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Abstract In this report we present the approximation of an infinite horizon optimal
control problem for the evolutive Navier-Stokes system. The method is based on a
model reduction technique, using a POD approximation, coupled with a Hamilton-
Jacobi equation which characterizes the value function of the corresponding control
problem for the reduced system. Although the approximation schemes available for
the HJB are shown to be convergent for any dimension, in practice we need to re-
strict the dimension to rather small numbers and this limitation affects the accuracy
of the POD approximation. We will present numerical tests for the control of the
time-dependent Navier-Stokes system in two-dimensional spatial domains to illus-
trate our approach and to show the effectiveness of the method.
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1 Introduction

In this report we investigate an infinite horizon optimal control problem for the
time-dependent Navier-Stokes equations (NSE). The basic ingredient of the method
is the coupling between a proper orthogonal decomposition (POD) approximation
of the NSE and a Dynamic Programming scheme for the stationary Hamilton-Jacobi
equation characterizing the value function of the optimal control problem. Due to
the curse of dimensionality, we need to restrict the dimension of the POD system to
a rather small number (typically 4). This limitation naturally affects the accuracy of
the POD approximation (see [14]), and, as a consequence, the problem class which
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we can treat with this technique. It is well known that the solution of the HJB equa-
tion is not an easy task from the numerical point of view since viscosity solutions
of the HJB equation are usually just Lipschitz-continuous. Optimal control prob-
lems for ODEs are solved by Dynamic Programming (DP), both analytically and
numerically (see [4] for a general presentation of this theory). From the numerical
point of view, this approach has been developed for many classical control prob-
lems obtaining convergence results and a-priori error estimates (see the recent book
from Falcone and Ferretti [6]). We should mention that a first tentative approach to
couple POD and HJB equations is proposed by Atwell and King [3] for the control
of the 1D heat equation. Kunisch and Volkwein in [7, 8] extend this approach to
diffusion dominated equations and, in particular, Kunisch, Volkwein and Xie in [9]
apply HJB-POD feedback control to the viscous Burgers equation. We also mention
an adaptive POD technique for 1D advection dominated problems proposed by the
first author and Falcone in [1, 2].
The novelty in this paper consists in the control of the 2D nonlinear time dependent
Navier-Stokes system by means of DP equations and the reduction of the nonlinear
term with the Discrete Empirical Interpolation Method due to Chaturantabut and
Sorensen in [5].
The paper is organized as follows.We first present the optimal control problem in
Section 2, then we describe the DP equation in Section 3. Proper orthogonal decom-
position is summarized in Section 4 and, finally, the numearical tests are presented
in Section 5.

2 The optimal control problem

In this section we describe the optimal control problem. The gouverning equations
are the two non-stationary dimensional unsteady Navier-Stokes equations. The flow
in the bounded domain Ω ⊂R2 is characterized by the velocity field y : Ω× [0,T ]→
R2 and by the pressure p : Ω × [0,T ]→ R. The Navier-Stokes equations are given
by

yt −ν∆y+(y ·∇y)+∇p =
N

∑
i=1

bi(x)ui(t) in Ω × (0,T ],

∇ · y = 0 in Ω × (0,T ],
y(·,0) = y0 in Ω ,

y(·, t) = yb in ∂Ω × (0,T ),


(1)

where the viscosity of the flow is given by the parameter ν > 0. The control signals
are elements of U ≡ {u : [0,T ]→U, u(·)∈ L∞(0,T )}, where U is a compact subset
of Rm. Later we take U as a discrete set. The initial value and the boundary values
are denoted by y0 and yb, respectively. Finally, the functions bi(x) : Ω → R2 play
the role of the so called shape functions.
The cost functional we want to minimize is given by
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J(u) :=
∫

∞

0

(
‖y(·, t;u)− ȳ‖2

L2(Ω)+α|u(t)|2
)

e−λ t dt, (2)

where ȳ is the desired state which we choose as the mean flow, α ∈ R+ and λ > 0
is the discount factor. The optimal control problem, then, can be formulated as

min
u∈U

J(u) s. t. y(u) satisfies (1). (3)

We should state, that (1) for a given sufficiently smooth right hand side togheter
with sufficiently smooth initial values and boundary conditions admits a unique so-
lution. We refer to the book of Temam [13] for more details. Whenever we want to
emphasize the dependence of the solution on the control u we will write y = y(u).

