and U'S= SU'.

.
L32 = —Lya,

=
Lao = —Lyg,

Haa(s) = —Has(s) ",
Laz = —Lia

and thatHj1(s),Hss(s) are symmetric.

Step 2 We show thati;1(A) +Hy1(A)* > 0 andHg3(A) +
Hss(A)* > 0forall A € C,. SinceH11(s) andHss(s) are pos-
itive real, positive semi-definiteness of the aforemergtbn
matrices is clear. Suppose there exis{s= CP1\ {0} such
that UI(Hll(A) + Hll(/\)*)ul =0. Thenu:= Ul(uI,O, )T
satisfiesu’ (Gy1(A) +Gy1(A)*)u= 0, hence

uekerGyy(A) = spafuiy,..., Ua} =imUy Lﬂ ’

which implies thatu; = 0, a contradiction. The proof for
Ha3(A) +Hss(A)* is analogous.

Step 3 It remains to prove (9). The inclusion>” is
obvious. To show €”, let u € kerG(1). Then we have
u'(G(1) + G(1)"u = 0 and, by the semi-definiteness of
G(1), we find (G(1) +G(1) ")u = 0. Partitioning

(UI,U;—,U;,UI)T = UTuv
we obtain
u' (G(1)+G(1) "u

=u{ (H11(1) + H1a(1) " )us + ug (Haz(1) + Haz(1) "us,
and thusu; = 0 anduz = 0 by the findings of Step 2. The
equationG(1)u = 0 therefore leads to

LJ. L
Uy € ker 23], u eker{ 14}
’ ['—54 ) Log
[ |
Remark 3.5:With the orthogonal block-diagonal matrix

U as in Theorem 3.4, the residual matrices from (6) have,
for all j € {1,...,k}, the special form

Miz2 O 0 O
- | o o o0 o
UMU=\"06 0 Mg, o]
0 0 0 O
Rio 0 0 O
- o 0o 0 o0
URU=|4 o 330 O’
|0 0 0 0
[ M110 0 Mizo Lig
0 0 Loz Log
U 'MgU = ~
0 Mzo —Ljg Mo O
| Ly -Ly 0 0
[ Ry O iRz O
0 0 0 O
U'RU=| .= «
o 0 0 O



IV. TRANSFER FUNCTIONS OF ELECTRICAL CIRCUITS  positive real and reciprocal with signatuten,,m,) [5].
Consequently, the overall transfer function has the form
Electrical circuits with linear time-invariant resistas; G G
capacitances and inductances can be modeled by linear G(s) = fj(s%) (S (16)
differential-algebraic systems of the form ~Gow(9) Guw(s)
where

%Ex(t) = AX(t) + Bu(t) (10) G,]f(s) = Gj,](S)T S R(S)m'ﬂ’m'ﬂ,
y(t) =Cx), Gyw(s) = Guw(9)" € R(9Y™ ™,
whereE,Ac R™, B,C" ¢ R™™ Gyp(s) € R(s)™ ™

. ] m :
The functionsu,y: R — R are caIIedmput and outp.ut Next we determine some expressions ® ,(s), Gy +/(s),
of the system, resp. If the matrix pencgE— A € R[g is Guw(9). Define the rational function

regular (that is, SE— A € Gly(R(s))), then the frequency
domain behavior is described by tiransfer functiopwhich ~ Hege (S) = SACCAL +Ag GA; + 1A L7IA] € R(s)™e™.

's given by It follows by simple arithmetics that

-1
w4 g w

G(s) =C(SsE—A) Be R(s)™™.

AT 0
— |As
We assume that the input is formed by the currents of current G(s) = [ 0 I}
sources and the voltages of voltage sources, and the output .
o . Next we determine
is given by the currents of voltage sources together wit

the voltages of voltage sources. Modified nodal analysis X11(8) X12(8)| _ [Heze(s) Ag -1 (18)
(MNA) [9] leads to Xo1(S) Xao(9)| | -A), O]
—_—
SA-CA] +¢K9‘AI{ AL Ay X(s)
SE-A= AL st 01, Let Z, be a matrix with full column rank and i&, =
—Ay 0 0 (11)  kerA]. Then the equation
—A 0 0
BT:C: |: Oj 0 —| ], | = HCRL(S)Xll(S)—i-Aq/le(S),
" 0= —ALXu(9) (19)
= —A X1t
x=(TLinT, u=(5v))T y=(-Vi—i])T "’

(i2) leads toXji1(S) = ZyY11(s) for some real rational matrix
where Y11(s). A multiplication of the first equation in (19) from

LT :
CERMNC, G € RoNg, £ € RN A € RNeNe the left with Z,, gives rise to

Ag €R"™G A, c R Ay, c Re™ A, ¢ ReMs Zy = ZyHore(9Z0¥1a(9)
N=Ne+N,+Ny, M=my+my. Condition (15) together with ket = {0} implies
(13) kefAc, Ag, Ac]TZy = {0}. (20)

