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Introduction
Fluid-structure interaction remains one of the most challenging topics to
date, although many publications have appeared with specific emphasize on
applications, coupling algorithms, and theory. Typical examples are found
in industrial processes, aero-elasticity, and biomechanics. Specifically, fluid-
structure interactions (FSI) are important to describe flows around elastic
structures as for instance in the flutter analysis of airplanes, parachute FSI, or
blood flow in the cardiovascular system, possibly with hyperelastic structure
models, and heart valve dynamics, see, e.g, [34, 42, 31, 18, 39, 35, 28].

Often, either implicitly or explicitly, the quantity of interest is associated
with calculating derivatives of solutions to FSI problems with respect to the
given data. Such derivatives with respect to given data such as volume forces
or boundary values have been used excessively in numerical papers concerned
with sensitivity calculations or derivative based minimization problems, see,
e.g., [29, 1, 44, 40, 38, 33]. In addition, sensitivity calculations are required for
certain a posteriori error estimation techniques, such as the DWR-method [7,
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8, 5]. Studies with a particular emphasize on FSI problems are carried out, for
instance in [16, 37, 45, 23, 47]. Optimization-related problems subject to FSI
have not been tackled, yet. Some first steps have been done in [9] where the
case of a nonstationary problem with fixed interface was considered. Further,
stabilization of such problems with a lower dimensional structure equations
are considered [13, 36].

In recent years, several attempts have been made to prove existence of
fluid-structure interaction problems. First results were derived for structures
that were modeled as a rigid body, e.g., [14], or given by a finite number of
modal functions [15]. Existence results for three dimensional fluid-structure
interaction, where the structure was described as an elastic material, have
been shown in [20, 21]. The extension to nonstationary problems is far from
being trivial. The well-known problem is the regularity gap of the fluid and
the structure velocity on the interface. Proofs of well-posedness and existence
of nonstationary fluid-structure interaction have been derived in [11, 12, 22].
Moreover, regularity properties of the FSI solution have been studied in [6,
2]. We emphasize that the important dilemma of non-matching coordinate
systems of fluids and structures has to be overcome. Consequently, in this
work, the well-known arbitrary Lagrangian-Eulerian (ALE) frame of reference
(see, e.g., [25, 27, 32]) is used. Using this method, the fluid equations are
reformulated on a fixed (but arbitrary) reference configuration.

The goal of this paper is to address a specific problem of theoretical
fluid-structure interaction, namely the proof that there is at least one locally
unique solution that is Fréchet-differentiable with respect to the boundary
data and volume forces; supplemented with its numerical verification, to asses
the necessity of the imposed small data assumption. To the best of the au-
thors knowledge, neither results on the differentiability of solutions to FSI
problems with respect to the data have been shown, nor detailed numeri-
cal studies were conducted. Some work in this direction is contained in [30]
where differentiability of the solution-map for a lower-dimensional structure
was considered. The purpose of this work is to extend the existence theory for
a stationary FSI problem given in [21] to include local uniqueness of at least
one solution under a small data assumption. Then, the main contribution of
this article, differentiability of the solution with respect to the problem data
is proven. These theoretical results are substantiated with some numerical
tests.

The paper is organized as follows. In Section 1, we will describe the
considered setting for the FSI problem under consideration. Then, some re-
sults on the fluid and structure problem will be collected in Section 2. Here,
special emphasis is placed on the fluid problem, which is posed in the ALE
framework, while the structure equation is standard linear elasticity. The pa-
per culminates in Section 3; here the main result, namely differentiability
of solutions to the FSI problem, will be shown. This will be done using a
fixed point argument in combination with several applications of the implicit
function theorem. Finally, numerical experiments illustrating our findings,
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in particular the necessity of the small data assumption, are conducted in
Section 4.

1. Problem Setting

In the sequel, let Ω ⊂ R
d with d = 2, 3 be a given domain with a C1,1

boundary. We decompose Ω into a fluid part Ωf and a structure part Ωs. In
Ωf the incompressible Stokes equations and on Ωs a linear elastic structure
equation is valid. We denote the interface between the two subdomains by
Γi := Ωf ∩ Ωs. Boundary parts where we prescribe Dirichlet conditions, are
denoted by Γf and Γs (for fluid or structure, respectively). These boundary
parts are chosen such that ∂Ω = Γf ∪ Γs. In order to avoid problems due to
singularities arising from the change of the boundary conditions, we assume
that the interface Γi has positive distance to the boundary ∂Ω of the domain.

We use standard notation for the usual Lebesgue and Sobolev spaces.
On the Hilbert space L2(Ω), we denote the scalar product by (·, ·) and
the corresponding norm by || · ||. The space Wm,p(Ω) contains those func-
tions whose weak derivatives up to order m are in Lp(Ω), and we write
Hm(Ω) := Wm,2(Ω). For any d − 1 dimensional set Γ ⊂ Ω, we define
Wm,p

0,Γ (Ω) ⊂ Wm,p(Ω) by zero Dirichlet conditions on Γ, assuming |Γ| �= 0
in the d − 1 dimensional sense. For vector valued function spaces, we indi-
cate this by adding the image space to the definition, e.g., Hm(Ω;Rd) for
Hm functions with values in R

d. Throughout, we assume p > d and hence
W 2,p(Ω) ⊂ W 1,∞(Ω) by standard embeddings.

Due to the coupling of fluid and structure equations, the domains Ωf

and Ωs are unknown a priori. Under the assumption that the overall domain
Ω is fixed, we will reformulate the coupled system on a fixed domain Ω̂ = Ω
with boundary ∂Ω = Γf ∪Γs. To do so, we introduce a reference configuration
by denoting Ω̂f ⊂ Ω and Ω̂s = Ω \ Ω̂f ⊂ Ω. The interface Γ̂i = ∂Ω̂f ∩ ∂Ω̂s is
assumed to be of class C1,1 with positive distance to ∂Ω̂. Then, the problem of
finding the domains Ωf,s is equivalent to finding a transformation Â : Ω̂ → Ω̂

such that Â(Ω̂f ) = Ωf , Â(Ω̂s) = Ωs, and Â(Γ̂i) = Γi. This transformation
is called the ALE map [25, 27, 32]. A natural choice for Ω̂s is the domain
initially occupied by the structure, and hence Â : Ω̂s → Ωs ⊂ Ω̂ is given by
the displacement ûs, e.g., Â

∣∣∣
̂Ωs

= I + ûs, where I denotes the identity on

R
d. To obtain its values on the fluid domain, one has to choose an arbitrary

continuation, e.g., of harmonic type [49, 27], to obtain a displacement ûf =

Â − I on the fluid reference domain Ω̂f that satisfies the following geometric
coupling condition:

I + ûf (x̂) = Â(x̂) = I + ûs(x̂) on Γ̂i.
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For the extension of boundary values, we introduce the following spaces

Wi,s := W s−1/p,p(Γ̂i;R
d), s = 1, 2,

WE = W 2,p(Ω̂f ;R
d) ∩H1

0,Γf
(Ω̂f ;R

d),

together with their respective norms ‖ · ‖i,s and ‖ · ‖E .
Let E : Wi,2 → WE be a continuous (linear) extension operator. Then, the
ALE map on Ω̂f is determined as a function of ûs by

Â
∣∣∣
̂Ωf

= Â(ûs)
∣∣∣
̂Ωf

=I + E(γi(ûs)),

where γi denotes the trace operator over Γ̂i. This leads to ûf = ûs on Γ̂i. For
reasons that will become clear later, it is desirable to choose the continuation
E such that ‖Â‖W 1,∞(̂Ωf ;Rd×d) is small. For more details on the ALE regularity
condition, we also refer the reader to [17].

For later purposes, we define the deformation gradient F̂ and its deter-
minant Ĵ , related to the ALE map, that we will use quite frequently, by

F̂ := F̂ (û) = ∇̂Â, Ĵ := Ĵ(û) = det(F̂ ). (1.1)

The existence proof is based on a fixed point argument. Hence, we begin
by stating some properties of the fluid and structure problem.

Remark 1.1. Note that, by Sobolev embeddings and the assumptions on E ,
we have for any ûs ∈ W 2,p(Ω̂s;R

d) and ûf = Â(ûs) that

‖ûf‖W 1,∞(̂Ωf ;Rd) � ‖ûf‖E � ‖ûs‖i,2 � ‖ûs‖W 2,p(̂Ωs;Rd),

where � indicates that the inequality holds up to a constant independent of
the relevant quantities, in this case ûs and ûf .

In particular, Ĵ > 0 if ‖ûs‖W 2,p(̂Ωs;Rd) is sufficiently small and we see

that this implies Â and Â−1 ∈ W 1,∞(Ω̂;Rd×d).

2. Properties of the subproblems

The fluid problem reads (in Eulerian coordinates):

Problem 2.1. Given a domain Ωf with a C1,1 boundary, and boundary val-
ues gf ∈ W 2−1/p,p(Γf ;R

d) with the compatibility condition, see, e.g, [43,
Theorem 2.4], ∫

Γf

gf · nf ds = 0. (2.1)

To abbreviate, we write gf ∈ W 2−1/p,p(Γf ;R
d)/R. Denote, again by gf the

continuation of gf in W 2,p(Ωf ;R
d) ∩ H1

0,Γi
(Ωf ;R

d). Then we need to find
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(vf , pf ) ∈ H1
0,Γf∪Γi

(Ωf ;R
d)× L2(Ωf )/R+ (gf , 0) such that

−d̂iv (σf ) = 0 in Ωf ,

d̂iv vf = 0 in Ωf ,

vf = 0 on Γi,

vf = gf on Γf .

Here, the constitutive tensor σf is given by

σf := σf (vf , pf ) = −pfI + νf (∇vf +∇vTf ),

where νf describes the kinematic viscosity of the fluid.

The existence and regularity of solutions to Problem 2.1 is studied in [43]
under the assumption of a regular domain Ωf . Unfortunately, since the do-
main Ωf is given by the unknown mapping ûs, i.e., Ωf = Â(Ω̂f ), this can not
be asserted a priori.

In order to proceed in the reference domain, we transform the fluid
equations to a fixed arbitrary reference configuration:

Problem 2.2. Given a displacement ûs ∈ Wi,2, and gf ∈ W 2−1/p,p(Γf ;R
d)

satisfying (2.1). Define F̂ and Ĵ by (1.1), and the transformed constitutive
tensor as

σ̂f := σ̂f (v̂f , p̂f ) = −p̂fI + νf (∇̂v̂f F̂
−1 + F̂−T ∇̂v̂Tf ).

Find (v̂f , p̂f ) ∈ H1
0,Γf∪Γi

(Ω̂f ;R
d)× L2(Ω̂f )/R+ (gf , 0) such that

−d̂iv (σ̂f Ĵ F̂
−T ) = 0 in Ω̂f ,

d̂iv (Ĵ F̂−1v̂f ) = 0 in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf .

(2.2)

Under the assumption of W 2,p regularity for ûf = E(ûs), with suffi-
ciently small norm, the solutions of the Problems 2.1 and 2.2 coincide by
setting v̂f = vf ◦ Â−1 and p̂f = pf ◦ Â−1. Since Γf = Γ̂f the boundary data
gf do not need to be transformed.

The structure problem (in Lagrangian coordinates) is defined by:

Problem 2.3. Given forces f̂s ∈ Lp(Ω̂s;R
d) and ĝs ∈ Wi,1. Find vector-valued

displacements ûs ∈ W 2,p(Ω̂s;R
d), such that

−d̂iv (Σ̂s) = f̂s in Ω̂s,

ûf = 0 on Γ̂s,

Σ̂sn̂s = ĝs on Γ̂i,

(S)



6 Thomas Wick and Winnifried Wollner

with the Piola-Kirchhoff stress tensor Σ̂s and the (linear) Green-Lagrange
tensor Ê:

Σ̂s := Σ̂s(ûs) = λtr(Ê)I + 2μÊ, Ê := Ê(ûs) =
1

2
(∇̂ûs + ∇̂ûT

s ),

where the constants λ and μ denote the Lamé parameters, and I the identity
matrix R

d×d.

For better readability, we introduce the following spaces for the data of
the fluid and structure problem as well as the respective solutions:

WD,S := Lp(Ω̂s;R
d),

WD,F := W 2−1/p,p(Γf ;R
d)/R,

W+
D,F := Lp(Ω̂f ;R

d)×W 2−1/p,p(Γf ;R
d)/R×W 1,p(Ω̂f )/R,

WS := W 2,p(Ω̂s;R
d) ∩H1

0,Γs
(Ω̂f ;R

d),

WF := W 2,p(Ω̂f ;R
d)×W 1,p(Ω̂f )/R,

W 0
F := W 2,p(Ω̂f ;R

d) ∩H1
0,Γf∪̂Γi

(Ω̂f ;R
d)×W 1,p(Ω̂f )/R,

together with their norms ‖ · ‖D,S ,‖ · ‖D,F , ‖ · ‖D,F+ , ‖ · ‖S , and ‖ · ‖F . Here,
the notation gf ∈ W 2−1/p,p(Γf ;R

d)/R means the compatibility condition∫
Γf

gfnf dx = 0 while P̂ ∈ W 1,p(Ω̂f )/R stands for
∫
̂Ωf

P̂ dx = 0.