3 Dynamic Programming equation

We illustrate the dynamic programming approach for abstract optimal control prob-
lems of the form

min
u∈U

Jx(u) :=
∫

∞

0
L(y(t),u(t))e−λ t dt subject to ẏ(t) = f (y(t),u(t)), y(0) = x, (4)

with system dynamics in Rn. We assume λ > 0, and L(·, ·) and f (·, ·) to be Lipschitz-
continuous, bounded functions. Then, it is clear that the optimal control problem (3)
fits into the more abstract setting (4).
In this setting, a standard solution tool is the application of the dynamic program-
ming principle, which leads to a characterization of the value function v(x) :=
inf

u∈U
Jx(u) as a viscosity solution of the Hamilton-Jacobi-Bellman equation (HJB)

λv(x)− inf
u∈U
{Dv · f (x,u)+L(x,u)}= 0 . (5)

To approximate equation (5), we construct a fully-discrete semi-Lagrangian scheme
which is based on a discretization of the system dynamics with time step h, and a
finite element discretization of the state space with mesh parameter k, leading to a
fully discrete approximation Vh,k(x) of the value function v satisfying

Vh,k(xi) = min
u∈U
{(1−λh)I1[Vh,k](xi +h f (xi,u))+L(xi,u)} , (6)

for every element xi of the discretized spatial domain. In general, the arrival point
xi +h f (xi,u) is not a node of the state space grid, and therefore the value of Vh,k at
this point is approximated by means of a first-order interpolant of the data, denoted
by I1[Vh,k] (we refer the reader to [4, Appendix A] for more details).

The goal is to find a feedback control law of the form u(t) = Φ(y(t), t) which
steers the system to the desired trajectory. Φ is called feedback map. The com-
putation of feedback maps is almost built in and comes straightforward from the
knowledge of the value function. In fact;
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Φ(yx(t)) = u∗(t) = argmin
u∈U

{
L(x,u)+∇v(x)T f (x,u)

}
.

The characterization of the value function is valid for all classical problems in any
dimension and its approximation is based on a-priori error estimates in L∞.
The request to solve an HJB in high dimensions comes up naturally whenever we
want to control evolutive PDEs. However, a direct discretization, in many practically
relevant situations, is impossible since the system of ODEs associated to a semi-
discretization in time would have the dimension equal to the space dimension where
one should solve the HJB equation. Fortunately, at the discrete level, the POD (
[12, 14])) method allows us to obtain low-dimensional reduced models even for
complex dynamics, and, thus, presents an oppurtunity to circunmvent the curse of
dimensionality in the numerical solution of the HJB equation.

4 POD-Model Reduction for the controlled problem

The Reduced Order Modelling (ROM) approach to optimal control problems is
based on projecting the nonlinear dynamics onto a low dimensional manifold uti-
lizing projectors that contain informations of the expected controlled flow. A com-
mon approach here is based on the snapshot form of POD proposed by Sirovich
in [12], which in the present situation works as follows. We compute the snapshots
set y1, . . . ,yn of the flow corresponding to different time instances t1, . . . , tn and de-
fine the POD ansatz of order ` for the state y by

y` = ȳ+
`

∑
i=1

wiψi, (7)

where ȳ = 1
n ∑

n
i=1 yi denotes the mean flow and the basis functions {ψi}`i=1 are ob-

tained from the singular value decomposition of the snapshot matrix Y = [y1 −
ȳ, . . . ,yn − ȳ], i.e. Y = ΨΣV , and the first ` columns of Ψ form the POD basis
functions of rank `. Here the SVD is based on the Euclidean inner product. This
is reasonable in our situation, since the numerical computations performed in our
numerical example for the driven cavity problem are based on a uniform staggered
grid. The snapshots are computed on the basis of a stable finite difference discretiza-
tion of (1) which leads to a semi-discretet system of ODEs of the form

ẏ+νAy+Cp = η(y)+Bu, y(0) = y0. (8)

The reduced optimal control problem is obtained through replacing (8) by a dynam-
ical system obtained from a Galerkin approximation with basis functions {ψi}`i=1
and ansatz (7) for the state.
This leads to a `−dimensional system for the unknown coefficients {wi}`i=1, namely

