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Abstract. This article is concerned with the discretization of parabolic optimization problems
subject to pointwise in time constraints on mean values of the derivative of the state variable.
Central component of the analysis are a priori error estimates for the dG(0)-cG(1) discretization
of the parabolic partial differential equation (PDE) in the L∞(0, T ;H1

0 (Ω))-norm, together with
corresponding estimates in L1(0, T ;H−1(Ω)) for the adjoint PDE. These results are then utilized
to show convergence orders for the discrete approximation towards the solution of the parabolic
optimization problem.
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1. Introduction. We are concerned with optimization problems governed by
parabolic partial differential equations (PDEs). For clarity of the presentation, we
confine ourselves to the case of the heat-equation with homogeneous Dirichlet bound-
ary conditions and a control acting distributed in the domain. The most important
feature is the consideration of pointwise in time constraints on weighted mean-values
of the spatial gradient of the solution of the PDE. Consideration of such constraints
is motivated by bounds on average stresses in glass cooling processes, [10,31,32], and
steel cooling, see, e.g., [38] and the references therein.

To be precise, for a time interval I = (0, T ) and a domain Ω ⊂ Rd, d ∈ {2, 3}, let
u = u(t, x) be the state variable, i.e., the solution of the parabolic PDE and q = q(t)
the control variable. We consider the following model problem

Minimize
1

2

∫
I

∫
Ω

(u(x, t)− ud(x, t))2dxdt+
α

2

∫
I

q(t)2dt,

where u and q are coupled by the parabolic PDE

∂tu(t, x)−∆u(t, x) = q(t)g(x)

with suitable boundary conditions and initial data. Additionally, box constraints on
the control variable and, most importantly, state constraints of the form∫

Ω

|∇u(x, t)|2ω(x)dx ≤ b ∀t ∈ [0, T ]

are considered. The precise formulation of the problem is presented in Section 2.
The following a priori error analysis is inspired by the work of [26] where the

authors extended the technique developed in [27] and [28], to the case of constraints
on mean values of the state. However, due to the consideration of derivatives of the
state, the analysis of the problem at hand is severely more involved. Indeed, the error
estimate for the optimal control problem requires, at any level of discretization, error
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estimates for the state equation in L∞(I,H1
0 (Ω)), instead of L∞(I, L2(Ω)) considered

in [26], which are not present in the literature. Namely, for the temporal discretization
we will show

‖u− uk‖L∞(I,V ) ≤ Ck
(

log
T

k
+ 1
) 1

2
(
‖f‖L∞(I,V ) + ‖u0‖H3(Ω)

)
in Theorem 4.8. The corresponding estimate for the spatial discretization error

‖ukh − uk‖L∞(I,V ) ≤ Ch(‖f‖L2(I,V ) + ‖u0‖H2(Ω))

will be provided in Theorem 4.12.

In addition, as usual in the presence of pointwise state constraints, the associated
Lagrange multiplier is a Borel measure in C(Ī)∗, leading to low regularity of the
adjoint state.

The literature on gradient state constraints for parabolic problem has only few
contributions. To the best of the authors knowledge, an a priori analysis in the case
of gradient state constraints has not yet been considered. Integral gradient constraint
pointwise in time are considered in [25], where existence and optimality conditions
are discussed. In [8], a Pontryagin’s principle is obtained using Ekeland’s variational
principle. In [33], second order sufficient conditions are discussed in a setting including
integral gradient constraints.

Integral state constraints, involving the state, but not its derivative, were consid-
ered in [15] and [2]. In both cases, second order sufficient conditions were investigated;
the former in presence of a non-linearity in the boundary condition, the latter in pres-
ence of a cubic non-linearity in the differential equation. For state constraints of
integral and mixed type in the semilinear case, we mention also [4, 9].

State constraints pointwise in space and time are discussed in several publications.
Regarding the linear case, in the recent publication [16] a priori error estimates in the
L2-norm are derived. A Lavrentiev-type regularization was considered in [29] for both
distributed and boundary controls. For a discussion of the variational discretization
approach in the parabolic case, we refer to [12]. The papers [1, 5, 21, 34] deal with
semilinear differential equations and second order sufficient conditions.

Gradient constraints for elliptic problem have recently received more attention
than the parabolic case. Optimality conditions have been derived on smooth domains
in [6,7], the case of nonsmooth polygonal domains was considered in [39] Algorithmi-
cally, barrier methods where considered in [35], while penalty methods are considered
in [19] for smooth domains and [40] for nonsmooth polygonal domains. A priori error
estimates have been derived in [11,18,30], and [40] for nonsmooth domains.

This paper is structured as follows: In Section 2, we define the model problem,
introduce some notations and state the necessary optimality conditions. The time and
space discretization of the problem is presented in Section 3. In Section 4, we provide
stability estimates for the state equation and for additional auxiliary problems. At
any level of discretization, we derive error estimate for the state equation in the
L∞(I,H1

0 (Ω))-norm. In Section 5, we assemble the results providing the rate of
convergence for the optimal control problem.

2. The Problem. Let Ω ⊂ Rd, with d ∈ {2, 3}, be a convex bounded domain
with C2-boundary, I = (0, T ) a given time interval and abbreviate V := H1

0 (Ω),
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H := L2(Ω). We consider the linear parabolic PDE

∂tu−∆u = f in I × Ω,

u = 0 on I × ∂Ω,

u = u0 in {0} × Ω,

(2.1)

with right hand side f = f(t, x) = q(t)g(x) =
∑m
i=1 qi(t)gi(t), qi ∈ L2(I), gi ∈ V ,

u0 ∈ H2(Ω) ∩ V . The splitting of the right hand side is motivated by practical
considerations in the context of industrial applications, where the control q acts in
time only and g represents the control action.

The regularity of the data ensures the existence of a weak solution for (2.1) in
the space

U = {u ∈ L2(I,H2(Ω)) ∩ L∞(I, V ), ut ∈ L2(I,H)}, (2.2)

see [14, Chapter 7, Theorem 5]. The thus defined control-to-state map S : L2(I)m →
U , which associates to any given q ∈ L2(I)m the solution Sq = u(q) to (2.1), is
continuous.

In the following, (·, ·)I denotes the standard inner product in L2(I,H), i.e.,
(·, ·)I =

∫
I
(·, ·)dt with associated norm ‖ · ‖I , while (·, ·) and ‖ · ‖ is used for H.

Additional notation is introduced at the end of the section.
The following optimal control problem with tracking-type objective is then con-

sidered

Minimize
(q,u)∈Qad×U

J(q, u) =
1

2
‖u− ud‖2I +

α

2
‖q‖2L2(I),

subject to (2.1) and

(|∇u|2, ω) ≤ b ∀t ∈ Ī

(2.3)

with prescribed temperature profile ud ∈ L2(I,H), weighting function ω ∈ L∞(Ω),
b ∈ R, and admissible control set

Qad = {q ∈ L2(I)m | qmin ≤ q(t) ≤ qmax, a.e. in I}

with qmin < qmax ∈ R.
Assumption 2.1. We assume the following regularity condition to hold:

∃q̃ ∈ Qad such that (|∇u(q̃)|2, ω)− b < −ε < 0, (2.4)

for some ε ∈ R+.
The regularity condition ensures the existence of a feasible point for (2.3), justi-

fying the well-posedness of the problem using standard arguments.
Proposition 2.2. The optimal control problem (2.3) admits a unique solution

(q̄, ū) ∈ Q× U , where Q = L∞(I).
Proof. The problem can be formulated in the setting of the distributed optimal

control problem analyzed in [25], where well-posedness is showed. The additional
regularity of the control is a consequence of the box-control constraint.

Remark 2.3. We observe that there holds the embedding U ↪→ C(Ī , V ), see [22,
Theorem 3.1, Chapter 1]. This is what we need to treat the state constraint. Indeed,
defining G(u) := (|∇u|2, ω) we have G : U → C(Ī).
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In a next step, we formulate the necessary optimality conditions for the optimal
control problem.