Remark 2.4. We note that in the above setting other boundary conditions
can be considered as well. The only strong requirement we have to enforce is
that the solutions of the problems are sufficiently regular on Γ̂i, i.e., ûf and
v̂f need to be in W 2−1/p,p(Γ̂i). The choice of the particular boundary values
here is guided by the aim to have as little technicalities as possible. For the
same reason it is possible to replace the equations with appropriate nonlinear
versions, e.g., Navier-Stokes, nonlinear elasticity, etc. However, we refrain
from such generalizations as not much value is added by an additional fixed
point argument to obtain solvability of the (non-coupled) fluid and structure
equations. Similar arguments can be made to incorporate additional volume
forces or boundary values.

We will derive some properties of solutions to the Problems 2.2 and 2.3.
Before these are stated, we recall two assumptions from [21, Page 83]. They
are dealing with the regularity of the transformation F̂ and its determinant
Ĵ .

Remark 2.5. We simplify again notation by setting Â := F̂−1Ĵ F̂−T and
B̂ := Ĵ F̂−T in the following section.

Following [21], the following assumptions are made on the Â and B̂ to
proof existence of the transformed Stokes problem. Assume:

a) Â is a symmetric positive definite matrix whose coefficients are elements
of W 1,p(Ω̂f ). There exists some positive constant α such that Â � α I.

b) B̂ is invertible, with both B̂ and B̂−1 in W 1,p(Ω̂f ;R
d×d).



Differentiability of FSI 7

c) There is Cu > 0 such that Â and B̂ verify

‖I − Â‖W 1,p(̂Ωf ;Rd×d) ≤ Cu,

‖I − B̂‖W 1,p(̂Ωf ;Rd×d) ≤ Cu,

‖I − B̂T ‖W 1,p(̂Ωf ;Rd×d) ≤ Cu.

As both Â and B̂ are given by F̂ , we remark that the assumptions hold if
Â is regular enough, e.g., for small deformations of the fluid mesh meaning
‖ûf‖E � 1, see also our Remark 1.1. Further, we note that the mappings

Â, B̂, B̂−1 : WE → W 1,p(Ω̂f ;R
d×d)

are Fréchet-differentiable with

‖DuÂ(u)‖L(WE ,W 1,p(̂Ωf ;Rd×d)) ≤ Cu,

‖DuB̂(u)‖L(WE ,W 1,p(̂Ωf ;Rd×d)) ≤ Cu,

‖DuB̂
−1(u)‖L(WE ,W 1,p(̂Ωf ;Rd×d) ≤ Cu,

with a constant Cu depending on ‖u‖WE
. We note that, in fact, the constant

satisfies Cu ≤ Cρ,M < ∞ as long as 0 < ρ ≤ Ĵ and ‖u‖WE
≤ M .

Before we come to the existence and regularity of solutions to Prob-
lem 2.2 we need to introduce a slightly generalized fluid problem that we
need frequently in the following proofs.

Problem 2.6. Given a displacement ûs ∈ Wi,2, and problem data (f̂f , gf , P̂ ) ∈
W+

D,F . Define F̂ and Ĵ by (1.1).
Find (v̂f , p̂f ) ∈ W 0

F + (gf , 0) such that

−d̂iv (σ̂f B̂) = f̂f in Ω̂f ,

d̂iv (B̂T v̂f ) = P̂ in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf ,

(F)

with B̂ given by Remark 2.5.

It is immediately clear that, Problem 2.2 can be obtained from (F), by
setting f̂f = 0 and P̂ = 0.

Theorem 2.7 (Existence of Stokes in the ALE framework). Let Ω̂f ⊂ R
d be

any open domain, with a C1,1 boundary ∂Ω̂f = Γ̂f ∪ Γ̂i with positive distance
between the two boundary parts. Let ûs ∈ Wi,2 and (f̂f , gf , P̂ ) ∈ W+

D,F be
given. Define F̂ and Ĵ by (1.1). In addition, let the assumptions a) - c)
hold true, i.e., ‖ûs‖i,2 is small enough. Then, there exists a unique solution
(v̂f , p̂f ) ∈ W 0

F + (gf , 0) to (F) and it holds the estimate

‖(v̂f , p̂f )‖F � ‖(f̂f , gf , P̂ )‖D,F+ . (2.3)
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The hidden constant depends on the assumptions a)−c) and hence on ûs; it re-
mains bounded in terms of Cρ,M as long as 0 < ρ ≤ Ĵ and ‖ûs‖W 2−1/p,p(̂Γi;Rd) ≤
M . In particular, it holds

‖σ̂f B̂n̂f‖i,1 ≤ C‖(f̂f , gf , P̂ )‖D,F+ .

Further, the mapping F : Wi,2 ×W+
D,F → Wi,1 defined by

(ûs, f̂f , gf , P̂ ) �→ σ̂f B̂n̂f

is continuously differentiable.

Proof. The existence of a unique solution

(v̂f , p̂f ) ∈ H1
0 (Ω̂f ;R

d)× L2(Ω̂f )/R+ (gf , 0)

to (F) can be seen by transformation to the physical domain Ωf , noting that
the mean value of the back transformed P̂ is preserved, see for instance [43,
Prop. 2.2] (compare Problem 2.1).

The regularity follows as in [21, Lemma 4] with the obvious modifi-
cations for non-homogeneous Dirichlet data and inhomogeneity P̂ . To show
differentiability, it is sufficient to consider the map (ûs, f̂f , gf , P̂ ) �→ σ̂f B̂n̂f .

In order to show differentiability, we employ an implicit function type
argument. To this end, for given values ûs, f̂f , gf , P̂ the solution (v̂f , p̂f ) is
given by the equation (F), which we abbreviate as

a(ûs, f̂f , gf , P̂ , v̂f , p̂f ) = 0,

where

a : Wi,2 ×W+
D,F ×WF → Lp(Ω̂f ;R

d)×W 1,p(Ω̂f )/R.

To show differentiability of (v̂f , p̂f ) with respect to the given data, we employ
the implicit function theorem. To this end, we note a is linear in (v̂f , p̂f ), and
thus

Dv,pa(ûs, f̂f , gf , P̂ , v̂f , p̂f ) : WF → Lp(Ω̂f ;R
d)×W 1,p(Ω̂f )/R,

corresponds to the transformed Stokes operator on the left of F. Thus, by
what we have seen above, the operator
Dv,pa(ûs, f̂f , gf , v̂f , p̂f ) is invertible. This shows the assertion. �

For later purposes, we intend to derive some properties of the derivative
DuF . To do so, we start with a theorem calculating the derivative of (v̂f , p̂f )
with respect to the domain transformation ûf = E ûs.

