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POLYNOMIAL INTERPOLATION IN NONDIVISION ALGEBRAS  *

GERHARD OPFER

Abstract. Algorithms for two types of interpolation polynomials in mdivision algebras are presented. One
is based on the Vandermonde matrix, the other is close to @vetdw interpolation scheme. Examples are taken
from R* algebras. In the Vandermonde case necessary and suffioieditions for the existence of interpolation
polynomials are given for commutative algebras. For nonoaoiative algebras there is a conjecture. This conjecture
is true for equidistant nodes. It is shown that the Newtomfof the interpolation polynom exists if and only if all
node differences are invertible. There are several nualezi@amples.
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1. Introduction. The aim of this paper to provide an algorithm for solving tlodypo-
mial interpolation problem in nondivision algebras andiging the conditions under which
such an algorithm works. As examples of nondivision algelva will mainly use one of
the eightR* algebras. The letteR is used here for the field of real numbers. An algebra
in general is the vector spa@®”" equipped with an additional, associative multiplication
RN x RY — R which has a one, usually abbreviated by 1. More informatamtze found
in a book by Garling,3]. These algebras are also callgebmetric algebrag5]. The names
and the algebraic rules for the eight algebra&frcan be found in a paper by Janovska, Opfer,
[6]. The algebras are abbreviated by (the names are in pasasth€he names where given
by Hamilton 1843 forH, by Cockle, 1849 foll.oq, Hies, Heotes, [1, 2] and by Schmeikal,
2014 for the remaining four1Q])

H(quaternions)Hl..4(coquaternions or split-quaternions),.s(tessarines),
Heotes(cotessarinesil, .. (nectarines)H..., (conectarines),
Hi . (tangerines)H .o (COtangerines).

Note thatHes, Heotess Hean, Heotan @re commutative. We will in general use the notatibn
for one of these algebras. The problem to be considered eitdltledinterpolation problem
and we will consider two types of interpolation problems.eQvill be calledvVandermonde
interpolation problenmand the otheNewton interpolation problenBoth problem types rely
on a sef(xyg, fr) € A x A of data where ther;, are referred to anodes and thef;, are
referred to avalues 1 < k£ < n + 1. The minimum requirement for the nodes is that they
are pairwise distinct.

We need the notion of similarity. For this purpose it is uséduintroduce the simple
notation

a = (a1,a2,a3,a4), a € A

for elements fromR* algebras. The first component; of a is called thereal part of a
and denoted by; = R(a). An element of the fornfa;, 0,0, 0) is called real, and the real
elements of4 can be identified byR.
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DEFINITION 1.1. (1) Two elements, b € A will be calledsimilar, denoted by: ~ b if
there is an invertiblé € A such that

b= h"tah.

The set of elements which are similar to a fixed A is calledsimilarity class ofx, denoted
by [a] and formally defined by

[a] := {b: b= h~'ah forall invertibleh € A}.
(2) Let A be one of the four noncommutative algebras. Definetirgugate of: by
a = conj(a) = (a1, —ag, —as, —a4) and putabsg(a) = aa.

An early paper with the topic of similarity in connection tiguaternions was already
given 1936 by Wolf, 14]. Itis clear, that similarity is an equivalence relationefidition 1.1
part (1) applied to a commutative algebdayields[a] = {a}, thus, in this case, the similarity
class consists only of one element, which means, that twoegies in a commutative algebra
are similar if and only if they are identical. Now, by formesults of the already quoted
paper, f], it is easily possible to identify similar elements, andctoaracterize invertible
elements in one of the noncommutative algebras.

THEOREM1.2. Leta,b € A\R and letA be one of the four noncommutatié alge-
bras. Theru ~ b if and only if

(1.1) R(a) = RN(b), absz(a) = absa(b),
whereabss(a) is a real quantity withabss (a) # 0 if and only ifa is invertible and

. a

(1.2) = @

if absa(a) # 0.

For absz(a) there is the formula

a%+a§+a§—|—ai fora € H,
2 2 2 2
ai +a5 —az —aj fora e Heoq,
(1.3) absy(a) = a% _ a% + ag - (;21 fora e Hcoq
1 2 3 4 nec»

a? —a3 —a3 +a3 fora € Heon,
and the property

(1.4) absy(ab) = absa(ba) = absa(a)absa (D).