Theorem 2.4. Given Assumption 2.1 the pair (q̄, ū) ∈ Qad × U is optimal for
(2.3) if and only if it is feasible and there exists a Lagrange multiplier µ̄ ∈ C(Ī)∗ and
an adjoint state z̄ ∈ L2(I×Ω) satisfying the following system of optimality conditions:

(∂tū, ϕ)I + (∇ū,∇ϕ)I = (q̄g, ϕ)I + (u0, ϕ(0)) ∀ϕ ∈ U, (2.5a)

(∂tϕ, z̄)I + (∇ϕ,∇z̄)I = (ū− ud, ϕ)I + 〈µ̄, 2(∇ū∇ϕ, ω)〉 ∀ϕ ∈ U, (2.5b)

α(q̄, q − q̄)L2(I) + (z̄, (q − q̄)g)I ≥ 0 ∀q ∈ Qad, (2.5c)

〈b−G(ū), µ̄〉 = 0, µ̄ ≥ 0, (2.5d)

where 〈·, ·〉 denotes the duality pairing between C(Ī)∗ and C(Ī).
Proof. The continuity of the control-to-state map S ensures that the reduced cost

functional j(q) = J(q, Sq) is well-defined.
Denoting with K = {v ∈ C(Ī) | v ≤ 0, a.e. in Ī} the closed convex cone of

non positive continuous functions, we observe that Assumption 2.1 corresponds to
G(Sq̃) ∈ intK. Thus, we can formulate problem (2.3) in the abstract setting

min j(q)

s.t. G(Sq) ∈ K q ∈ Qad,

and the claim follows by standard argument, see, e.g., [37, Chapter 6] together with
the solvability of the adjoint equation, see, e.g., [25, Lemma 3].

Remark 2.5. Indeed, for the solution of the adjoint equation (2.5b) there holds
the additional regularity z̄ ∈ L∞(I,H−1(Ω)), see [25, Appendix 1].
We conclude the section with some notation for continuous and discrete negative
norms following [36]. For a nonnegative integer s, we introduce the space

Ḣs(Ω) = {v ∈ Hs(Ω) |∆jv = 0 on ∂Ω, for j < s/2},

and the iterated solution operators for Poisson’s problem

−∆−1 : H−1(Ω)→ Ḣ1(Ω),

−∆−1 : L2(Ω)→ Ḣ2(Ω),

−∆−2 : H−1(Ω)→ Ḣ3(Ω).

Then, the semi-norm

| · |−s = (−∆−s·, ·)1/2

is equivalent to the usual negative norm on the space Ḣs(Ω), see [36, Lemma 5.1].
As a consequence, we can define the following equivalent norms on H−s(Ω) and
L2(I,H−s(Ω))

‖ · ‖H−1(Ω) := ‖∇∆−1 · ‖, ‖ · ‖L2(I,H−1(Ω)) := ‖∇∆−1 · ‖I ,
‖ · ‖H−2(Ω) := ‖∆−1 · ‖, ‖ · ‖L2(I,H−2(Ω)) := ‖∆−1 · ‖I ,
‖ · ‖H−3(Ω) := ‖∇∆−2 · ‖, ‖ · ‖L2(I,H−3(Ω)) := ‖∇∆−2 · ‖I .

Denoting by Vh the standard conforming finite element space of piecewise linear func-
tions, which will be introduced in detail in Section 3.2, we define the inverse of the
discrete Laplacian

−∆h : H−1(Ω)→ Vh,
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which associates to any f ∈ H−1(Ω) an element vh ∈ Vh given by

(∇vh,∇ϕh) = f(ϕh), ∀ϕh ∈ Vh.

We introduce the discrete semi-norm

| · |−s,h = (−∆−sh ·, ·)
1/2,

which is equivalent to the continuous semi-norm modulo a small constant, see [36,
Lemma 5.3].

Throughout the article, we denote by C a generic constant.
Remark 2.6. From the definition of Ḣs(Ω), we observe that the norm ‖ · ‖H−s

corresponds to the norm of (Hs(Ω) ∩ H1
0 (Ω))∗ when s = 1, 2. While for s = 3, we

have the additional condition ∆v = 0.

3. Discretization. In this section, we briefly describe the discretization in time
and space of the state equation together with the corresponding optimality conditions
for the semidiscrete and discrete optimal control problem.

The problem is discretized using the so called dG(0)cG(1) method, continuous in
space and discontinuous in time Galerkin method. We refer to [13] and [36] for more
details.

For the discretization of the control variable, we use the variational approach,
going back to [20], implying that the control variable is discretized implicitly by the
optimality conditions. Here this means that qk is piecewise constant.

3.1. Time Discretization. To discretize the problem in time, let ti be such
that 0 = t0 < t1 < ... < tN−1 < tN = T . Then, the intervals In = (tn−1, tn] for
n = 1, ..., N and I0 = {0} give a partition of Ī. The length of the interval In is kn and
we set k = maxn kn. Further, we assume the existence of strictly positive constants
a, c, k̃ such that the following technical conditions hold:

min
n>0

kn ≥ cka, k̃−1 ≤ kn
kn+1

≤ k̃ ∀n > 0.

Denoting with P0(In, V ) the space of piecewise constant polynomials on In with values
in V , we introduce the semidiscrete state and trial space

Uk = Uk(V ) =
{
ϕk ∈ L2(I, V )

∣∣ϕk,n = ϕk|In ∈ P0(In, V ), n = 1, ..., N
}
,

with inner product (·, ·)In and norm ‖ · ‖In given by the restriction of the usual inner
product and norm of L2(I,H) onto the interval In, i.e., (·, ·)In =

∫
In

(·, ·)dt.
Since our functions are piecewise constant on each interval, we can simplify stan-

dard notation in our case. It is

ϕn+1 = ϕ+
n = lim

t→0+
ϕ(tn + t), ϕn = lim

t→0+
ϕ(tn − t), [ϕ]n = ϕn+1 − ϕn,

for functions ϕ ∈ Uk. Then, for uk, ϕ ∈ Uk we introduce the bilinear form

B(uk, ϕ) =

N∑
n=1

(∂tuk, ϕ)In + (∇uk,∇ϕ)I +

N∑
n=2

([uk]n−1, ϕn) + (uk,1, ϕ1), (3.1)

and the semidiscrete state equation reads: for q ∈ Q, find uk(q) ∈ Uk such that

B(uk(q), ϕ) = (qg, ϕ)I + (u0, ϕ1) (3.2)
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holds for any ϕ ∈ Uk. In particular, we observe that G(uk) is constant on each In,
i.e., G(uk) ∈ Uk(R).

Remark 3.1. Utilizing that the solution u(q) of (2.1) is in C(I, L2(Ω)) it is
clear, that u(q) satisfies (3.2) as well. Thus, there holds the orthogonality relation
B(u(q)− uk(q), ϕ) = 0, ∀ϕ ∈ Uk.

After this preparation, we state the semidiscrete optimal control problem:

Minimize
(qk,uk)∈Qad×Uk

J(qk, uk) =
1

2
‖uk − ud‖2I +

α

2
‖qk‖2L2(I)

subject to (3.2) and

G(uk) |In ≤ b, n = 1, ..., N.

(3.3)

Remark 3.2. Indeed, given Assumption 2.1, the above problem (3.3) satisfies a
regularity condition once k is sufficiently small. To see this, we note that (2.4) asserts
the existence of ε > 0 such that G(u(q̃)) ≤ b− ε, from which

G(uk(q̃)) = G(u(q̃)) +G(uk(q̃)− u(q)) ≤ b− ε+ ‖ω‖L∞(Ω)‖u(q̃)− uk(q̃)‖L∞(I,V ).

By the L∞(I, V ) convergence of the semi-discretization provided in Theorem 4.8, we
conclude that G(uk(q̃)) < b once k is sufficiently small.

Proposition 3.3. The semidiscrete optimal control problem (3.3) admits a
unique solution (q̄k, ūk) ∈ Qad × Uk once k is sufficiently small.

Proof. The well-posedness of the problem follows by standard argument, utilizing
that by Remark 3.2 there exists a feasible point once k is small enough.

Theorem 3.4. Given Assumption 2.1 for the semi-discretized solution operator,
the pair (q̄k, ūk) ∈ Qad × Uk is optimal for (3.3) if and only if it is feasible and there
exists a Lagrange multiplier µ̄k ∈ C(Ī)∗ and an adjoint state z̄k ∈ Uk satisfying the
following system of optimality conditions

B(ūk, ϕ) = (q̄kg, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Uk, (3.4a)

B(ϕ, z̄k) = (ūk − ud, ϕ)I + 〈µ̄k, 2(∇ūk∇ϕ, ω)〉 ∀ϕ ∈ Uk, (3.4b)

α(q̄k, q − q̄k)L2(I) + (z̄k, (q − q̄k)g)I ≥ 0 ∀q ∈ Qad, (3.4c)

〈b−G(ūk), µ̄k〉 = 0, (3.4d)

where the Lagrange multiplier µ̄k is given by

〈µ̄k, v〉 =

N∑
n=1

µk,n
kn

∫
In

v(t)dt, ∀v ∈ C(Ī) ∪ Uk(R) (3.5)

with µk,n ∈ R+ for any n = 1, ..., N .
Proof. The proof moves along the same line of the continuous case with the

difference given by the presence of the finitely many state constraints G(uk) |In ≤
b, n = 1, ..., N . This lead to a different definition of the closed convex cone {v ∈
RN | vn ≤ 0, n = 1, ..., N}. As a consequence, we have the existence of Lagrange
multipliers µk,n ∈ R+ for all n = 1, ..., N , associated to the subintervals In. Then, we
have µ̄k ∈ C(Ī)∗ by construction in (3.5).