Here Ac, Az, A., Ay and Ay, denote the element-related
incidence matricesg, G and £ are the matrices expressing The positive definiteness @f G and£ hence gives rise to the
the consecutive relations of capacitances, resistancds a@sitive definiteness oZ,,Hex,(1)Zy. Using thatHex,(S)
inductances (t) is the vector of node potentials,(t), i, (t), is positive real, we can apply Corollary 2.3 to see that
i +(t) are the vectors of currents through inductances, voltagg,Hex. (A)Zy is invertible for allA € C.. Therefore, we
and current sources, and,(t), v-(t) are the voltages of obtain
voltage and current sources. T 15T
. Lo . X11(8) = ZyY11(S) = Zy(ZyH g (S)Z Zy. 21
We assume that the given circuit is connected and passive, 1(s) v¥11(5) v(ZyHere(8)2v) 2y (21)
which is guaranteed by the assumptions Inserting this expression into (19), and observing thﬁ%
is invertible by (14), a multiplication of the resulting e®gs-
(A1) rk[AC’TAK’AL’A‘V’fj] = M, . sion with (AJA,) A/, gives rise to
(A2)c=c' >0,6=6 >0,L=L" >0 B B
_ _ _ Xo1(8) = (ApAw) AL (I =Here (9Z0(Z)Here (9Z0) Z5)).
Note that regularity oBE— A is equivalent to (22)
Since its inverse is reciprocal with signatup, m, ), the
kerA, ={0 d . . : ’
erAy={0}, an (14) rational matrixX(s) has this property, too. Thus we have
. . X12(8) = (Zy(ZyHere (9)Z0) " ZyHere () —DAp(ApAy) .
This is equivalent to the absence of loops of voltage sources (23)
and cutsets of current sources (basically, this means thfie equation
the circuit does not contain any short circuits) [10], [11].
The rational functionG(s) = C(sE— A)~!B is moreover 0= Hege (9)X12(S) +ApXaa(s), (24)

ker[ACaAﬂi?ALaA'V]T :{0} (15)



then leads to sequencey’ Gy (1)u = 0 implies that

X22(8) = (ALAL) TA Here (9) PAL(ALAY) tuckerHeg, (1) =kedAq, Ag ,AL]T.
(1 = Zy(Z)Here (9Zv) ' ZyHexe (9)) SinceP is a projector, we have
Ap(ApAL) L (25) A, (ATAL)t

Note that, for any matrixZ,, with full column rank such ¢ kerp +( imP  nkefAc, Az, A ]")
that imZ, = kerA/,, the rational matrices<i1(s), Xi2(s), e hned

i _ T — T
X21(8), X22(s) defined in (21)—(25) solve (18). Consequently, 7'mz”’T*kerA“” 7kerz'?H“‘L(l) .
the transfer function in (16) is given by = kerA, + ( kerZ,Hexe (1) NkerfAc, Ag ALl )
~—_——
Grs(8) =ALZy(Z Her (9Zy) 1ZA 4, =kerHeg, (1)=kerfAc. Ag AL]T
=kerA), +kefAq-, Ag ,AL]".
Gy (8) =AL (Zu(Z)Hexe (9Zv) " ZyHexe(9) 1) wrketAc A Al
Ay(ALA,) L A multiplication from the left with A), leads to
v (26)

ucA, kefAq Ag ALl 29
Guw(s) =(ApAy) A Hx (s v-kerAc, Ag AL] (29)

s)
o . T
(1= 22 Hone(92) 2} Howe(5) for somez c KEAe A AclT. Since A(ALAL) AT,
Av(ApAy)T Z,(2),Z2y)~1z], are both orthogonal projectors, and their
parametrized byZ,.. By the findings in Corollary 3.2, the ranges orthogonally sum up i, we have
rehon 3 s ponm s s e a0 i) w22z T
Proposition 4.1:Let [E,A,B,C| as in (11) be given such Thus we obtain
0o A, 42, 09 16 09 bl . o e, (A
=Hex (DPA(AJAY) t

kerGrs(A) ={ xeRY | AyxcimAy },  (27) = Hexe (1) Pz —Here ( )Pzw(zvzvrlzq?z
kerGyy(A) =A,, -kefAc, Ag ,AL]T. (28) 7 —
Proof: Since =Hx(1)z=0,
T _ i L TVl
kerZ, = (imZy)"~ = (kerA,)~ =imAy, sinceze keffAq, Ag ,A.]" = kerHx,(1). Thus we have
we find Gow (U= (AJAy) *ALHere (D)PAL(ALAL) tu=0.
7 ; T
{xeRY | AyxeimAy } =KerZyA . Corollary 2.3 then implieS,y(A)Ju=0forallA €eC,. m
Then relation (27) hence follows from (20) and the fact that Proposition 3.3 shows thaﬁjr,/(s)T and G, (s) are
Here (A) +Hege(A)" is positive semi-definite with constant on keB .+ (A ) and keiGy (A ), resp. To verify this

fact, letu; € kerZ,A s, u, € A],-ker{Ac, Ag ,A.]". Then

forall A € C,. Grp(9) U= (ApAy) Ay

Since Gyy(s) € R(s)™ ™ is symmetric and positive real, -(Hexe (9Zy(Z)Hewe (9Zy) 22, — DA sug
we can apply Propo_sition_2.2 to see that, for provilng the — _(ATA.)ATA U

inclusion “C” in (28), it suffices to show thati € R™ with v VS L

U'Gyy(L)u=0 impliesuc A;,-kerfAc, Ag ,A.]": Since  Further, letz e kef{A, Ag,A.]T be such that, = Az

