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POLYNOMIAL INTERPOLATION IN NONDIVISION ALGEBRAS ∗

GERHARD OPFER†

Abstract. Algorithms for two types of interpolation polynomials in nondivision algebras are presented. One
is based on the Vandermonde matrix, the other is close to the Newton interpolation scheme. Examples are taken
from R

4 algebras. In the Vandermonde case necessary and sufficient conditions for the existence of interpolation
polynomials are given for commutative algebras. For noncommutative algebras there is a conjecture. This conjecture
is true for equidistant nodes. It is shown that the Newton form of the interpolation polynom exists if and only if all
node differences are invertible. There are several numerical examples.
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1. Introduction. The aim of this paper to provide an algorithm for solving the polyno-
mial interpolation problem in nondivision algebras and studying the conditions under which
such an algorithm works. As examples of nondivision algebras we will mainly use one of
the eightR4 algebras. The letterR is used here for the field of real numbers. An algebra
in general is the vector spaceRN equipped with an additional, associative multiplication
R

N ×R
N → R

N which has a one, usually abbreviated by 1. More information can be found
in a book by Garling, [3]. These algebras are also calledgeometric algebras, [5]. The names
and the algebraic rules for the eight algebras inR

4 can be found in a paper by Janovská, Opfer,
[6]. The algebras are abbreviated by (the names are in parentheses. The names where given
by Hamilton 1843 forH, by Cockle, 1849 forHcoq,Htes,Hcotes, [1, 2] and by Schmeikal,
2014 for the remaining four, [13])

H(quaternions),Hcoq(coquaternions or split-quaternions),Htes(tessarines),

Hcotes(cotessarines),Hnec(nectarines),Hcon(conectarines),

Htan(tangerines),Hcotan(cotangerines).

Note thatHtes, Hcotes, Htan, Hcotan are commutative. We will in general use the notationA
for one of these algebras. The problem to be considered will be calledinterpolation problem
and we will consider two types of interpolation problems. One will be calledVandermonde
interpolation problemand the otherNewton interpolation problem. Both problem types rely
on a set(xk, fk) ∈ A × A of data, where thexk are referred to asnodes, and thefk are
referred to asvalues, 1 ≤ k ≤ n + 1. The minimum requirement for the nodes is that they
are pairwise distinct.

We need the notion of similarity. For this purpose it is useful to introduce the simple
notation

a = (a1, a2, a3, a4), a ∈ A

for elements fromR4 algebras. The first component,a1 of a is called thereal part of a
and denoted bya1 = ℜ(a). An element of the form(a1, 0, 0, 0) is called real, and the real
elements ofA can be identified byR.
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DEFINITION 1.1. (1) Two elementsa, b ∈ A will be calledsimilar, denoted bya ∼ b if
there is an invertibleh ∈ A such that

b = h−1ah.

The set of elements which are similar to a fixeda ∈ A is calledsimilarity class ofa, denoted
by [a] and formally defined by

[a] := {b : b = h−1ah for all invertibleh ∈ A}.

(2) LetA be one of the four noncommutative algebras. Define theconjugate ofa by

a = conj(a) = (a1,−a2,−a3,−a4) and putabs2(a) := aa.

An early paper with the topic of similarity in connection with quaternions was already
given 1936 by Wolf, [14]. It is clear, that similarity is an equivalence relation. Definition1.1
part (1) applied to a commutative algebraA yields[a] = {a}, thus, in this case, the similarity
class consists only of one element, which means, that two elements in a commutative algebra
are similar if and only if they are identical. Now, by former results of the already quoted
paper, [6], it is easily possible to identify similar elements, and tocharacterize invertible
elements in one of the noncommutative algebras.

THEOREM 1.2. Let a, b ∈ A\R and letA be one of the four noncommutativeR4 alge-
bras. Thena ∼ b if and only if

ℜ(a) = ℜ(b), abs2(a) = abs2(b),(1.1)

whereabs2(a) is a real quantity withabs2(a) 6= 0 if and only ifa is invertible and

a−1 =
a

abs2(a)
if abs2(a) 6= 0.(1.2)

For abs2(a) there is the formula

abs2(a) =















a21 + a22 + a23 + a24 for a ∈ H,
a21 + a22 − a23 − a24 for a ∈ Hcoq,
a21 − a22 + a23 − a24 for a ∈ Hnec,
a21 − a22 − a23 + a24 for a ∈ Hcon,

(1.3)

and the property

abs2(ab) = abs2(ba) = abs2(a)abs2(b).(1.4)

Proof. See [6].
The side condition for (1.1) that a, b /∈ R can be omitted forH but not for the other

three noncommutative algebras. This can be easily seen by the examplea = (1, 0, 0, 0),
b = (1, 3, 3, 0) for Hcoq andHnec and bya = (1, 0, 0, 0), b = (1, 3, 0, 3) for Hcon. The
condition (1.1) is valid for a, b, but a = (a1, 0, 0, 0) is not similar to any nonreal element.
In a corresponding theorem for coquaternions by Pogoruy andRodrı́guez-Dagnino, [11], this
condition is missing.
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2. The Vandermonde approach.Given apolynomialp of degreen ∈ N (N denotes
the set of positive integers) in the form

p(x) :=
n+1
∑

j=1

ajx
j−1, x, aj ∈ A, 1 ≤ j ≤ n+ 1,(2.1)

and pairwise distinctnodes
xk ∈ A, 1 ≤ k ≤ n+ 1,(2.2)

such thatxk − xk+1 are invertible for all1 ≤ k ≤ n,(2.3)

andvalues
fk ∈ A, 1 ≤ k ≤ n+ 1(2.4)

with the requirement that
p(xk) = fk, 1 ≤ k ≤ n+ 1.(2.5)

We use this notation because it is convenient in some programming languages, like MATLAB.
The cases withn = 1, n = 2, n = 3 will be calledlinear, quadratic, cubic, respectively. The
given condition (2.3) for the nodes augments the standard condition, that the nodes are pair-
wise distinct. In a nondivision algebra two distinct nodes do not necessarily have the property
that the difference is invertible. This will be seen in the following. The requirement given in
(2.5) leads to a linear system in the algebraA with n + 1 unknowns and equations, defined
by the Vandermonde matrix. Therefore we call this approach the Vandermonde approach.