Remark 3.5. The boundedness of the optimal pair (q̄k, ūk) and Lagrange mul-
tiplier µ̄k follows by standard argument. In particular, in view of Theorem 4.8 and
Assumption 2.1, one has J(q̄k, ūk) ≤ J(q̃, uk(q̃)) ≤ c, implying ‖ūk‖I + ‖q̄k‖L2(I) ≤ c.
Exploiting the adjoint equation (3.4b), the variational inequality (3.8c) and the posi-
tivity of µ̄k one obtains ‖µ̄k‖C(Ī)∗ ≤ c, compare to [26, Lemma 6.2.].
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3.2. Space Discretization. We consider a family Th of subdivisions consisting
of closed triangles or quadrilaterals (tetrahedral or hexahedral in dimension three) T
which are affine equivalent to their reference elements. The union of these elements
Ωh = int

(⋃
T∈Th T

)
is considered to be such that the vertices on ∂Ωh are located on

∂Ω. We assume the family Th to be quasi-uniform and shape regular in the sense
of [3] denoting by hT the diameter of T and h := maxT∈Th hT . Then, we define the
conforming finite element space Vh ⊂ V as the space of piecewise linear functions
with respect to Th with the canonical extension v

∣∣
Ω\Ωh

≡ 0 for any v ∈ Vh. Then, the

discrete state and trial space are given by

Uk,h = Uk,h(Vh) =
{
ϕkh ∈ L2(I, Vh)

∣∣ϕkh|In ∈ P0(In, Vh), n = 1, ..., N
}
.

The discrete state equation reads: for q ∈ Q find ukh ∈ Uk,h such that

B(ukh(q), ϕ) = (qg, ϕ)I + (u0, ϕ
+
0 ), (3.6)

for any ϕ ∈ Uk,h.
Then, the discrete optimal control problem is given by

Minimize
(qkh,ukh)∈Qad×Uk,h

J(qkh, ukh) =
1

2
‖ukh − ud‖2I +

α

2
‖qkh‖2L2(I)

subject to (3.6) and

G(ukh) |In ≤ b, n = 1, ..., N.

(3.7)

Using similar arguments as in the semidiscrete case, the regularity condition for the
discrete problem is a consequence of Assumption 2.1 once k, h are sufficiently small
utilizing the discretization error of the state equation shown in Theorem 4.12, compare
Remark 3.2. In particular, Assumption 2.1 provides the existence of a feasible point
for (3.7) once k, h are sufficiently small. Then, the existence of a unique optimal pair
(q̄kh, ūkh) ∈ Qad × Uk,h of (3.7) follows by standard arguments.

The optimality conditions are given in the following.
Theorem 3.6. Given Assumption 2.1 for the discretized solution operator, the

pair (ūkh, q̄kh) ∈ Uk,h ×Qad is optimal for (3.3) if and only if it is feasible and there
exists a Lagrange multiplier µ̄kh ∈ C(Ī)∗ and an adjoint state z̄kh ∈ Uk,h satisfying
the following system of optimality conditions

B(ūkh, ϕ) = (q̄khg, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Uk,h, (3.8a)

B(ϕ, z̄kh) = (ūkh − ud, ϕ)I + 〈µ̄kh, 2(∇ūkh∇ϕ, ω)〉 ∀ϕ ∈ Uk,h, (3.8b)

α(q̄kh, q − q̄kh)L2(I) + (z̄kh, (q − q̄kh)g)I ≥ 0 ∀q ∈ Qad, (3.8c)

〈b−G(ūkh), µ̄kh〉 = 0, (3.8d)

where the Lagrange multiplier µ̄kh is given by

〈µ̄kh, v〉 =

N∑
n=1

µkh,n
kn

∫
In

v(t)dt, ∀v ∈ C(Ī) ∪ Uk(R) (3.9)

with µkh,n ∈ R+ for any n = 1, ..., N .
Proof. The proof follows by standard arguments, compare to Theorem 3.4
Remark 3.7. The boundedness of (q̄kh, ūkh) and µ̄kh independent of the dis-

cretization parameters follows as in Remark 3.5, compare to [26, Lemma 6.5].
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4. The State Equation . In this section, we derive the L∞(I, V ) error estimate
for the state equation. The derivation employs a duality technique for parabolic
equations requiring at any level of discretization the introduction of the homogeneous
(uncontrolled) backward counterpart of the state equation, see, e.g., [24], [36].

In the following subsection, we analyze the stability of the continuous backward
problem together with an additional auxiliary problem. In Section 4.2 and 4.3, we
inspect the temporal and spatial error, respectively.

4.1. Continuous Auxiliary Solutions. For a given wT ∈ V ∗ := H−1(Ω), we
consider the problem to find w ∈ W := W (I) = L2(I, L2(Ω)) ∩ H1

(
I, (Ḣ2)∗

)
such

that

−(ϕ, ∂tw)I + (∇ϕ,∇w)I = 0,

w(T ) = wT ,
(4.1)

for any ϕ ∈ L2(I,H2(Ω))∩H1(I, L2(Ω)), see [23, Chapter 4, Section 8] and Lemma 4.2
below.

Remark 4.1. We observe that, thanks to [L2(Ω), (Ḣ2)∗]1/2 = V ∗, compare to
[22, Chapter 1, Theorem 12.5], there holds the embedding W ↪→ C(Ī , V ∗), see [22,
Chapter 1, Theorem 3.1].

Further, we need an additional backward continuous problem on the truncated
time interval Î = (0, t̂), where t̂ ∈ IN . Find ŵ ∈W (Î) such that

−(ϕ, ∂tŵ)Î + (∇ϕ,∇ŵ)Î = 0,

ŵ(t̂ ) = wT ,
(4.2)

for any ϕ ∈ L2(Î , H2(Ω)) ∩H1(Î , L2(Ω)).
We start the analysis with a regularity result for the solution of (4.1). The

following regularity result extends the well-known energy estimates for linear parabolic
equations with homogeneous Dirichlet data. This result is already present in some
classical books, see, e.g., [23]; we include it to keep the exposition self-contained.

Lemma 4.2. Let w ∈W be the solution of (4.1). Then, there holds

‖w‖I + max
t∈Ī
‖w(t)‖H−1(Ω) ≤ C‖wT ‖H−1(Ω). (4.3)

Proof. We test (4.1) with ϕ = −∆−1w, obtaining

(∆−1w, ∂tw)I − (∇∆−1w,∇w)I − (w(T )− wT ,∆−1w(T )) = 0. (4.4)

We note that (4.4) holds also pointwise almost everywhere on I and w(T ) = wT .
Then for a.e. t ∈ I

(∆−1w(t), ∂tw(t))− (∇∆−1w(t),∇w(t)) = 0. (4.5)

We reformulate the first term, using the relation ∂tw = −∆w, obtaining

(∆−1w(t), ∂tw(t)) = −‖w(t)‖2.

For the second, we see, by analogous arguments,

−(∇∆−1w(t),∇w(t)) = −(∆−1w(t), ∂tw(t))

= (∇∆−1w(t),∇∆−1∂tw(t)).
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Then, observing that the time derivative interchanges with ∇ and ∆−1, we have

(∇∆−1w(t),∇∆−1∂tw(t)) =
1

2

d

dt
‖∇∆−1w(t)‖2.

Thus, it follows from (4.5) that

d

dt
‖∇∆−1w(t)‖2 = 2‖w(t)‖2. (4.6)

Integrating (4.6) over (t, T ) and defining η(t) = ‖∇∆−1w(t)‖2,ψ(t) = ‖w(t)‖2, we
obtain

η(t) + 2

∫ T

t

ψ(s) ds = η(T ).

Noting that both η and ψ are nonnegative, this shows the assertion.
In a next step, we derive an error estimate for the solution of (4.1) and (4.2). In

Section 4.2, we use this estimate to investigate the error at the nodal points of the
time discretization.