P_| _Z'V(Z;EHCKL(1)2'1/)7121—15HCKL(1) c RMere Then, again using (30), we obtain

kerHere (A) +Hexe (A)* = kerfAc, Ag , AL]T

_ _ . . Gry(Sp
is a projector (onto ket,,Hq«, (1) and along inZ,) with the B
property that = A (Zy(ZyHere (9Zy) 12 Here (9) — 1)
~ Ap(ALAY) ALz
Hoe (1P =Hexe (1) — Hore (DZ0(Z) Hore (1)22) viAvAY) T Ay
T = -ALA(ALAY) 1Az
~ZyHexe (1) i
—PTHe (1) +A S Zy(ZyHere (9Zy) 2 Hexe (9)
- CRL )

(1= Zy(2)20)12y)2
= —ALAL(ALAY) 1ALz
.
Here (1)P =P Hexe (1P, +ALZy(ZIHexe (9Zy) 22 Here (9)2
In particular,He. (1)P is positive semi-definite. As a con-  — A, Zy(Z)Hexe (9Z0) 120 Here (922Z(2),2) 712, 2

it follows that



= -ALALALA)) A Z

+A L Zy(ZyHere (9Zy) 2 Here (92
N——
=0
~ALZ,(2]2,)712]))z= -AL,z
From the equation
0 A;
0] _ |Ag .
0 All”
Uz A,
we obtain, by multiplying from the left with

[Ac, Az, AL, Ay] and using (15), that
2= (AcAl +AxAL +AA] +ALAL) A .

This gives rise to

Gun(SUz=—AL(AAL+AgAL +AA] +ALAL) A .

Using the above computations, we can determine the

form (8). Consider a matrixZq, Wwith imZqg, =
ker{AC,AR,AL]T. Further, letZ,_ v, Z, o, Zy—cacr
Zy, cx. b€ matrices with orthonormal columns and

imZ,_y =kerZ,A », imZ, , =imA},Z,,

iMZy_cx, = KerZhg Ay,  iMZy_ e, =iMALZogs
Then the matrix
U Z, 0w Zs 0 0

= =/
0 0 Zvwe Zo-we

is orthogonal. The previous calculations further give tize
TG(s)U being in the form (8) with
Lia=—Z, AL (ACAL +AgAL +A AL +ALA]) L
'A“VzlfV—CRLa

_T —
L23 :Z,ff’VA A‘V(A A‘V) 1Z'V*CKL5
Loa=—Z, yAL(AAL+AgAL +AA] +AA])

=/
: A’VZ'VfCKLv
— T —
=Z AL Zy(ZJHere (89Z0)

T N
=2y A (Zo(Z)Hexe(9Zy) 12 Here () — 1)

'A‘V(A—'IDA‘V)ilz'VfCRLv

Hll(S) Zr,T,AjZ/j,q/,

His(s)

ST
=7, AL (ADAY) AT Hexe (9)
(1 = Zy(Z)Here (9Z) 1 ZPHere (9))

Ap(AAY) Y Zy i

Has(s)

We finally give an expression for the kernels of the circuit[€]

transfer function.

Proposition 4.2: Let [E,A,B,C] as in (11) be given such [10]

that (A1), (A2), (14) and (15) hold. Then the rational fuocti
G(s) = C(SE— A)~1B € R(s)™™ satisfies, for alll € C,

kerG(A) = kerA s x (AL-ker{AC, A, AL,A,]]T) :

[11]

Proof: Using (9) and the above expressions fqu,
Loz andLyy, it suffices to prove that
i
0 { x € Kerz,A ‘ (ALA,) TATA ,x=0 }
=kerA,,
(i)

{xekelAc, Ag, AL | AL(AAL +AzAL
FAAT +AJAL) A Al X = o}.
=kerAc, Az, AL AT
(i) The inclusion ‘C" follows from
(ApAL)IA],
Zy
(ii) To prove “C”, let xc kerlA-, Ag ,A.]T

invertibility of
. The converse inclusion is obvious.
satisfy
AL(ACAL+AgAL +AAL +ALAL) TAA X =0.
Then
0=AL(AAL+AgAz +AA] +ALA,) T
(ACAL +AgAL +ALAL +AYA L)X
=Alx

and thusx € keflAq, Az , AL, A,]T
Assuming conversely thate kerfA-, Ag , A, A,]T,
we clearly havex € ker{A-, Az ,A.]T, and further

AL(AAL +AgAg +ALA] +ALAY) TALA X

=AL(AAL +AgAL +AA] +ALA)
(ACAL+ARAL +ALAL +ALA L)X
=Alx=0.
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