Theorem 2.8. The mapping

G : WE → W 0
F + (gf , 0)

ûf �→ (v̂f , p̂f )

given by (F) with fixed (f̂f , gf , P̂ ) ∈ W+
D,F is Fréchet-differentiable and the

derivative
G′(ûf ) : WE → W 0

F ,



Differentiability of FSI 9

is given as follows. For any given δu ∈ WE, the pair

(δv, δp) = G′(ûf )δu ∈ W 0
F

is given as the unique solution to the problem

−d̂iv ((−δpI + νf (∇δvF̂−1 + F̂−T∇δvT ))B̂)

= d̂iv
(−p̂fDuB̂δu

+νf
(∇v̂fDuÂδu

+DuF̂
−T δu∇v̂Tf B̂

+ F̂−T∇v̂Tf DuB̂δu
))

in Ω̂f ,

d̂iv (B̂T δv) = −d̂iv ((DuB̂
T δu)v̂f ) in Ω̂f ,

δv = 0 on Γ̂i ∪ Γf ,

(2.4)

where (v̂f , p̂f ) = G(ûf ) and Â and B̂ are given in Remark 2.5. In particular,
if ‖ûf‖E is sufficiently small (compare Remark 2.5) then

‖G′(ûf )‖L(WE ,WF ) ≤ C(ûf ),

where C(ûf ) depends on ‖ûf‖E, and the data (f̂f , gf , P̂ ) only. Further, it
holds

C(ûf ) → 0 as ‖ûf‖E + ‖(f̂f , gf , P̂ )‖D,F+ → 0.

Proof. To see that problem (2.4) has a unique solution, we show that the
prerequisites of (F) are fulfilled, which shows the claimed existence using
Theorem 2.7. The regularity requirements for the right hand side are given
by definition of F̂ and (v̂f , p̂f ) (using that W 1,p and W 2,p are algebras).
Further to see that d̂iv ((DuB̂

T δu)v̂f ) ∈ W 1,p(Ω̂f ) we note that due to the
Piola identity, see, e.g., [10, Chapter I, p 39], it holds d̂iv (Ĵ(u)F̂−T (u)) = 0

for all u and thus also d̂iv ((DuB̂
T δu)) = 0. This implies

d̂iv ((DuB̂
T δu)v̂f ) = DuB̂

T δu : ∇v̂f ∈ W 1,p(Ω̂f ).

Thus, the only question remaining is the compatibility condition∫
̂Ωf

d̂iv ((DuB̂
T δu)v̂f ) dx = 0.

To this end, one applies the Gauss divergence theorem, which shows the
compatibility condition using v̂f = 0 on Γ̂i and DuB̂

T δu = 0 on Γf ; by
definition that Â = I on Γf for all u ∈ WE .

The claimed bound on ‖G′(ûf )‖L(WE ,WF ) follows from the stability esti-
mate (2.3) in Theorem 2.7 and the bounds on DuF̂

−1, DuĴ , v̂f , and the data.
For the bounds on DuF̂

−1 and DuĴ the smallness assumption in Remark 2.5
is required. Moreover, because (v̂f , p̂f ) in the right hand side of the defining
equations of (δv, δp) tends to zero if (ûf , f̂f , gf , P̂ ) → 0 it holds C(ûf ) → 0
if all data tends to zero. Note that Cu in Remark 2.5 c), and thus C in (2.3),
is non increasing as ûf → 0.
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Now, to show differentiability we define (v̂f , p̂f ) = G(ûf ) and (v, p) =
G(ûf + δu) where δu is sufficiently small to assert the smallness assumption
for ûf + δu following Remark 2.5.

Then, from strong convergence of the coefficients in (F), i.e.,

F̂ (ûf + δu)−1 → F̂ (ûf )
−1 as ‖δu‖E → 0,

it follows easily, by comparing the defining equations and application of the
stability estimate in Theorem 2.7, that (v, p) → (v̂f , v̂p) in WF as ‖δu‖E → 0.

Now, we show that in fact (δv, δp) given in the statement of the Theorem
is the claimed derivative G′(ûf )δu. We define the linearization error

(ev, ep) = G(ûf + δu)− G(ûf )− G′(ûf )δu = (v − v̂f − δv, p− p̂f − δp).

By the following Lemma 2.9 we obtain

‖(ev, ep)‖F ≤ o(‖δu‖E).
This shows the asserted differentiability. �

Lemma 2.9. Let ûf ∈ WE be small enough such that the mapping G from
Theorem 2.8 is well defined in ûf . Further, let ε be such that G is well defined
for all ûf + δu where ‖δu‖E ≤ ε. For any such δu, define (v̂f , p̂f ) = G(ûf ),
(v, p) = G(ûf + δu), and (δv, δp) by (2.4).

Then the linearization error (ev, ep) = (v− v̂f −δv, p− p̂f −δp) satisfies:

‖(ev, ep)‖F � ‖(v − v̂f , p− p̂f )‖F ‖δu‖E + o
(
‖δu‖E

)
= o

(
‖δu‖E

)
,

with hidden constant depending on Cρ,M as discussed in Remark 2.5.

Proof. We compare the equation (F) for (v̂f , p̂f )

−d̂iv ((−p̂fI + νf (∇̂v̂f F̂
−1 + F̂−T ∇̂v̂Tf ))B̂) = f̂f in Ω̂f ,

d̂iv (B̂T v̂f ) = P̂ in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf ,

where B̂ = Ĵ F̂−T , and (v, p) where F = ∇̂Â(ûf + δu), J = detF and
B = JF−T

−d̂iv ((−pI + νf (∇̂vF−1 + F−T ∇̂vT ))B) = f̂f in Ω̂f ,

d̂iv (BT v) = P̂ in Ω̂f ,

v = 0 on Γ̂i,

v = gf on Γf ,



Differentiability of FSI 11

with the equation (2.4) for (δv, δp)

−d̂iv ((−δpI + νf (∇δvF̂−1 + F̂−T∇δvT ))B̂)

= d̂iv
(−p̂fDuB̂δu

+νf
(∇v̂fDuÂδu

+DuF̂
−T δu∇v̂Tf B̂

+ F̂−T∇v̂Tf DuB̂δu
))

in Ω̂f ,

d̂iv (B̂T δv) = −d̂iv ((DuB̂
T δu)v̂f ) in Ω̂f ,

δv = 0 on Γ̂i ∪ Γf .