Lemma 4.3. Let w and ŵ be solutions of (4.1) and (4.2), respectively. Then the
error satisfies

‖w − ŵ‖L1(Î,H−1(Ω)) + ‖w(0)− ŵ(0)‖H−3(Ω) ≤ Ck
(

log
T

k
+ 1
) 1

2 ‖wT ‖H−1(Ω). (4.7)

Proof. In a first step, we derive the equation for the error ε := ŵ − w. Then,
subtracting (4.1) from (4.2), integrating only on Î, we obtain

−(ϕ, ∂tε)Î + (∇ϕ,∇ε)Î = 0

for any ϕ ∈ L2(Î , H2(Ω)) ∩H1(Î , L2(Ω)).
Integration by parts in the second term gives

−(ϕ, ∂tε)Î − (∆ϕ, ε)Î = 0. (4.8)

The proof is now divided in two parts corresponding to the two terms in the left-hand
side of (4.7). We start estimating ‖ε(0)‖H−3(Ω).

(i) Testing (4.8) with ϕ = −∆−3ε, we have

(∆−3ε, ∂tε)Î + (∆−2ε, ε)Î = 0. (4.9)

Observing that

(∆−3ε, ∂tε)Î =

∫
Î

∂t(∆
−3ε, ε)dt− (∂t(∆

−3ε), ε)Î ,

we rewrite (4.9) as

−(∆−3ε(0), ε(0))− (∂t(∆
−3ε), ε)Î + (∆−2ε, ε)Î

= −(∆−3ε(t̂ ), wT − w(t̂ )).
(4.10)

We consider each term in the last equation separately. Integration by parts
in space gives

−(∆−3ε(0), ε(0)) = (∇∆−2ε(0),∇∆−2ε(0)). (4.11)
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Further, the relation ∂tε = −∆ε and ∆−1 being self-adjoint implies

−(∂t(∆
−3ε), ε)Î = (∆−2ε, ε)Î = (∆−1ε,∆−1ε)Î . (4.12)

To estimate the right-hand side of (4.10), we observe that

ε(t̂ ) = wT − w(t̂ ).

Then, with the help of the Cauchy-Schwarz inequality, the Fubini-Tonelli
theorem, and Lemma 4.2, we have

−(∆−3ε(t̂ ), wT − w(t̂ )) = ‖∇∆−2ε(t̂ )‖2

=

∫
Ω

(∫ T

t̂

∇∆−2∂tw(t)dt
)2

dx

=

∫
Ω

(∫ T

t̂

−∇∆−1w(t)dt
)2

dx

≤ k
∫

Ω

(∫ T

t̂

|∇∆−1w(t)|2dt
)
dx

= k

∫ T

t̂

∫
Ω

|∇∆−1w(t)|2dxdt

≤ Ck2‖∇∆−1wT ‖2.

(4.13)

Combining (4.10) with the relations (4.11), (4.12) and the estimate of the
right-hand side (4.13), we conclude

‖∇∆−2ε(0)‖2 + 2‖∆−1ε‖2
Î
≤ Ck2‖∇∆−1wT ‖2. (4.14)

(ii) To derive an estimate for ‖ε‖L1(I,H−1(Ω)), we set ϕ = τ∆−2ε in (4.8), where

τ(t) = max(t̂− t, k) for t ∈ Î.
Assuming that the following relation has already been derived

‖
√
τ∇∆−1ε‖2

Î
≤ Ck2‖∇∆−1wT ‖2. (4.15)

It follows

‖ε‖2
L1(Î,H−1(Ω))

≤ ‖
√
τ
−1‖2

L2(Î)
‖
√
τε‖2

L2(Î,H−1(Ω))

≤ Ck2
(

log
T

k
+ 1
)
‖wT ‖2H−1(Ω).

Therefore, we focus in the derivation of (4.15). Inserting ϕ = τ∆−2ε in (4.8),
it follows

−(τ∆−2ε, ∂tε)Î−(τ∆−1ε, ε)Î = 0. (4.16)

We reformulate the first term on the left-hand side using the relation

−(τ∆−2ε, ∂tε)Î = −1

2

∫
Î

∂

∂t

(
τ(∆−2ε(t), ε(t))

)
dt+

1

2

∫
Î

τ
′
(∆−2ε(t), ε(t))

where τ ′ denotes the first derivative of τ with respect to t. The second term
in (4.16) is handled by

−(τ∆−1ε, ε)Î = ‖
√
τ∇∆−1ε‖2

Î
.
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Then, observing that −τ ′ ≤ 1 and ε(t̂) = wT − w(t̂ ), we obtain from (4.16)

t̂

2
‖∆−1ε(0)‖2 + ‖

√
τ∇∆−1ε‖2

Î

≤
‖∆−1ε‖2

Î

2
+
k

2
(∆−2ε(t̂ ), wT − w(t̂ )).

(4.17)

In the next step, we estimate the second term in the right-hand side of the
previous expression. Thanks to (4.13) and Lemma 4.2, it follows

k(∆−2ε(t̂ ), wT − w(t̂ )) = −k(∇∆−2ε(t̂ ),∇∆−1(wT − w(t̂ ))

≤ k‖∇∆−2ε(t̂ )‖‖∇∆−1(wT − w(t̂ )‖
≤ Ck2‖∇∆−1wT ‖2.

Then, from (4.17) and thanks to (4.14) we conclude

t̂‖∆−1ε(0)‖2 + 2‖
√
τ∇∆−1ε‖2

Î
≤ Ck2‖∇∆−1wT ‖2.

This establishes (4.15) as required.

We conclude the section with a time weighted stability result for the solution of (4.1).
This estimate will be used later in the derivation of the temporal error in the interior
of the time interval. A similar technique has been used in [26, Theorem 4.4], see
also [13, Lemma 1].

Lemma 4.4. Let w ∈W be solution of (4.1). Then there holds∫
I

(T − t)‖∂tw(t)‖2H−1(Ω)dt ≤ C‖wT ‖
2
H−1(Ω), (4.18)∫

I\IN
‖∂tw(t)‖H−1(Ω)dt ≤ C

(
log

T

k

) 1
2 ‖wT ‖H−1(Ω). (4.19)

Proof. We start with the first relation. The choice ϕ = (T − t)∆−1∂tw in (4.1)
leads to

−
∫
I

(T − t)(∆−1∂tw, ∂tw)dt+

∫
I

(T − t)(∇∆−1∂tw,∇w)dt = 0. (4.20)

We observe that

−
∫
I

(T − t)(∆−1∂tw, ∂tw) =

∫
I

(T − t)‖∇∆−1∂tw‖2dt,

and ∫
I

(T − t)(∇∆−1∂tw,∇w) = −
∫
I

(T − t)(∂tw,w)dt

= −1

2
‖w‖2I −

1

2

∫
I

d

dt
((T − t)‖w(t)‖2)dt.

Then, from (4.20) we conclude∫
I

(T − t)‖∇∆−1∂tw‖2dt+
T

2
‖w(0)‖2 =

1

2
‖w‖2I ≤ C‖∇∆−1wT ‖2

11



where in the last step we used Lemma 4.2.
The second relation directly follows from (4.18) by means of Cauchy-Schwarz

inequality. In fact, recalling that k 6= T , there holds∫
I\IN

‖∂tw(t)‖H−1(Ω)dt ≤
(∫

I\IN
(T − t)−1dt

) 1
2
(∫

I\IN
(T − t)‖∂tw(t)‖2H−1(Ω)dt

) 1
2

≤ C
(

log
T

k

) 1
2
(∫

I

(T − t)‖∂tw(t)‖2H−1(Ω)dt
) 1

2

.

≤ C
(

log
T

k

) 1
2 ‖∇∆−1wT ‖.

4.2. Temporal Discretization Error Estimates. We now focus on the deriva-
tion of the L∞(I, V ) error estimate for the temporal discretization error which will
be given in Theorem 4.8.

In a first step, we introduce the semidiscrete counterpart of (4.1). For a given
wT ∈ H−1(Ω), find wk ∈ Uk(V ∗) such that

B(ϕ,wk) = (ϕN , wT ) (4.21)

for any ϕ ∈ Uk(V ).
As in [26, Lemma 5.2], we introduce a projection operator πk : C(Ī \ IN , V ∗) →

Uk(V ∗) onto the semi-discrete space, defined by the relation

πkw |In= w(tn−1), (4.22)

and establish a system of equations for the error between (4.22), when applied to the
solution of (4.1), and the solution of (4.21).