M`ẇ+νA`w = η(w)+B`u w(0) = w0. (9)
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Here the entries of the mass M` and the stiffness A` are given by 〈ψ j,ψi〉 and
〈ψ j,Aψi〉, respectivelly. The reduced shape function is obtained by (B`)i = 〈B,ψi〉.
The coefficients of the initial condition y`(0) ∈ R` are determined by wi(0) =
(w0)i = 〈y0− ȳ,ψi〉, 1 ≤ i ≤ `, and the solution of the reduced dynamical prob-
lem is denoted by w(s) ∈R`. Note that for the reduction of the nonlinear term η(w)
we use the Discrete Empirical Interpolation Method (DEIM, see [5]). The pressure
does not appear in the reduced problem (9) since the snapshots are divergence-free.
Then, the POD-Galerkin approximation leads to the optimization problem

infJ`w0
(u), (10)

where u ∈U , w solves (9) and the cost functional is defined by

J`w0
(u) =

∫
∞

0
L(w(s),u(s),s)e−λ s ds.

The value function v`, defined for the initial state w0 ∈ R` is given by

v`(w0) = inf
u∈U

J`w0
(u),

and w solves (9) with the control u and initial condition w0. HJB equations are de-
fined in Rn, but we need to restrict our numerically domain to a bounded subset of
Rn. We refer the interested reader to [1] for a detailed description.

5 Numerical Tests

In this section we consider as numerical example the control of the flow in the lid-
driven cavity. In (3) we set: Ω = (0,1)× (0,1),y0 ≡ 0,ν = 0.01,α = 0.01,λ =
1,U = {−1,0,1},yb = (1,0) on the top boundary and yb = (0,0) on the remaing
boundary segments. In (6) we take k = 0.2, h = 0.04 whereas the optimal trajectory
is obtained with a time stepsize of 0.01.
The control gain of the suboptimal control problem, with the ansatz (7), consists
of steering the coefficients w to the origin. For the purpose of this test, we take
only 3 POD and 6 POD-DEIM basis functions. In our numerical computations the
reduction of the nonlinearity with DEIM already yields a considerable computa-
tional speedup. Further investigations on the performance of DEIM in relation to
the discretization parameters are provided in a subsequent paper. The snapshots are
computed with a finite difference scheme from the uncontrolled problem (u≡ 0) in
(1) where we use the Matlab code provided in [11].
In Figure 1 we show the configuration of the flow. On the left we show the mean
flow, which is the desired state, in the middle the controlled flow is shown, and on
the right the uncontrolled flow is shown. As shape function we use the steady state
solution of the Navier-Stokes system.
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Fig. 1 Mean flow NS (left) - controlled configuration at time t = 0.5 (middle) - uncontrolled
configuration at time t = 0.5 (right).

We can see that at time t = 0.5 the suboptimal solution already well approximates
the desired state, as confirmed in Table 1, where the L∞−error of y`− ȳ at t = 0.5 and
t = 4 is reported for this shape function. When the time is increasing the solution
itself tends to stabilize close to the mean flow, but still the suboptimal solution has
a smaller error with respect to the uncontrolled problem. Note that the performance
of our method depends on the choice of the shape functions. In Table 2 we display
the results obtained with the steady state solution of the Stokes equation as shape
function. As expected, the approach works better if we can use the steady state of
the Navier-Stokes equation as shape function.

t = 0.5 t = 4

‖y`(x, t,u`)− ȳ‖∞ 0.007 0.006
‖y(x, t;0)− ȳ‖∞ 0.283 0.048

Table 1 L∞ error at time t = 0.5 and t = 4. ȳ is the desidered state, y`(x, t;u`) is the suboptimal
solution, and y(x, t;0) denotes the uncontrolled solution. The shape function is chosen as the steady
state solution of the Navier-Stokes equations.

t = 0.5 t = 4

‖y`(x, t,u`)− ȳ‖∞ 0.081 0.022
‖y(x, t;0)− ȳ‖∞ 0.283 0.048

Table 2 L∞ error at time t = 0.5 and t = 4. ȳ is the desidered state, y`(x, t;u`) is the suboptimal
solution, and y(x, t;0) denotes the uncontrolled solution. The shape function is chosen as the steady
state solution of the Stokes equations.

In Figure 2 we present the control input. The behavior of the control is classical for
feedback control, since the system tries to correct step by step the trajectories. The
control space is only given by constant values {−1,0,1}.



HJB-POD feedback control for Navier-Stokes equations. 7

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

CONTROL INPUT

TIME

U
(t

)

Fig. 2 Control input with 3 constant controls {−1,0,1} and one shape function chosen as the
steady state solution of the Navier-Stokes equation.
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