Proof. See p]. 0

The side condition fori(.1) thata,b ¢ R can be omitted foifl but not for the other
three noncommutative algebras. This can be easily seenebgxthimplen = (1,0,0,0),
b= (1,3,3,0) for Heoq andH,e. and bya = (1,0,0,0), b = (1,3,0,3) for Heon. The
condition (L.1) is valid for a, b, buta = (a1,0,0,0) is not similar to any nonreal element.
In a corresponding theorem for coquaternions by PogoruyRartitiguez-Dagnino 1[1], this
condition is missing.
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2. The Vandermonde approach.Given apolynomialp of degreen € N (N denotes
the set of positive integers) in the form

n+1
(2.1) p(x) := Zaja:jfl, z,a; € A, 1 <j<n+1,
j=1
and pairwise distinatodes
(2.2) € A 1<k<n+1,
(2.3) such thatey, — x4 are invertible for alil <k <n,
andvalues
(2.4) fre A, 1<k<n+1
with the requirement that
(2.5) plxg) = fe, 1<k<n+1

We use this notation because itis convenientin some pragiagianguages, like MATLAB.
The cases with = 1, n = 2, n = 3 will be calledlinear, quadratic, cubicrespectively. The
given condition 2.3) for the nodes augments the standard condition, that thesna pair-
wise distinct. In a nondivision algebra two distinct nodesidt necessarily have the property
that the difference is invertible. This will be seen in thédaing. The requirement given in
(2.5 leads to a linear system in the algebtavith n + 1 unknowns and equations, defined
by the Vandermonde matrix. Therefore we call this approheandermonde approach.

LEMMA 2.1. The interpolation problem, defined b¥.{) to (2.5 does not necessarily
have a solution and if there is a solution it may not be unique.

Proof. Let there be two solution®,q to the interpolation problem. Then,
(p—q)(zr) = 0,1 <k <1+ n, which implies that the difference polynomial— ¢
of degreen hasn + 1 zeros. However, the polynomials considered here do notssaciéy
obey the Haar condition, which means that a polynomial ofeeg with more thann ze-
ros vanishes identically. Seé][and [L(], also for the case that the Vandermonde matrix is
singular. d

The algebrdl of quaternions is a division algebra (i. e. the only nonititdg element is
the zero element) and the problem to be considered has bked $or H by Lam, [8] with
extensions by Lam and Leroy][ The result is the following:

THEOREM 2.2. The interpolation problem ifil as stated above has a unique solution if
and only if the nodes obey the following rule: Not three ofittielong to the same similarity
class.

Proof. By Lam, [g]. O

DEFINITION 2.3. Let there bex + 1 pairwise distinct nodes, € A, 1 <k <n+1.If
there does not exist a subset of three nodes which belong &athe similarity class, we say
that the nodes satisfy theam condition

The Lam condition is satisfied if the underlying algebtés commutative or if the num-
ber of nodes is at most two. In the algebra of quaterniéinswo distinct nodes have the
property that the difference is invertible. This is not tfoe the otherR* algebras. And
therefore, the Lam condition is not good enough to guarahteeolvability of the interpola-
tion problem for the other algebras.

2.1. The linear and the quadratic case.We will treat the linear and quadratic case,
individually, in order to obtain some information for thengeal case. The linear interpolation
problem can be written as
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a1 + asry = fi1,
ay + asxo = fo.
By subtracting the second equation from the first equatioolvtain
az(r1 — x2) = f1 — fa,
and the solution is

az = (f1 — f2)(1 — z2) 7, a1 = f1 — az>1.

COROLLARY 2.4. The linear interpolation problem in any algebtd has a unique
solution if and only if the difference of the two nodes;— x», is invertible.
Letn = 2. Then, @.5 implies

(2.6) a1 + azry +G3UC1 f1,
(2.7) a1 + a2x2 + 03502 f2,
(2.8) a1+ azrs + G3$C3 f3-

We will introduce some notation, which will also be usedilate

(29) (.]7 ) CC ) ( ) _fka 1§]7k§3a
(2.10) 2(3, k) := (g1( — 13,k + 1)) (zk — mpg1)
(2.11) (k) == (p1(k) =1k +1))(zp —zps1) ", 1<k < 2
(2.12) @3(1) = (@2(1) — 2(2)) (92(3,1) — g2(3,2))
Subtracting equatior2(7) from (2.6) and @.8) from (2.7) yields

3
(2.13) D aj(al = al ) = fo— e 1SR <2,
Multiplying each of the two equations Ky, — x1.+1)~ 1, 1 < k < 2 from the right, yields
(2.14) az + azg2(3,k) = ¢2(k), 1 <k < 2.
By subtracting and multiplying again, we obtain the finalsion
(2.15) az = 803(1)'

If az is known,as can be computed fron2(14), anda; from (2.6).
There are two critical steps. In order that the quadratierptlation problem has a
solution, it is necessary and sufficient that

(1) : (w1 —a2) ™, (w2 —a3) ™1, (i0) : (92(3,1) — 92(3,2))
exist. For the second part we define

(2.16) flx1, e, 23) == g2(3,1) — g2(3,2)
( 2

—x3) (w1 —a2) " — (23 — 23)(22 — 3)

—1

(3,
2 —1
1 .