Lemma 4.5. For the error ε = πkw − wk between the solutions w given by (4.1)
and wk given by (4.21) with the same initial value wT , it holds for any n = 1, . . . , N
and ϕ ∈ P0(In, H

2(Ω) ∩ V )

(∇ϕ,∇εk)In − (ϕn, [εk]n) =

∫
In

(tn − t)(∆ϕ, ∂tw(t))dt. (4.23)

Proof. The relation can be obtained by Galerkin orthogonality and the definition
of the semidiscrete projection, as in [26, Lemma 5.2].

Remark 4.6. We observe that, thanks to the embedding U ↪→ C(Ī , V ), the
application of the semidiscrete projector to elements of the continuous state space is
well-posed. Further, we can extend πk to Uk by letting πk

∣∣
Uk

= IdUk
.

The following result will be used in Theorem 4.8 for the error estimate in the
interior of the time interval.

Lemma 4.7. Let w and wk be solutions of (4.1) and (4.21), respectively. Then
the corresponding error satisfies

‖w−wk‖L1(I,H−1(Ω)) + ‖w(0)−wk,1‖H−3(Ω) ≤ Ck
(

log
T

k
+ 1
) 1

2 ‖wT ‖H−1(Ω). (4.24)

Proof. We recall the abbreviation εk = πkw − wk and separate the proof in to
two parts corresponding to the norms in the left-hand side of the assertion.
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(i) We observe, that

‖w(0)−wk,1‖H−3(Ω) = ‖πkw(0)− wk,1‖H−3(Ω) = ‖εk,1‖H−3(Ω). (4.25)

We set ϕ = −∆−3εk in (4.23) and obtain, using integration by parts and
∂tw = −∆w,

(∆−2εk, εk)In + (∆−3εk,n, [εk]n) =

∫
In

(tn − t)(∆−1εk, w(t))dt. (4.26)

Then, noticing that

(∆−3εk,n, [εk]n) = −(∇∆−2εk,n, [∇∆−2εk]n),

and thanks to the equality

−(ϕn, [ϕ]n) =
1

2
(−‖ϕn+1‖2 + ‖[ϕ]n‖2 + ‖ϕn‖2) ∀φ ∈ Uk, (4.27)

we obtain from (4.26)

‖∆−1εk‖2In+
1

2
(‖∇∆−2εk,n‖2 − ‖∇∆−2εk,n+1‖2)

≤
∫
In

(tn − t)(∆−1εk, w(t))dt.
(4.28)

Summation over n = 1, ..., N ,Lemma 4.2, and εk,N+1 = 0 gives

‖∆−1εk‖2I + ‖∇∆−2εk,1‖2 ≤ Ck2‖w‖2I
≤ Ck2‖∇∆−1wT ‖2.

We conclude

‖∇∆−2εk,1‖2 ≤ Ck2‖∇∆−1wT ‖2. (4.29)

(ii) To estimate the L1(I,H−1(Ω))-norm, we utilize the splitting

‖w − wk‖L1(I,H−1(Ω)) ≤ ‖εk‖L1(I,H−1(Ω))

+ ‖w − πkw‖L1(I,H−1(Ω)).
(4.30)

In this part, we derive an upper bound for ‖εk‖L1(I,H−1(Ω)). Before starting,
we note that it will be sufficient to show

N∑
n=1

τk,n‖∇∆−1εk‖2In ≤ Ck
2‖∇∆−1wT ‖2. (4.31)

Then, the required estimate follows by

‖εk‖2L1(I,H−1(Ω)) ≤
N∑
n=1

knτ
−1
k,n

N∑
n=1

τk,n‖∇∆−1εk‖2In

≤ Ck2
(

log
T

k
+ 1
)
‖wT ‖2H−1(Ω).
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Therefore, we show that (4.31) holds. Testing (4.23) with ϕ := τk,n∆−2εk,
where τk,n := T − tn−1, we have

−(τk,n∆−1εk, εk)In − (τk,n∆−2εk,n, [εk]n)

=

∫
In

(tn − t)(τk,n∆−1εk, ∂tw(t))dt.
(4.32)

For the left-hand of (4.32) side, we have, using (4.27),

−(τk,n∆−1εk, εk)In = τk,n‖∇∆−1εk‖2In ,

−(τk,n∆−2εk,n, [εk]n) =
1

2
τk,n(−‖∆−1εk,n+1‖2 + ‖∆−1εk,n‖2 + ‖[∆−1εk]n‖2).

We estimate the right-hand side of (4.32) as follows∫
In

(tn − t)(τk,n∆−1εk, ∂tw(t))dt

= −
∫
In

(tn − t)(τk,n∇∆−1εk,∇∆−1∂tw(t))dt

≤ τk,n
2
‖∇∆−1εk‖2In +

τk,n
2

∫
In

(tn − t)2‖∇∆−1∂tw(t)‖2dt.

Combining the previously derived relations, using the equality τk,n = τk,n+1+
kn for the term ‖∆−1εk,n+1‖2, it follows

τk,n‖∇∆−1εk‖2In + τk,n‖∆−1εk,n‖2 − τk,n+1‖∆−1εk,n+1‖2

≤ kn‖∆−1εk,n+1‖2 + τk,n

∫
In

(tn − t)2 ‖∇∆−1∂tw(t)‖2dt.

Summing over n = 1, ..., N , using εk,N+1 = 0 and recalling that kn ≤ k̃kn+1,
we have

N∑
n=1

τk,n‖∇∆−1εk‖2In + T‖∆−1εk,1‖2

≤ k̃‖∆−1εk‖2I

+

N∑
n=1

τk,n

∫
In

(tn − t)2‖∇∆−1∂tw(t)‖2dt.

(4.33)

We note that for t ∈ In and n = 1, ..., N − 1 it holds τk,n ≤ (1 + k̃)(T − t),
while τk,N = kN . This observation suggests the following splitting for the
second term in the right-hand side of (4.33)

N∑
n=1

τk,n

∫
In

(tn − t)2‖∇∆−1∂tw(t)‖2dt

≤
N−1∑
n=1

k2
n

∫
In

τk,n‖∇∆−1∂tw(t)‖2dt+ k2
N

∫
IN

(T − t)‖∇∆−1∂tw(t)‖2dt

≤ (1 + k̃)k2

∫
I

(T − t)‖∇∆−1∂tw(t)‖2dt.
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In conclusion, inserting the above bound in (4.33), using Lemma 4.4 and the
estimate on ‖∆−1εk‖2I from (4.29), we obtain (4.31).

(iii) We continue and estimate the remaining term on the left of (4.30). In view
of (4.19), we introduce the splitting

‖w−πkw‖L1(I,H−1(Ω)) =

∫
I\IN

‖w−πkw‖H−1(Ω)dt+

∫
IN

‖w−πkw‖H−1(Ω)dt.

To estimate the first term we observe that ∆−1, being independent of t,
interchanges with πk. As a consequence, it holds∫

I\IN
‖w − πkw‖H−1(Ω)dt =

∫
I\IN

‖∇∆−1(w − πkw)‖dt,

=

∫
I\IN

‖∇(∆−1w − πk∆−1w)‖dt.

We note that the projection operator πk is an interpolation operator acting at
the nodal points in time. By standard transformation arguments, we assert∫

I\IN
‖w − πkw‖H−1(Ω)dt ≤ ck

∫
I\IN

‖∂tw(t)‖H−1(Ω)dt, (4.34)

compare [36, Equation (12.10)].
For the second term, it clearly holds∫

IN

‖w − πkw‖H−1(Ω)dt ≤ ckmax
t∈IN

‖w‖H−1(Ω).

Then, Lemma 4.2 and Lemma 4.4 give the desired bound.

After this preparation, we are ready to show the temporal discretization error
estimate.

Theorem 4.8. Let u ∈ U and uk ∈ Uk be solution of (2.1) and (3.2), respectively,
with f(x, t) = q(t)g(x) ∈ L∞(I, V ) and u0 ∈ Ḣ3(Ω). Then for the semi-discretization
error it holds

‖u− uk‖L∞(I,V ) ≤ Ck
(

log
T

k
+ 1
) 1

2
(
‖f‖L∞(I,V ) + ‖u0‖H3(Ω)

)
. (4.35)

Proof. Defining ξk = u − uk, on each time interval In, n = 1, ..., N , we consider
the following splitting of the error

‖ξk‖L∞(In,V ) ≤ ‖u(·)− u(tn)‖L∞(In,V ) + ‖u(tn)− uk(·)‖L∞(In,V ). (4.36)

We estimate the two terms in the right-hand side separately on each time interval
In. Then, summing over n = 1, .., N the resulting estimates gives the assertion.