Comparing the first of each of the three equations yields, using Â = F̂−1B̂
and A = F−1B,

−d̂iv ((−epI + νf (∇evF̂
−1 + F̂−T∇eTv ))B̂)

= −d̂iv ((−pI + νf (∇̂vF̂−1 + F̂−T ∇̂vT )B̂)− f̂f

− d̂iv
(−p̂fDuB̂δu+ νf∇v̂fDuÂδu

+ νf (DuF̂
−T δu∇v̂Tf B̂ + F̂−T∇v̂Tf DuB̂δu)

)
= −d̂iv ((−pI + νf (∇̂vF̂−1 + F̂−T ∇̂vT )B̂)

+ d̂iv ((−pI + νf (∇̂vF−1 + F−T ∇̂vT )B)

− d̂iv ((−pI + νf (∇̂vF−1 + F−T ∇̂vT )B)− f̂f

− d̂iv
(−p̂fDuB̂δu+ νf∇v̂fDuÂδu

+ νf (DuF̂
−T δu∇v̂Tf B̂ + F̂−T∇v̂Tf DuB̂δu)

)
= −d̂iv (−p(B̂ −B)− p̂fDuB̂δu)

− νf d̂iv
(∇̂v(Â−A) +∇v̂fDuÂδu

)
− νf d̂iv

(
(F̂−T − F−T )∇̂vT B̂ +DuF̂

−T δu∇v̂Tf B̂
)

− νf d̂iv
(
F−T ∇̂vT (B̂ −B) + F̂−T∇v̂Tf DuB̂δu

)
=: R1.

(2.5)

Noting that W 1,p is an algebra, we see that R1 ∈ Lp(Ω̂f ;R
d) and by Frechét-

differentiability of

Â, B̂, F̂ : WE → W 1,p(Ω̂f ;R
d×d); and Ĵ : WE → W 1,p(Ω̂f ),
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in a neighborhood of ûf ; we can estimate the Lp-norm of R1 as follows, with
hidden constants depending on Cu given in Remark 2.5:

‖R1‖Lp(̂Ωf ;Rd) ≤ ‖p‖W 1,p(̂Ωf )/R
‖B − B̂ −DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ ‖p− p̂f‖W 1,p(̂Ωf )/R
‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂v‖W 1,p(̂Ωf ;Rd×d)‖A− Â−DuÂδu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂(v − v̂f )‖W 1,p(̂Ωf ;Rd×d)‖DuÂδu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂v‖W 1,p(̂Ωf ;Rd×d)‖B̂‖W 1,p(̂Ωf ;Rd×d)

‖F−T − F̂−T −DuF̂
−T δu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖∇̂(v − v̂f )‖W 1,p(̂Ωf ;Rd×d)‖B̂‖W 1,p(̂Ωf ;Rd×d)

‖DuF̂
−T δu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖F−T ∇̂vT ‖W 1,p(̂Ωf ;Rd×d)

‖B − B̂ −DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ νf‖F−T ∇̂vT − F̂−T ∇̂v̂Tf ‖W 1,p(̂Ωf ;Rd×d)

‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

� ‖(v − v̂f , p− p̂f )‖F ‖δu‖E + o(‖δu‖E).

(2.6)

Now, we compare the second of each of the three equations; with the
Piola identity, as in the proof of Theorem 2.8, we obtain

d̂iv (B̂T ev) = d̂iv (B̂T v)− d̂iv (BT v) + d̂iv (BT v)− P̂

+ d̂iv ((DuB̂
T δu)v̂f )

= d̂iv ((B̂T −BT )v + (DuB̂
T δu)v̂f )

= (B̂T −BT ) : ∇̂v +DuB̂
T δu : ∇̂v̂f

=: R2.

(2.7)

Further, we have the compatibility condition∫
̂Ωf

R2 dx =

∫
̂Ωf

d̂iv ((B̂T −BT )v + (DuB̂
T δu)v̂f ) dx

=

∫
̂Γi

(B̂T −BT )vn̂f + (DuB̂
T δu)v̂f n̂f ds

+

∫
Γf

(B̂T −BT )vn̂f + (DuB̂
T δu)v̂f n̂f ds = 0

since v, v̂f = 0 on Γ̂i and B̂T = BT on Γf and thus DuB̂
T δu = 0 on Γf .
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Again, using the algebra properties of W 1,p and the properties of B̂, we
assert R2 ∈ W 1,p(Ω̂f ) and we calculate

‖R2‖W 1,p(̂Ωf )
≤ ‖BT − B̂T −DuB̂

T δu‖W 1,p(̂Ωf ;Rd×d)‖v‖W 2,p(̂Ωf ;Rd)

+ ‖v − v̂f‖W 2,p(̂Ωf ;Rd)‖DuB̂
T δu‖W 1,p(̂Ωf ;Rd×d)

� ‖v − v̂f‖W 2,p(̂Ωf ;Rd)‖δu‖W 2,p(̂Ωf ;Rd)

+ o(‖δu‖W 2,p(̂Ωf ;Rd)).

(2.8)

Combining the above calculations asserts that (ev, ep) solves the problem

−d̂iv ((−epI +∇evF̂
−1 + (∇evF̂

−1)T )B̂) = R1 in Ω̂f ,

d̂iv (B̂T ev) = R2 in Ω̂f ,

ev = 0 on Γ̂i ∪ Γf ,

with bounds on R1 and R2 given by (2.5) and (2.7). From the estimates (2.6)
and (2.8) the assertion follows by Theorem 2.7. �

Now, we can state the next preliminary result concerning the derivative
of the ‘Dirichlet-to-Neumann’ map given in Theorem 2.7:

Theorem 2.10. For the mapping F given by Theorem 2.7 it holds that for any
given constant ε > 0, one can assert that

‖DuF(ûs, f̂f , gf , P̂ )‖ ≤ ε,

where the norm is taken with respect to

DuF(ûs, f̂f , gf , P̂ ) : Wi,2 → Wi,1,

provided that (f̂f , gf , P̂ ) ∈ W+
D,F , and ûs ∈ Wi,2 are sufficiently small.

Proof. We note that F is given as a composition of the following three maps:

E : Wi,2 → WE

ûs �→ E(ûs) = ûf ,

G : WE → WF ,

ûf �→ (v̂f , p̂f ) solving (F) with fixed data (f̂f , gf , P̂ ),

τ : WE ×WF → Wi,1,

(ûf , v̂f , p̂f ) �→ Ĵ σ̂f F̂
−T n̂f .