The central question is, whethgiis invertible. Here we have to distinguish between the
commutative and the noncommutative algebras.

THEOREM2.5. Let.4 be one of the commutative algebras. Then the quadratiqintar
tion problem has a wunique solution if and only if the three fedénces
T1 — T9,To — X3, X1 — X3 are invertible.
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Proof. Because of the commutativity we hayér,, o, v3) = 1 — x3. O
We will use the following lemma.
LEMMA 2.6.Letz, h € A and letA be one of the noncommutative algebras. Then

(2.17) hz® — 2*h = ¢ (hz — zh), ¢, € Rforall k € N.*

Proof. In all four noncommutative algebras there is the formula
2% = —absy(2) + 2R(2)z =: by + 22,
which implies (multiply byz and use the formula for? again)
(2.18) 2% = by, + cpz, by, cr € R, forall k e N.

For more details and formulas for computing the constants, see b, p. 138] or [7, p. 247].
Thus,z*—ciz = by, € Rand thereforeh(zF—cpz) = (¥ —cpz)hforall h € A. Rearranging
yields 2.17). O

In the next lemma we gather some information of the consexpseof the violation of
the Lam condition.

LEMMA 2.7. Let. A be one of the noncommutative algebras andrlet € A such that
x — yis invertible andr ~ y. Then

(2.19) (2% —y*)(x —y)"' = cx(2z) € Rforall k € Nand ally € [z].

Proof. Assume that the similarity is defined hy= h~'2h. We multiply equationZ.17)
form the left byh—! and use that the real numhgrcommutes with all algebra elements and
obtainz* — y* = ¢;,(z — y) from where 2.19 follows. 0

This lemma says, that in all four noncommutative algebdathere are real numbers
¢k, k € Nassociated to all equivalence clasgesThis also implies, that under the conditions
of Lemma2.7 we havef(z,y,z) = 0 wheref is defined in 2.16. Therefore, the Lam
condition excludes the cagéx, y, z) = 0, but not necessarily the case tlfdt, y, z) is not
invertible.

THEOREM 2.8. Let A be one of the noncommutative algebras. Then, the quadratic
interpolation problem has a unique solution if in additi@ut; — 2, x5 — x3 being invertible,
the quantityf (x1, x2, x3), defined in 2.16 is invertible.

Proof. Follows from the above derivation of the highest coeffitien The definition of
3(1) depends on the invertibility of (x1, z2, x3). O

EXAMPLE 2.9. Letz, = (2,8,4,9), 2 = (8,5,5,1), 23 = (4,0,2,1),
f1=01,2,1,1), fo2 = (8,6,3,5), f3 = (1,2,4,0). Note thatr; — x5 = (—2,8,2,8) is not
invertible inH... Nevertheless, this problem has a solutiofilin,, which shortened to four
digits is

ay = (357.1411, 479.8347, 185.6411, 567.8347),

as = (—86.1452, —141.9758, —65.7823, —152.5806),
a3 = (5.2460, 10.0121, 5.1411, 10.0202).
*This is according to some experiments possibly also truetfuer algebrasA thanR* algebras, onlR has to

be replaced by the centéry of .A. The center of an algebra is the set whose elements commitfteallvalgebra
elements.
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This example shows, that the Vandermonde interpolatiohlpro is not invariant under
permutation of the nodes and values. In the above exampleciiaege of:; andxs and of
f1 and f> will render the problem unsolvable.

2.2. The general caseThe technique to find the solution of a polynomial interpiolat
problem for degree has been sketched already for the quadratic case. It corsstntially
of a triangulation of the underlying Vandermonde matrixe@eneral form of this procedure
will be summarized in the following theorem.