With no loss of generality, we focus on the last time interval IN denoting by
t̂ ∈ IN a generic fixed time. For a generic In, the proof follows by similar arguments
considering (4.1) on I = (0, tn) and (4.2) on Î = (0, t̂) for t̂ ∈ (tn−1, tn], noting that
0 ≤ log(tn/k) ≤ log(T/k).

15



(i) We start the analysis with the interpolation error u(t̂)− u(tN ). We consider
the solutions w and ŵ to (4.1) and (4.2), respectively, with terminal value wT
to be specified later. Integration by parts in time of (4.1) and (4.2) leads to

−(ϕ(T ), w(T )) + (ϕ(0), w(0)) + (∂tϕ,w)I + (∇ϕ,∇w)I = 0,

−(ϕ(t̂), ŵ(t̂)) + (ϕ(0), ŵ(0)) + (∂tϕ, ŵ)Î + (∇ϕ,∇ŵ)Î = 0,

for any ϕ ∈ U .
In particular, setting ϕ = u it follows from the state equation (2.1) that

−(u(T ), w(T )) + (u(0), w(0)) + (f, w)I = 0, (4.37)

−(u(t̂), ŵ(t̂)) + (u(0), ŵ(0)) + (f, ŵ)Î = 0. (4.38)

Since by definition w(T ) = w(t̂) = wT , subtracting (4.37) from (4.38) yields

(u(t̂)− u(T ), wT ) = (u(0), ŵ(0)− w(0)) + (f, ŵ − w)Î − (f, w)I\Î . (4.39)

We observe that the choice wT = −∆(u(t̂)− u(T )) and integration by parts
for the left-hand side of (4.39) gives ‖∇(u(t̂)− u(T ))‖2.
Therefore, we have

‖∇(u(t̂)− u(T ))‖2 = (u(0), ŵ(0)− w(0)) + (f, ŵ − w)Î −
∫ T

t̂

(f(t), w(t))dt

≤
(
‖ŵ − w‖L1(Î,H−1(Ω)) + ‖ŵ(0)− w(0)‖H−3(Ω)

+ k‖w‖L∞(I,H−1(Ω))

)(
‖f‖L∞(I,V ) + ‖u0‖H3(Ω)

)
≤ Ck log

(T
k

+ 1
) 1

2 ‖wT ‖H−1(Ω)(‖f‖L∞(I,V ) + ‖u0‖H3(Ω)).

In the last step we used Lemma 4.2 to bound ‖w‖L∞(I,H−1(Ω)) and Lemma 4.3
for the remaining terms.
Then, observing that it holds ‖wT ‖H−1(Ω) = ‖∇(u(t̂) − u(T ))‖ due to the
choice of the terminal value, we conclude

‖∇(u(t̂)− u(T ))‖ ≤ Ck log
(T
k

+ 1
) 1

2

(‖f‖L∞(I,V ) + ‖u0‖H3(Ω)). (4.40)

(ii) We consider w and wk solutions of (4.1) and (4.21), respectively, with terminal
value wT = −∆(u(t)− u(T )).
This choice gives

B(ϕ,w) = B(ϕ,wk) = (ϕN ,−∆(u(T )− uk(t))) = (∇ϕN ,∇(u(T )− uk,N ))

for any ϕ ∈ Uk.
In particular, by means of Galerkin orthogonality and (3.2), we have

‖∇(u(T )− uk,N )‖2 = B(u− uk, w) = B(u,w − wk)

= (f, w − wk)I + (u0, w(0)− wk(0))

≤ (‖w − wk‖L1(I,H−1(Ω)) + ‖w(0)− wk(0)‖H−3(Ω))

× (‖f‖L∞(I,V ) + ‖u0‖H3(Ω)).
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Then, thanks to Lemma 4.7 we obtain

‖∇(u(T )− uk,N )‖ ≤ Ck log
(T
k

+ 1
) 1

2

(‖f‖L∞(I,V ) + ‖u0‖H3(Ω)). (4.41)

In conclusion, inserting (4.40) and (4.41) in (4.36), we have shown the desired estimate
for the interval IN .

We conclude the section with a stability result for the solutions of the auxiliary
problems

Lemma 4.9. For wk solution of (4.21), there holds

‖wk‖I + ‖wk,1‖H−1(Ω) ≤ c‖wT ‖H−1(Ω) (4.42)

Proof. Using integration by parts, the bilinear form (3.1) is formulated as

B(ϕ,wk) = −
N∑
n=1

(ϕ, ∂twk)In + (∇ϕ,∇wk)I −
N−1∑
n=1

(ϕn, [wk]n) + (ϕN , wk,N ). (4.43)

Then, observing wk,N = wT , we rewrite (4.21) for any In, n = 1, ..., N − 1, as

(∇ϕ,∇wk)In − (ϕn, [wk]n) = 0, ∀ϕ ∈ P0(In, Vh). (4.44)

By the choice ϕ = −∆−1wk, we have

‖wk‖2In − (∇∆−1wk,n, [∇∆−1wk]n) = 0.

The second term in the left-hand side can be expressed by the identity (4.27) leading
to

‖wk‖2In + ‖∇∆−1wk,n‖2 − ‖∇∆−1wk,n+1‖2 ≤ 0.

The assertion follows summing over n = 1, ..., N − 1.

4.3. Spatial Discretization Error Estimates. In this section, we derive the
spatial L∞(I, V ) error estimate with a series of lemmas culminating in the main result,
namely Theorem 4.12.

We introduce the discrete counterpart of (4.21) to find wkh ∈ Uk,h(V ∗) such that

B(ϕ,wkh) = (ϕN , wT ), ∀ϕ ∈ Uk,h, (4.45)

where wT ∈ H−1(Ω).
Further, for given v0 ∈ Ḣ2 we consider the forward problems to find vk ∈ Uk such

that

B(vk, ϕ) = (v0, ϕ1), ∀ϕ ∈ Uk, (4.46)

and to find vkh ∈ Uk,h such that

B(vkh, ϕ) = (v0, ϕ1), ∀ϕ ∈ Uk,h. (4.47)

When needed, we will require additional regularity on the initial data v0.
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Lemma 4.10. Let wk, wkh be solutions of (4.21) and (4.45), respectively. Then,
there holds

‖wk,1 − wkh,1‖H−2(Ω) ≤ Ch‖wT ‖H−1(Ω). (4.48)

Proof. By definition of the norm, we have

‖wk,1 − wkh,1‖H−2(Ω) ' sup
ψ∈Ḣ2(Ω)

(wk,1 − wkh,1, ψ)

‖ψ‖H2(Ω)
, (4.49)

therefore we provide an upper bound of the numerator in terms of ‖ψ‖H2(Ω) and
‖wT ‖H−1(Ω).

To obtain (wk,1 − wkh,1, ψ), we pick the test functions in the auxiliary problems
so that the backward and forward problems have same left-hand side. Namely, for a
fixed ψ ∈ Ḣ2(Ω), we consider v0 = ψ in (4.46), and (4.47). Then, we set ϕ = wk in
(4.46), ϕ = wkh in (4.47) and ϕ = vk in (4.21), ϕ = vkh in (4.45), obtaining

(ψ,wk,1) = B(vk, wk) = (vk,N , wT ),

(ψ,wkh,1) = B(vkh, wkh) = (vkh,N , wT ).