Here, for fixed f̂f and gf the operator G is defined as in Theorem 2.8.
This means

F(ûs, f̂f , gf , P̂ ) = τ
(
E(ûs),G(E(ûs))

)
.

Noting that E is linear and bounded, and thus has no influence on the differ-
entiability, we neglect the influence of E and write ûf ∈ WE instead of E(ûs).
By the chain rule, we get for any direction δu ∈ WE that

DuF(ûf , f̂f , gf , P̂ )δu = Duτ(ûf ,G(ûf ))δu+Dv,pτ(ûf ,G(ûf ))G′(ûf )δu.
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Because τ is linear in v and p, it follows

DuF(ûf , f̂f , gf , P̂ )δu = Duτ(ûf ,G(ûf ))δu︸ ︷︷ ︸
(i)

+ τ(ûf ,G′(ûf )δu)︸ ︷︷ ︸
(ii)

.

We take a closer look on the summands on the right hand side.
(i) For the first term Duτ , we note

τ(ûf ,G(ûf )) = τ(ûf , v̂f , p̂f ) = (−p̂fI + νf (∇̂v̂f F̂
−1 + (∇̂v̂f F̂

−1)T ))B̂n̂f .

Consequently, its derivative with respect to the first argument is given
as

Duτ(ûf ,G(ûf ))δu = (−p̂fI + νf (∇̂v̂f F̂
−1 + (∇̂v̂f F̂

−1)T ))(DuB̂δu)n̂f

+ (νf (∇̂v̂fDuF̂
−1δu+ (∇̂v̂fDuF̂

−1δu)T ))B̂n̂f .

From this, using that Wi,1 is the trace space of W 1,p(Ω̂f ;R
d), and an

algebra for p > d, we calculate:

‖Duτ(ûf ,G(ûf ))δu‖Wi,1

≤ ‖σ̂f (DuB̂δu)n̂f‖Wi,1

+ ‖(νf (∇̂v̂fDuF̂
−1δu+ (∇̂v̂fDuF̂

−1δu)T ))B̂n̂f‖Wi,1

� ‖σ̂f‖W 1,p(̂Ωf ;Rd×d)‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d)

+ ‖v̂f‖W 2,p(̂Ωf ;Rd)‖B̂‖W 1,p(̂Ωf ;Rd×d)‖DuF̂
−1δu‖W 1,p(̂Ωf ;Rd×d).

Using the definitions of Ĵ and F̂−T , we get that for ‖ûf‖E sufficiently
small, there is a constant, depending on the size of this norm only, such
that

‖DuB̂δu‖W 1,p(̂Ωf ;Rd×d) + ‖DuF̂
−1δu‖W 1,p(̂Ωf ;Rd×d) ≤ C‖δu‖E .

Hence, for (f̂f , gf , P̂ ) sufficiently small,

‖Duτ(ûf ,G(ûf ))‖L(WE ,Wi,1) → 0 (ûf → 0)

uniformly in ‖δu‖E ≤ 1 since ‖σ̂f‖W 1,p(̂Ωf ;Rd), ‖v̂f‖E → 0.
(ii) Now, we come to the second term

τ(ûf ,G′(ûf )δu).

By the definition of τ it holds with (δv, δp) = G′(ûf )δu

‖τ(ûf , δv, δp)‖i,1 � ‖G′(ûf )‖‖δu‖E .
Thus, by Theorem 2.8, we get

‖τ(ûf ,G′(ûf )δu)‖i,1
‖δu‖E → 0 ((ûf , f̂f , gf , P̂ ) → 0).

This yields the assertion.
�
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Theorem 2.11 (Existence of the structure problem). Let f̂s ∈ WD,S and
ĝs ∈ Wi,1. Then, there exists a unique solution ûs ∈ WS to (S). Further, it
holds the estimate:

‖ûs‖S � ‖f̂s‖D,S + ‖ĝs‖i,1.

In addition, the mapping S : WD,S ×Wi,1 → WS defined by

(f̂s, ĝs) �→ ûs

is continuously differentiable.

Proof. The proof can be found in Ciarlet [10, Theorem 6.3.6] noting that
Γ̂i has positive distance to Γ̂s; and thus no singularities from non-matching
boundary conditions may arise. �

3. Existence of a solution to the fluid-structure problem

In this section, the coupled FSI problem is formulated and results regarding
a locally unique solution and differentiability of the solution map are estab-
lished. Due to the employed fixed-point arguments it is not surprising that
we obtain existence, local uniqueness and regularity of a solution under a
small data assumption only.

We are prepared to show that there exists a (unique) solution to the
coupling of the Problems 2.2 and 2.3. Here the principal unknowns are the
fluid velocity v̂f , the fluid pressure p̂f , the structure displacement ûs, and
the fluid domain displacement (mesh motion) ûf . For the convenience of the
reader, we recall the coupling conditions on Γ̂i. The first one is the geometric
coupling condition (to specify the ALE map Â) such that the unknown fluid
domain follows the interface. The next is a velocity condition for the fluid
problem and finally, the stress balance on the interface. Thus, we have

ûf = E(γi(ûs)) = γi(ûs) on Γ̂i,

v̂f = 0 on Γ̂i,

Σ̂sn̂s − Ĵ σ̂f F̂
−T n̂f = 0 on Γ̂i.

(3.1)

It can be inferred from the third condition that ĝs = Ĵ σ̂f F̂
−T n̂f in the

structure Problem 2.3.
Then, the coupled problem reads:
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Problem 3.1. Given gf ∈ WD,F and f̂s ∈ WD,S , find (v̂f , p̂f , ûs) ∈ W 0
F ×

WS + (gf , 0, 0) such that

−d̂iv (σ̂f B̂) = 0 in Ω̂f ,

d̂iv (B̂T v̂f ) = 0 in Ω̂f ,

v̂f = 0 on Γ̂i,

v̂f = gf on Γf ,

−d̂iv (Σ̂s) = f̂s in Ω̂s,

ûf = 0 on Γ̂s,

ûf = E(γi(ûs)) on Ω̂f ,

ûf = γi(ûs) on Γ̂i,

v̂f = 0 on Γ̂i,

Σ̂sn̂s − Ĵ σ̂f F̂
−T n̂f = 0 on Γ̂i

(FSI)

with σ̂f given by Problem 2.2, Σ̂s given by Problem 2.3 and F̂ and Ĵ are
defined by (1.1).

The following proof of existence for the FSI problem is provided in [21].
However, a major extension is the differentiability of the solution map.