THEOREM 2.10. In order to solve the polynomial interpolation problem aatetl in
(2.7) to (2.5 one has to do the following. Define

(2.20) g1(j,k) := ;

w)z 1<Lk<n+1
)=
)=

(9e=103 k) = ge1(Gok + 1)) (ge—1(£, k) — ge—r (G + 1)),

(pe-1(k) — e (k+ 1)) (ge-1(L, k) — ger (6 k+ 1)),

0<2<n+1,1<k<n—l+2,{+1<j<n+1,

where we assume that all inversesgof ; (¢, k) — ge—1(¢, k + 1) occurring in 2.21) and
(2.22 exist. Then

(2.21) ge(4,k
(2.22) @ik

n+1
(2.23) art+ Y a;ge(. k) = po(k),
J=C+1
1</<n+1,1<k<n-¢+2, and

(224) An+1 = 9071+1(1)'
If a,,+1 is known by 2.24), we compute the coefficients, a,,_1, . .., a; backwards by for-

mula .23 inserting at all places: = 1.
Proof. We start with the representation

n+1
CL1+ZCLJ'ZC?;71 :fk, 1<k<n+1,
j=2
which is the same as »
(2.25) ar+ Y ajgi(ik) =pi(k), 1<k <n+1.

Subtracting equatiok + 1 from equationk in (2.29 and multiplicating the difference by
(x), — x41) ", assuming that this is possible, and applyia@() and @.22) yields
n+1

(2.26) ay+ Y ajga(j.k) = pa(k).

Having arrived atZ.23, we can use induction, to show that

n+1

arp1+ Y a9 (i k) = pei(k). O
=42

Let us assume we have solved an interpolation problem ssfatigs How to judge the
quality of the computed coefficients, a1, ..., an+1. One possibility is to computg, :=
p(zy) and compare these values with the given valfiefor all 1 < k& < n 4 1. For test
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purposes it is a good idea to choose all componenfs af integers. Then the errors are the
deviation of f;, from being integer. This can be measured in the maximum ngrpuikting
both f,, andf; in one reaki(n + 1) column vector and then form:= max |col( fi) — col(f )|
as measure for therror wherecol indicates the forming of the column vector.

EXAMPLE 2.11. Letn = 3 andz; = (2,8,4,9), 22 = (8,5,5,1), 3 = (4,0,2,1),
g = (9,9,4,4), fi = (1,2,1,1), fo = (8,6,3,5), f3 = (1,2,4,0), f+ = (3,9,3,1).
These data were chosen randomly. There are no solutidiis,in; becauser; — x is not
invertible inH,.tes and inH,,.. because:s — x5 is not invertible inH,,... For all other cases
the interpolation problem has a solution, given in the folltg tables, shortened to 4 digits.
Solution forH with error= 2.5757¢ - 10~ 14:

a1 = (—6.4416, —15.2697, 8.2518,  2.6443),
az = (1.0192,  4.8057, 0.9450, —3.7386),
as = (—0.0542, —0.0930, —0.4554, 0.4117),
as= (—0.0063, —0.0076, 0.0215,  0.0002).

Solution forHeq with error= 5.4001 - 1073 (z; — x5 is not invertible)

a; = (176.1447,  257.9025, 114.5842,  290.1670),
az = (—69.1053, —115.1597, —55.6326, —122.4325),
as=  (10.2252,  14.3371,  6.0045,  16.4766),
ag= (05421,  —0.4238, —0.0404, —0.6820).

Solution forH.s (commutative) with erroe= 3.7303 - 10~ 14:

a1 = (—5.1033, 9.7931, —5.4347,  5.3327),
az = (1.0124, —2.5193,  0.8486, —1.9091),
az = (—0.1439, —0.0969, 0.2835,  0.4170),
as=  (0.0535,  0.0014, —0.0606, —0.0041).

Solution forH,,, with error= 6.3594 - 10~'2 (z; — x5 is not invertible):

a; = (—1.4124, —6.9135, 11.4218, —16.4555),

az =  (9.9449,  0.5466, —3.5760,  10.3660),
as = (—2.9882, 0.6470, 1.0686, —1.9385),
as = (0.1220, —0.0208, —0.0261,  0.1024).

Solution forH,,,, (commutative) with erroe 3.4195 - 10~ 14

a1 = (—23.9102, —17.9102, 3.6414,  1.6414),
ap = (6.6223,  4.1439, —4.5867, —3.8300),
as = (—0.2334, —0.0737,  0.528,  0.4998),
as= (—0.0036, —0.0038, 0.0198, —0.0454).