Using Galerkin orthogonality we have

(ψ,wk,1 − wkh,1) = B(vk − vkh, wk − wkh) = (vk,N − vkh,N , wT ),

from which

(ψ,wk,1 − wkh,1) = −(∇(vk,N − vkh,N ),∇∆−1wT )

≤ ‖∇(vk,N − vkh,N )‖‖∇∆−1wT ‖

follows.
By standard interpolation and inverse estimates, there holds

‖∇(vk,N − vkh,N )‖ ≤ ‖∇(vk,N − Ihvk,N )‖+ ‖∇(Ih(vk,N )− vkh,N ))‖
≤ ch‖∇2vk,N‖+ ch−1(‖Ihvk,N − vk,N‖+ ‖vk,N − vkh,N‖)
≤ c(h‖∆vk,N‖+ h−1‖vk,N − vkh,N‖)

where the last estimates follows, e.g., from [17, Theorem 3.1.3.1] For the first term in
the right-hand side, we use [26, Theorem 4.6] and obtain

T‖∇∆vk,N‖2 + ‖∆vk,N‖2 + ‖∇∆vk‖2I +

N∑
n=2

tn−1

kn
‖[∆vk]n−1]‖2 ≤ C‖∆v0‖2. (4.50)

For the second term, there holds

‖vk,N − vkh,N‖ ≤ Ch2‖∆v0‖ (4.51)

due to [26, Lemma 5.7]. Combining this, we assert

‖∇(vk,N − vkh,N )‖ ≤ ch(‖∆vk,N‖+ ‖∆v0‖) ≤ ch‖∆v0‖.
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This implies

(ψ,wk,1 − wkh,1) ≤ ch‖∆v0‖‖∇∆−1wT ‖
≤ ch‖v0‖H2(Ω)‖∇∆−1wT ‖,

from which, recalling that ψ = v0, we obtain the assertion

‖wk,1 − wkh,1‖H−2(Ω) ≤ Ch‖wT ‖H−1(Ω).

Lemma 4.11. Let wk, wkh be solutions of (4.21) and (4.45), respectively. Then,
there holds

‖wk − wkh‖L2(I,H−1(Ω)) ≤ ch‖wT ‖H−1(Ω). (4.52)

Proof. We introduce the L2-projection in space Ph : V → Vh and, noting that
Phwkh = wkh, we split the error as

ηh := wk − wkh = wk − Phwk + Phηh. (4.53)

For the first part of the error, standard error estimates for the L2-projection give

‖∇∆−1(wk − Phwk)‖I ≤ ch‖wk‖I , (4.54)

and we obtain the desired estimate by virtue of Lemma 4.9. Hence, we are left with
the estimate of Phηh.

Subtracting (4.45) from (4.21) and using (4.43), we have

(∇ϕ,∇ηh)In − (ϕn, [ηh]n) = 0, ∀ϕ ∈ P0(In, Vh), n = 1, ..., N − 1. (4.55)

Thanks to (4.53) and the definition of Ph, this can written as

(∇ϕ,∇Phηh)In − (ϕn, [Phηh]n) = (∇ϕ,∇(Phwk − wk))In . (4.56)

Then, we set ϕ = ∆−2
h Phηh to obtain

‖∇∆−1
h Phηh‖2In −

(
∆−1
h Phηh,n, [∆

−1
h Phηh]n

)
=
(
∇∆−1

h Phηh,∇∆−1
h (Phwk − wk)

)
In

≤
‖∇∆−1

h Phηh‖2In
2

+
‖∇∆−1

h (Phwk − wk)‖2In
2

.

For the second term on the left-hand side we use (4.27) and, noting that the jump
term is positive, we have

‖∇∆−1
h Phηh‖2In + ‖∆−1

h Phηh,n‖2 − ‖∆−1
h Phηh,n+1‖2 ≤ ‖∇∆−1

h (Phwk − wk)‖2In

Adding these inequalities for n = 1, ..., N − 1, we obtain

N−1∑
n=1

‖∇∆−1
h Phηh‖2In +‖∆−1

h Phηh,1‖2−‖∆−1
h Phηh,N‖2 ≤

N−1∑
n=1

‖∇∆−1
h (Phwk−wk)‖2In .
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We observe that Phηh,N = 0. As a consequence, the third term in the left-hand is
zero and we can extend the sum up to the last time interval. Then, observing that the
second term in the left-hand side is positive, thanks to the splitting (4.53) we obtain

‖∇∆−1
h ηh‖2I ≤ 2‖∇∆−1

h (Phwk − wk)‖2I .

Then, using (4.54) and recalling the equivalence between the discrete negative norm
‖∇∆−1

h · ‖ and the continuous one ‖∇∆−1 · ‖, we get

‖∇∆−1ηh‖2I ≤ ‖∇∆−1(Phwk − wk)‖2I ≤ ch2‖wk‖2I .

The proof is concluded by virtue of Lemma 4.9.
After this preparation, we conclude the section combining the preceding results

to obtain the L∞(I, V ) error estimate in space.
Theorem 4.12. Let uk ∈ Uk and ukh ∈ Uk,h be solution of (3.2) and (3.6),

respectively, with f(x, t) = q(t)g(x) ∈ L∞(I, V ) and u0 ∈ Ḣ2(Ω) Then for the dis-
cretization error in space it holds

‖ukh − uk‖L∞(I,V ) ≤ Ch(‖f‖L2(I,V ) + ‖u0‖H2(Ω)). (4.57)

Proof. We observe that both uk, ukh are constant on In for any n = 1, ..., N ,
hence we can equivalently show the estimate on In and with no loss of generality we
consider IN only.

Considering wk ∈ Uk, wkh ∈ Uk,h solutions of (4.21) and (4.45), respectively,
with wT = −∆h(uk,N − ukh,N ), by means of the duality argument and Galerkin
orthogonality there holds

‖∇(uk,N − ukh,N )‖2 = B(uk − ukh, wk) = B(uk, wk − wkh)

= (f, wk − wkh)I + (u0, wk,1 − wkh,1)

≤
(
‖wk − wkh‖L2(I,H−1(Ω)) + ‖wk,1 − wkh,1‖H−2(Ω)

)
×
(
‖f‖L2(I,V ) + ‖u0‖H2(Ω)

)
.

Using Lemma 4.10 and Lemma 4.11, we conclude

‖∇(uk,N − ukh,N )‖2 ≤ ch‖wT ‖H−1(Ω)

(
‖f‖L2(I,V ) + ‖u0‖H2(Ω)

)
.

The assertion follows observing that by our choice of wT it holds

‖wT ‖H−1(Ω) = ‖∇(uk,N − ukh,N )‖.

5. Error Analysis for the Optimization Problem. This section is concerned
with the estimate of the error between the solution (q̄, ū) of the continuous optimal
control problem (2.3) and the solution (q̄kh, ūkh) of the discretized problem (3.7). We
recall that by virtue of the variational discretization approach the optimal control
problem is already fully discretized with the dG(0)-cG(1) method.

We analyze the error arising from the time and space discretization of the problem
separately. The main result of this article, i.e., the error for the space-time discretiza-
tion of the optimization problem, is shown at the end of the section.
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In both cases, we first derive the error estimate emphasizing its dependency on
the L∞(I, V ) error estimates for the state equation derived in Theorem 4.8 and in
Theorem 4.12.

We start the analysis with the temporal error.
Theorem 5.1. Let (q̄, ū) and (q̄k, ūk) be the optimal solutions of (2.3) and (3.3),

respectively. Then, there holds

‖ū− ūk‖2I + α‖q̄ − q̄k‖2L2(I)

≤ C
(
‖ū− uk(q̄)‖L∞(I,V ) + ‖u(q̄k)− ūk‖L∞(I,V )

)
.

Proof. We test (2.5c) with q = q̄k and (3.4a) with q = q̄, obtaining

0 ≤ α(q̄, q̄k − q̄) + ((q̄k − q̄)g, z̄)I ,
0 ≤ α(q̄k, q̄ − q̄k) + ((q̄ − q̄k)g, z̄k)I .

Adding the inequalities above, we have

α‖q̄ − q̄k‖2 = −α(q̄ − q̄k, q̄k − q̄)
≤ ((q̄k − q̄)g, z̄ − z̄k)I

= ((q̄k − q̄)g, z̄)I︸ ︷︷ ︸
(a)

+ ((q̄ − q̄k)g, z̄k)I︸ ︷︷ ︸
(b)

.
(5.1)

We now consider the two terms separately.
(a) We consider (2.5a) with right-hand side given by q = q̄k− q̄ and we set ϕ = z̄.