Theorem 3.2. Let gf ∈ WD,F , and f̂s ∈ WD,S be given with 3 < p < ∞.
Assuming that gf , and f̂s are small enough, then there exists a solution Û =
(v̂f , p̂f , ûs) ∈ W 0

F×WS+(gf , 0, 0) to the coupled Problem (FSI). Furthermore,
there is a constant M , such that there is a locally unique solution satisfying
the additional condition:

‖(v̂f , p̂f )‖F + ‖ûs‖S ≤ M. (3.2)

In addition, the herewith defined mapping

FSI : WD,F ×WD,S → WF ×WS + (gf , 0, 0),

(gf , f̂s) �→ (v̂f , p̂f , ûs),

is continuously differentiable in a neighborhood of (0, 0).

Proof. The existence of a solution satisfying (3.2) for some sufficiently small
value of M can be obtained by the arguments in [21], in particular Theorem 1.
Hence all we need to show is differentiability of the thus defined mapping
FSI.

To do this, we note that

(v̂f , p̂f , ûs) = FSI(gf , f̂s)
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if and only if the displacement ûs satisfies

ûs = S(f̂s,F(E(ûs), 0, gf , 0)). (3.3)

The velocity and pressure (v̂f , p̂f ) depend continuously differentiable on (ûs, gf )
by Theorem 2.7. Thus, it is sufficient to show differentiability of the mapping

(gf , f̂s) �→ ûs

given by the above fix point relation (3.3). To see that this defines a differ-
entiable mapping, we employ the implicit function theorem. We note that

DgS(f̂s,F(E(ûs), 0, gf , 0)) : Wi,1 → WS

corresponds to the solution operator for S and is thus bounded, see Theo-
rem 2.11. The second part

DuF(E(ûs), 0, gf , 0)) : W
2,p(Ω̂s;R

d) → W 1−1/p,p(Γ̂i;R
d)

corresponds to the shape derivative of the flow and from Theorem 2.10, we
know that ‖DuF‖ can be made arbitrarily small by choosing the data pos-
sibly smaller. Thus, I +DgS ◦DuF is invertible. The implicit function the-
orem yields the asserted local uniqueness of (v̂f , p̂f , ûs) and differentiability
of FSI. �

4. Numerical experiments
This final section substantiates our theory with the help of numerical tests.
These tests build upon well-known benchmark configurations [26]. This set-
ting is perfect (because of many existing computational results) to illustrate
several features of our theoretical work. Specifically, in the first set of tests,
it is shown how the fluid mesh deformation depends on the regularity of Â
and consequently on the quality of the chosen moving mesh operator. Here
the biharmonic operator provides higher regularity than standard Laplace or
elasticity based mesh-motion. This has been demonstrated in an earlier work
for nonstationary fluid-structure interaction in [46, 48]. An indicator for the
mesh quality is Ĵ (that is related to a sufficient small ‖ûs‖S and Cρ,M re-
spectively) which has already been used in that previous work. In the second
test, we are interested in the sensitivity analysis of the solution map FSI
and numerical demonstration of its differentiability. As quantities of interest,
we observe the deflection and stresses of an elastic beam immersed in an
incompressible fluid (see Figures 1 and 7). The tests are computed with the
open-source project DOpElib [19] based upon the finite element library [4, 3].

In order to be able to calculate solutions for which the small data as-
sumption fails, we use a nonstationary formulation of the Problem (FSI) and
calculate a stationary limit.

Remark 4.1. In order to compute biharmonic mesh motion Δ2u = 0, we
use the Ciarlet-Raviart mixed formulation and (outer) boundary conditions
u = ∂nu = 0. Although solving the biharmonic equation on the linear sys-
tem level is more expensive than standard Laplace or linear elasticity moving
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mesh techniques, it is too simple to claim that the method is not worth to be
used due its higher computational cost. It is clear from our theory that the
biharmonic mesh motion model provides us with higher regularity and con-
tinuity of the normal derivatives and therefore, results in smoother meshes,
while bounding Ĵ away from zero over a larger range of interface displace-
ment values. Consequently, the ALE-Stokes equations are less degenerated
and therefore the Newton solver needs less steps, in our numerical experi-
ence, and converges faster in the biharmonic case.

We perform two different test scenarios:
• Example 4.1 (fluid initially in rest): Comparison of mesh motion tech-

niques with respect to Ĵ .
• Example 4.2 (fluid inflow and gravitational force f̂s): Differentiability

of the solution map FSI.
The first test case is split into two different sub-cases CSM 1 and CSM 4.

The fluid is set to be initially at rest in Ω̂f . An external gravitational force
f̂s (with f̂s = 2 in CSM 1 [26] and f̂s = 4 in CSM 4) is applied only to the
elastic beam, producing a visible deformation. As mentioned above, the tests
are performed as time-dependent problems (backward Euler), leading to a
steady state solution. For all models, we use the time step size k = 0.02s.

In the first test case CSM 1, the parameters and reference values are
taken from [26]. We validate the code and compare the different mesh motion
approaches. In the second example CSM 4, only the gravitational force is
increased causing the elastic beam to become much more deformed.

Configuration: The computational domain has length L = 2.5m and
height H = 0.41m. The circle center is positioned at C = (0.2m, 0.2m)
with radius r = 0.05m. The elastic beam has length l = 0.35m and height
h = 0.02m. The right lower end is positioned at (0.6m, 0.19m), and the left
end is attached to the circle.

(2.5, 0)

(2.5, 0.41)(0, 0.41)

(0, 0)

A=(0.6,0.2)

̂Ω

Γ̂wall

Γ̂wall

Γ̂in Γ̂out

f̂s

Figure 1. Configuration with circle-center C = (0.2, 0.2)
and radius r = 0.05.

Control points A(t) (with A(0) = (0.6, 0.2)) are fixed at the trailing
edge of the structure, measuring x- and y-deflections of the beam.

Boundary conditions: For the upper and lower boundaries Γ̂wall, the
‘no-slip’ conditions for velocity are prescribed. Moreover, in Example 4.2, a
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parabolic inflow velocity profile is given on Γ̂in by

vf (0, y) = ε 1.5
4y(H − y)

H2
, (4.1)

where ε tends to zero, i.e., ε = ±10−i, i = 0, 1, 2, 3. With this, we are able to
study the differentiability of the solution map F in the origin. At the outlet
Γ̂out the ‘do-nothing’ outflow condition is imposed which lead to zero mean
value of the pressure at this part of the boundary. The displacements are
fixed on all boundaries, i.e, û = 0 on Γ̂wall ∪ Γ̂in ∪ Γ̂out.