Solution forHq., (commutative) with erroe= 5.4179 - 10~ 4:

a; = (2.7916, 46.4053, —41.7540,  4.0301),
ag = (0.4118, —14.6794, 14.4364, —0.4932),
as = (0.1728, 1.5803, —1.4896, 0.1744),
ay = (—0.0166, —0.0503, 0.0482, —0.0125).

There is one general result for interpolation polynomialsammutative algebras.



8 GERHARD OPFER

THEOREM2.12.Let. A be one of the commutative algebras. Then, the Vandermonde in

terpolation polynomial of degreeexists if and only if for the underlying nodes, z-,

sy Tt
the node differences

(2.27) Tk —Tprp—1, 2<L<n+1,1<k<n—(+2
are invertible.

Proof. The formulasZ2.20 to (2.22 for computing the interpolation polynomial contain
one part which requires computing the inverse and this is

(2.28) Ge—1(l,k) —gea(Lk+1) =2 — Tpqp—1.

For ¢ = 2 this follows directly, because, (2, k) — ¢1(2,k + 1) = 2 — 241, 1 < k < n.
Now, for/ =3

92(3,k) —g2(3,k + 1) =
= (1(3.K) — 913,k + 1)) (2(2.K) — 91(2,k+1)) ' —

(B +1) — 1Bk +2) (12 k+1) — i (2,k+2)) " =
= (2} —wh)(@r — wrp1) T = (@hy — Thyo) (@rg1 — Tpp2) =
= (T + Tpt1) — (Tpg1 + Thy2) = Tp — Ty, 1 <k <n—1.

For ¢ = 4 we compute

93(4,k) — g3(4,k +1).
The first part is
-1
93(47 k) = (92(47 k) - 92(45 k+ 1)) (92(37 k) - 92(3a k + 1)) =
-1
= (92(4,k) — g2(4, k + 1)) (zk — Thy2) -
We continue with the first factor
92(4, k) — g2(4,k + 1) =
—1
= (91(47k)_91(4,k+1))(91(27k)_91(2,k+1)) -
-1
—((@k+1) =14,k +2) (12, k+1) —q1(2,k+2)) =
= (2} — a2 ) (@e —zpp) " = (@ — 2he) (@hy1 — Tppe) Tl =
= (2} + TpThs1) — (Tpi1Trt2 + Thpo) = T — Thyo + Tha1 (Th — Thga) =
= () — Trt2)(@k + Th1 + Tht2).
Thus, the first and second part are
93(4, k) = xp + g1 + g2, 93(4 K+ 1) = Tpg1 + Tpgo + Tigs,

and the final result, the differenceids — x5, 1 < k < n — 2, as desired. For generéal
induction should be used with respectt prove @.289. O

A simple count reveals that the list of node differences4r2() contains all possible
differencescy, — xg, With 1 < ky < ko <n + 1.

COROLLARY 2.13.Let A be one of the commutative algebras. Then, the Vandermonde
interpolation polynomial exists if and only if all node @ifénces are invertible.

In H, the field of quaternions, the Lam condition is equivalenthi® condition that all

quadratic interpolation problems on three arbitrarilyestgd, pairwise distinct nodes have a
solution.
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DEFINITION 2.14. Let there be + 1 > 3 pairwise distinct nodes in one of the algebras
A. If for all subsets of three nodes the quadratic interpolagtiroblem has a solution, we say
that the nodes obey tlextended Lam condition

CONJECTUREZ2.15. Let the extended Lam condition be valid. Then, the Vandedmon
interpolation polynomial exists.

The conjecture is apparently true for commutative algebtasalso true for equidistant

nodes, which have the formy, 1 := (¢k + k)¢, 0 < k < n, where¢ is a fixed, invertible
algebra element, and kq are fixed integers witli 4 0. The standard case fs= ko = 1.
It is not difficult to show, that equidistant nodes alwaysdi¢a an invertiblef, where f
is defined in 2.1§. Thus, the extended Lam condition is valid, and the deeigiantity
gi—1(L, k) — ge—1 (£, k 4+ 1) needed inZ.21), (2.22) is always an integer multiple af, thus,
it is invertible and the Vandermonde interpolation polynalrexists in this case.