Then, in a first step we obtain

((q̄k − q̄)g, z̄)I = (∂t(u(q̄k)− ū), z̄)I + (∇(u(q̄k)− ū),∇z̄)I . (5.2)

With the choice ϕ = u(q̄k) − ū in the adjoint equation (2.5b), we have from
(5.2) that

((q̄k − q̄)g, z̄)I = (ū− ud, u(q̄k)− ū)I + 2〈µ̄, (∇ū∇(u(q̄k)− ū), ω)〉. (5.3)

We consider the second term on the right-hand side. In view of the comple-
mentary slackness condition (2.5d), the positivity of µ̄, the boundedness of
∇u(q̄k) and ∇ūk in L∞(I,H), we have

2〈µ̄, (∇ū∇(u(q̄k)− ū), ω)〉 = 〈µ̄,
(
|∇ū|2 + |∇u(q̄k)|2, ω

)
〉 − 2〈µ̄, (|∇ū|2, ω)〉

= 〈µ̄, (|∇u(q̄k)|2 − |∇ū|2, ω)〉
= 〈µ̄, (|∇u(q̄k)|2 − |∇ūk|2 + |∇ūk|2 − |∇ū|2, ω)〉
≤ 〈µ̄, (|∇u(q̄k)|2 − |∇ūk|2, ω)〉+ 〈µ̄, b−G(ū)〉
≤ ‖µ̄‖C(Ī)∗‖ω‖L∞(Ω)‖|∇u(q̄k)|2 − |∇ūk|2‖L∞(I,H)

≤ c‖(|∇u(q̄k)| − |∇ūk|)(|∇u(q̄k)|+ |∇ūk|)‖L∞(I,H)

≤ c‖|∇u(q̄k)| − |∇ūk|‖L∞(I,H)

≤ c‖∇(u(q̄k)− ūk)‖L∞(I,H)

= c‖u(q̄k)− ūk‖L∞(I,V )

Therefore, we obtain

((q̄k − q̄)g, z̄)I ≤(ū− ud, u(q̄k)− ū)I + c‖u(q̄k)− ūk‖L∞(I,V ). (5.4)

21



(b) We proceed along the same lines of the previous case using the semi-discrete
state and adjoint equation. We consider (3.4a) with right-hand side q = q̄− q̄k
and we set ϕ = z̄k. Then, through the choice ϕ = uk(q̄) − ūk in (3.4b), we
have

((q̄ − q̄k)g, z̄k)I = B(uk(q̄)− ūk, z̄k)

= (ūk − ud, uk(q̄)− ūk)I + 2〈µ̄k, (∇ūk∇(uk(q̄)− ūk), ω)〉.

Estimating the second term in the right-hand side as in case (a), using the
uniform boundedness of ‖µ̄k‖C(Ī)∗ , we have

((q̄ − q̄k)g, z̄k)I ≤(ūk − ud, uk(q̄)− ūk)I + c‖uk(q̄)− ū‖L∞(I,V ). (5.5)

We go back to (5.1) inserting (5.4),(5.5) to obtain

α‖q̄ − q̄k‖2L2(I) ≤ (ū− ud, u(q̄k)− ū)I + (ūk − ud, uk(q̄)− ūk)I

+ c(‖u(q̄k)− ūk‖L∞(I,V )‖uk(q̄)− ū‖L∞(I,V )).
(5.6)

Now, we note that

‖ū− ūk‖2I = (ū− ud, ū− ūk)− (ūk − ud, ū− ūk).

Adding this to (5.6), we obtain

‖ū− ūk‖2I + α‖q̄ − q̄k‖2 ≤ (ū− ud, u(q̄k)− ūk)I + (ūk − ud, uk(q̄)− ū)I

+ c(‖u(q̄k)− ūk‖L∞(I,V )‖uk(q̄)− ū‖L∞(I,V ))

≤ c
(
‖u(q̄k)− ūk‖I + ‖uk(q̄)− ū‖I

+ ‖u(q̄k)− ūk‖L∞(I,V )‖uk(q̄)− ū‖L∞(I,V )

)
.

The assertion follows, since the ‖ · ‖I -norm can be bounded by the ‖ · ‖L∞(I,V )-norm.

Corollary 5.2. Under the assumptions of Theorem 4.8 and Theorem 5.1, the
following estimate holds

‖ū− ūk‖2I + α‖q̄ − q̄k‖2L2(I) ≤ ck
(

log
T

k
+ 1
) 1

2

. (5.7)

Proof. The claim directly follows from the previous Theorem inserting the L∞(I, V )
estimate of Theorem 4.8 together with the assumed regularity of f and u0.

In a second step, we consider the error arising from the space discretization.
Theorem 5.3. Let (q̄k, ūk) and (q̄kh, ūkh) be the optimal solutions of (3.3) and

(3.7), respectively. Then, there holds

‖ūk − ūkh‖2I + α‖q̄k − q̄kh‖2L2(I)

≤ C
(
‖ūk − ukh(q̄k)‖L∞(I,V ) + ‖uk(q̄kh)− ūkh‖L∞(I,V )

)
.

Proof. The proof moves along the same lines of the error estimate for the semi-
discrete case in Theorem 5.1.
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In particular, testing (3.4c) with q = q̄kh and (3.8c) with q = q̄k, we can add the
resulting inequalities to get

α‖q̄k − q̄kh‖L2(I) ≤ (z̄k − z̄kh, (q̄kh − q̄k)g)I

= (z̄k, (q̄kh − q̄k)g)I︸ ︷︷ ︸
(a)

+ (z̄kh, (q̄k − q̄kh)g)I︸ ︷︷ ︸
(b)

. (5.8)

We now consider the two terms separately.
(a) As in the semi-discrete case, the idea is to express (a) in term of the semi-

discrete state equation and then in term of the semi-discrete adjoint equation
equalizing the common term B(·, ·).
First, we consider (3.4a) with right-hand side qk = q̄kh− q̄k and we set ϕ = z̄k.
Then, with the choice ϕ = uk(q̄kh)− ūk in (3.4b), we have

((q̄kh− q̄k)g, z̄k)I = (ūk−ud, uk(q̄kh)− ūk)I +〈µ̄k, 2(∇ūk∇(uk(q̄kh)− ūk), ω)〉.

The proof now proceeds exactly as in Theorem 4.1, yielding

(z̄k, (q̄kh − q̄k))I ≤ (ūk − ud, uk(q̄kh)− ūk)I

+ c‖µ̄k‖C(Ī)∗‖ω‖L∞(Ω)‖uk(q̄kh)− ūkh‖L∞(I,V ).
(5.9)

(b) We now use the discrete state equation (3.8a) with ϕ = z̄kh and right-hand
side given by qkh = q̄k − q̄kh, together with the discrete adjoint equation
(3.8b) with ϕ = ukh(q̄k)− ūkh. This setting leads to

(z̄kh, (q̄k − q̄kh)g)I ≤ (ūkh − ud, ukh(q̄k)− ūkh)I

+ c‖µ̄kh‖C(Ī)∗‖ω‖L∞(Ω)‖ūk − ukh(q̄k)‖L∞(I,V ).
(5.10)

We insert (5.9),(5.10) in (5.8) and, as in Theorem 5.1, we manipulate the resulting
inequality by adding and subtracting ūk, ūkh. Then, uniform boundedness of µ̄k and
µ̄kh, see Remark 3.7 concludes the proof.

Corollary 5.4. Under the assumptions of Theorem 4.12 and Theorem 5.3, the
following estimate holds

‖ūk − ūkh‖2I + α‖q̄k − q̄kh‖2L2(I) ≤ ch. (5.11)

Proof. The thesis follows from the previous Theorem, inserting the error estimate
from Theorem 4.12 together with the assumed regularity of u0 and f .

We conclude the error analysis for the optimal control problem with the main
result of this article. The following Theorem is obtained combining the error estimate
for the time discretization with the error estimate for the space discretization derived
above.

Theorem 5.5. Let (ū, q̄) ∈ U × Qad be the optimal solution of the continuous
problem (2.3) and (ūkh, q̄kh) ∈ Uk,h × Qad be the optimal solution of the discrete
problem (3.7). Then, there holds the following error estimate

‖ū− ūkh‖2I + α‖q̄ − q̄kh‖2L2(I) ≤ C
(
k
(

log
T

k
+ 1
) 1

2

+ h

)
. (5.12)

23



Acknowledgment. The authors would like to acknowledge some helpful discus-
sions with Boris Vexler during the preparation of the manuscript.

REFERENCES

[1] N. Arada and J.-P. Raymond, Dirichlet boundary control of semilinear parabolic equations.
II. Problems with pointwise state constraints, Appl. Math. Optim., 45 (2002), pp. 145–167.

[2] J. F. Bonnans and P. Jaisson, Optimal control of a parabolic equation with time-dependent
state constraints, SIAM J. Control Optim., 48 (2010), pp. 4550–4571.

[3] S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Element Methods, vol. 15
of Texts Appl. Math., Springer, New York, third ed., 2008.

[4] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear
parabolic equations, SIAM J. Control Optim., 35 (1997), pp. 1297–1327.
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[36] V. Thomèe, Galerkin Finite Element Methods for Parabolic Problems, vol. 25 of Springer Ser.
Comput. Math., Springer, Berlin, second ed., 2006.
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