Parameters: We choose for our computation the following parameters.
For the fluid we use νf = 1kgm−1s−1. The elastic structure is characterized
by the Lamé coefficients μs = 5 ∗ 105kgm−1s−2 and λs = 2 ∗ 106kgm−1s−2.

4.1. Comparison of mesh motion techniques with respect to Ĵ

We compare three different mesh motion techniques. First, harmonic exten-
sion with constant diffusion parameter (Harm) [49], then harmonic extension
with Jacobi-based stiffening (Harm(J)) [41], and finally biharmonic mesh
motion (Biharm) [24]. The deflection of the elastic beam is computed in the
point A = (0.6, 0.2). Comparing fixed deflections of the beam, we observe in
Tables 1 and 2 that the biharmonic mesh motion model delivers the most
regular meshes since Ĵ remains larger compared to the other two techniques.

Table 1. Results for CSM 1: We present different mesh
motion techniques and their influence on the mesh quality.
Here, we compare min(Ĵ) when the elastic beam has reached
certain values of its tip deflection uy(A). All mesh motion
techniques (MMT) are able to compute this test case, how-
ever the quality is best when using the biharmonic technique
because minBiharm(Ĵ) > minHarm(J)(Ĵ) > minHarm(Ĵ).

MMT uy(A)[×10−2m] min(Ĵ)

Harm −1.0 0.811
−2.0 0.635
−4.0 0.269

Harm(J) −1.0 0.826
−2.0 0.673
−4.0 0.426

Biharm −1.0 0.926
−2.0 0.853
−4.0 0.707

It should be noted, that this demonstrates that the smallness assump-
tions made in Section 2, to assert Ĵ > 0, depend strongly on the choice of
the extension E .
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Table 2. Results for CSM 4: We present different mesh
motion techniques (MMT) and their influence on the mesh
quality. Here, we compare min(Ĵ) when the elastic beam has
reached certain values of its tip deflection uy(A). Here, the
harmonic extension fails for a tip-deflection of −5.8×10−2m
whereas the other two techniques achieve uy(A) = 13.17 ×
10−2m and uy(A) = −13.56× 10−2m before they fail.

MMT uy(A)[×10−2m] min(Ĵ)

Harm −1.0 0.803
−5.0 0.082
−5.8 < 0.0

Harm(J) −1.0 0.814
−5.0 0.311
−10.0 0.047
−13.17 < 0.0

Biharm −1.0 0.917
−5.0 0.629
−10.0 0.255
−13.56 < 0.0

4.2. Differentiability of the solution map FSI
Large Data. In this test, we use the simple harmonic (Harm) and the bi-
harmonic (Biharm) mesh motion technique and each with force f̂s = −4
(CSM 4). We study the differentiability of the solution map FSI while keep-
ing the gravity at the same value for all tests and only vary the magnitude
of the parabolic inflow profile as given in Equation (4.1). Specifically, we are
interested in the case ε → 0.
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Figure 2. Function plots for uε
y and min(Ĵε) for different ε

using the harmonic mesh motion technique (CSM 4).

Instead of monitoring the respective norms on WS and WF , we analyze
the behavior of a dependent quantity. Namely, we will compare the deflection
of the tip A of the beam.
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Figure 3. Function plots for uε
y and min(Ĵε) for different ε

using the biharmonic mesh motion technique (CSM 4).

As we monitor in Figure 2, the beam-deflection increases when the in-
flow magnitude gets smaller. This observation is physically reasonable. Cor-
respondingly, the same observation holds for the min(Ĵ) because larger beam
deflection means larger mesh deformation and therefore, degeneration of the
ALE map. Here, the biharmonic mesh motion models yields much better re-
sults as monitored in Figure 3. In comparison, the harmonic mesh motion
technique fails with min(Ĵ) < 0 in time-step 70 while for the biharmonic
mesh motion technique min(Ĵ) < 0 is achieved not until time-step 152. In
both cases, even for gf = 0, the tip has not reached its stationary value.
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Figure 4. Function plots for CSM 4 using the harmonic
mesh motion technique for uy−uε

y

ε for different positive ε. At
time step 70 min(Ĵ) becomes negative (at left). At right,
two corresponding negative and positive ε are compared. As
ε+, ε− → 0, the functional value uy−uε

y

ε converges in at time
step 69 (just before the break down).

To check for differentiability of the position of the tip A, we calculate
the y-component uy of the displacement at this point for varying values of the
inflow velocity gf

∣∣
̂Γin

= εvf (0, y). In Figure 4 and 5, we observe the difference
quotients between the corresponding values uy = u0

y (the exact value) and
the ε-related uε

y. For decreasing positive ε, the solution converges as ε → 0.
However, we notice, that there is a big change in the difference quotient once
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Figure 5. Function plots for CSM 4 using the biharmonic
mesh motion technique for uy−uε

y

ε for different positive ε. At
time step 152 min(Ĵ) becomes negative (at left). At right,
two corresponding negative and positive ε are compared. As
ε+, ε− → 0, the functional value uy−uε

y

ε converges in at time
step 152 (just before the break down).

min(Ĵ) < 0. In the second subplot in Figure 4, we see that for negative and
positive ε the limit is identical up to the point min(Ĵ) < 0. However, after the
value of min(Ĵ) gets negative the graphs in the two Figures 4 and 5 differs.
This illustrates that the assumption of smallness of the data, in particular
the thus implied condition Ĵ = Ĵ(ûf ) > 0, can not be dropped and moreover
that calculated results with min(Ĵ) are not reliable for the calculation of
sensitivities.
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Figure 6. Function plots for uε
y and min(Ĵε) for different ε

using the harmonic mesh motion technique with small force
f̂s = −1.0. Here, the right hand side force is chosen small
enough such that the method does not break down.

Small Data. Finally, we consider a CSM test case, where f̂s = −1.0 is smaller
than in CSM 4. As we observe in Figure 6 the harmonic mesh motion tech-
nique is capable of calculating the stationary limit. The effect of Ĵ → 0 is
visualized in Figure 7.
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Figure 7. Snapshot of test case f̂s = −1.0 at time 220
with the highest deflection of the tip A. The computational
domain (i.e., the reference configuration) Ω̂ is shown left. In
the right subfigure, the physical domain Â(Ω̂) = Ω visualizes
the impact of Ĵ → 0, namely the mesh degeneration close to
the beam tip.
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Figure 8. Function plots for CSM test case with f̂s = −1.0

using the harmonic mesh motion technique for uy−uε
y

ε for
different positive ε. The error converges for ε → 0.

In Figure 8, the corresponding difference quotients are calculated. We
observe uniform convergence of these difference quotients, highlighting our
derived differentiability results.
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