3. The Newton approach. The Vandermonde approach has the advantage of working
with a polynomial in standard forn2(1), but it has also several disadvantages. Just by look-
ing at the nodes, it is difficult to judge whether an interpiola polynomial exists for data
from nondivision algebras. And if it exists, then the Vandende approach may lead to
numerically bad results, since it is known already for a longe, (see Gautschi4]) that
the Vandermonde matrix in the standard form has a very baditom number. There are
also several papers to prevent this difficulty by various sneas. One example is a paper
by Reichel, Opfer,12. Though the present author does not know about investigsitbf
the condition number for Vandermonde matrices with entifiesy nondivision algebras, it
cannot be expected, that the condition number is smallerfdrahe standard case.

The interpolation problem to be treated here has the foligngetting. Given data
(xk, fr),1 < k < n+ 1representing the nodes, and values, respectively, whecthambers
of an algebrad. The minimal requirement is, that the nodes are pairwisindis Wanted is
a polynomialp of degreen in the form

(3.1) p(z) == 7ilajpj,l(a:), z,a; € A, 1 <j<n+1, where
j=1

(3.2 po(x) == i, forall x € A,

(3.3) pj(z) == ﬁ(:c — 1), 1 < j <nandthe requirement that

(3.4) p(wk) :’}:711 <k<n+1.

We will call this problem théNewton interpolation problem

LEMMA 3.1. Letthe datgzy, 0) be given with the property that the differenags—xy,
of the nodes are invertible for all < k7 < ks < n + 1. Then the solution of the Newton
interpolation problem ig(z) = 0 for all z € A.

Proof. The requirement for the nodes implies that all differencges- z¢, k # ¢ are
invertible. We show thai; = 0,1 < j < n+ 1. For this purpose, we inser{, za, ..., Tp4+1
in p, in this order, and obtaia, = p(x1) = 0, p(x2) = a1 + az(x2 — x1) = 0 which implies
ay = 0 sincexy—xy isinvertible. Thenp(zs) = a1 +as(rz—z1)+as(zs—x1)(x3—22) =0
impliesas = 0, since(xs — x1)(zs — x2) is invertible. Thus, alk;, 1 < j < n + 1 vanish.
O

This implies that solutions are unique.

COROLLARY 3.2.Assume that all node differenceg — x, for k& # ¢ are invertible. Let
there be two solutiong, andgq to the Newton interpolation problem. Thens= q.
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For the general problem we can state the following theorem.

THEOREM 3.3. Let all node differences;, — x, for k # ¢ be invertible. Then, there is
a unique Newton interpolation problem for the ddta,, f1),1 < k < n + 1. If one of the
node differences;, — x, for k # £ is not invertible, then no Newton interpolation polynomial
exists.

Proof. The assumption that all node differences are invertibiglies that

(20) = 0 forf < j,
P\ =\ invertible for? > ;.
Now,

(3.5) p(z1) = a1 = fi.
Assume that; are known for alll < j < ¢. Then,

¢
pwerr) =Y apj1 (o) + arpape(ress) = fera.
=1

This implies

¢
(3.6) aee1 = (ferr— Y apj-1(@esn)) (pe(wesn)) ', 1< L <,
j=1

and all coefficients are known. If one of the differences laswerse, then there will be one
¢ such thapy(z,+1) has no inverse and formuld.g) cannot be applied. 0O

ExamMpPLE 3.4. We use the data from Examgelland choose the commutative tes-
sarine casel = H.s. For commutative algebras the two types of polynomials rooisicide
in the sense that they have the same values at all A, which does not imply that the
coefficients are the same with the exception of the highefic@nt.

Solution forH., (commutative) with erroe= 1.7764 - 10~ 1°:

a; =  (1.0000, 2.0000, 1.0000,  1.0000) = fi,
as =  (0.1765,  0.2059, —0.3235,  0.7059),
as = (—0.0335, —0.0933, 0.0626,  0.1760),
ag=  (0.0535, 0.0014, —0.0606, —0.0041).

Note, that the error here is by a factor 21 smaller than theesponding error fofH,. in
Example2.11 The polynomial value at := (1,2, 3,4) is

(6.458660398875651, 4.787370206864643, 1.650198860414113, 4.589677899172335).

It differs from the corresponding value for the Vandermopdb/nomial with the same data
by at most two digits in the last two places. The coefficiepicoincides in all computed
places with the corresponding coefficientfrom the Vandermonde polynomial.

It would be of interest to see an error development with gnowdegree: for both types
of interpolation. However, this may be a topic for anothqugra

4. Concluding remarks. Though we have chosen examples fritthalgebras, the two
algorithms given inZ.20 to (2.24) and in @.5), (3.6) are valid for all types of algebras. An
easy way of implementing them is to use the “overloadingrepie” offered by MATLAB.
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