LEMMA 2.1. The interpolation problem, defined by (2.1) to (2.5) does not necessarily
have a solution and if there is a solution it may not be unique.

Proof. Let there be two solutionsp, q to the interpolation problem. Then,
(p − q)(xk) = 0, 1 ≤ k ≤ 1 + n, which implies that the difference polynomialp − q
of degreen hasn + 1 zeros. However, the polynomials considered here do not necessarily
obey the Haar condition, which means that a polynomial of degreen with more thann ze-
ros vanishes identically. See [6] and [10], also for the case that the Vandermonde matrix is
singular.

The algebraH of quaternions is a division algebra (i. e. the only noninvertible element is
the zero element) and the problem to be considered has been solved forH by Lam, [8] with
extensions by Lam and Leroy, [9]. The result is the following:

THEOREM 2.2. The interpolation problem inH as stated above has a unique solution if
and only if the nodes obey the following rule: Not three of them belong to the same similarity
class.

Proof. By Lam, [8].
DEFINITION 2.3. Let there ben+ 1 pairwise distinct nodesxk ∈ A, 1 ≤ k ≤ n+ 1. If

there does not exist a subset of three nodes which belong to the same similarity class, we say
that the nodes satisfy theLam condition.

The Lam condition is satisfied if the underlying algebraA is commutative or if the num-
ber of nodes is at most two. In the algebra of quaternionsH, two distinct nodes have the
property that the difference is invertible. This is not truefor the otherR4 algebras. And
therefore, the Lam condition is not good enough to guaranteethe solvability of the interpola-
tion problem for the other algebras.

2.1. The linear and the quadratic case.We will treat the linear and quadratic case,
individually, in order to obtain some information for the general case. The linear interpolation
problem can be written as



4 GERHARD OPFER

a1 + a2x1 = f1,

a1 + a2x2 = f2.

By subtracting the second equation from the first equation weobtain
a2(x1 − x2) = f1 − f2,

and the solution is
a2 = (f1 − f2)(x1 − x2)

−1, a1 = f1 − a2x1.

COROLLARY 2.4. The linear interpolation problem in any algebraA has a unique
solution if and only if the difference of the two nodes,x1 − x2, is invertible.

Let n = 2. Then, (2.5) implies

a1 + a2x1 + a3x
2
1 = f1,(2.6)

a1 + a2x2 + a3x
2
2 = f2,(2.7)

a1 + a2x3 + a3x
2
3 = f3.(2.8)

We will introduce some notation, which will also be used later:

g1(j, k) := xj−1

k , ϕ1(k) := fk, 1 ≤ j, k ≤ 3,(2.9)

g2(3, k) :=
(

g1(3, k)− g1(3, k + 1)
)

(xk − xk+1)
−1,(2.10)

ϕ2(k) :=
(

ϕ1(k)− ϕ1(k + 1)
)

(xk − xk+1)
−1, 1 ≤ k ≤ 2,(2.11)

ϕ3(1) :=
(

ϕ2(1)− ϕ2(2)
)(

g2(3, 1)− g2(3, 2)
)

−1
.(2.12)

Subtracting equation (2.7) from (2.6) and (2.8) from (2.7) yields
3

∑

j=2

aj(x
j−1

k − xj−1

k+1) = fk − fk+1, 1 ≤ k ≤ 2,(2.13)

Multiplying each of the two equations by(xk − xk+1)
−1, 1 ≤ k ≤ 2 from the right, yields

a2 + a3g2(3, k) = ϕ2(k), 1 ≤ k ≤ 2.(2.14)

By subtracting and multiplying again, we obtain the final solution
a3 = ϕ3(1).(2.15)

If a3 is known,a2 can be computed from (2.14), anda1 from (2.6).
There are two critical steps. In order that the quadratic interpolation problem has a

solution, it is necessary and sufficient that

(i) : (x1 − x2)
−1, (x2 − x3)

−1, (ii) :
(

g2(3, 1)− g2(3, 2)
)

−1

exist. For the second part we define

f(x1, x2, x3) := g2(3, 1)− g2(3, 2)(2.16)

= (x2
1 − x2

2)(x1 − x2)
−1 − (x2

2 − x2
3)(x2 − x3)

−1.

The central question is, whetherf is invertible. Here we have to distinguish between the
commutative and the noncommutative algebras.

THEOREM2.5.LetA be one of the commutative algebras. Then the quadratic interpola-
tion problem has a unique solution if and only if the three differences
x1 − x2, x2 − x3, x1 − x3 are invertible.



POLYNOMIAL INTERPOLATION IN NONDIVISION ALGEBRAS 5

Proof. Because of the commutativity we havef(x1, x2, x3) = x1 − x3.
We will use the following lemma.
LEMMA 2.6. Letz, h ∈ A and letA be one of the noncommutative algebras. Then

hzk − zkh = ck(hz − zh), ck ∈ R for all k ∈ N.∗(2.17)

Proof. In all four noncommutative algebras there is the formula

z2 = −abs2(z) + 2ℜ(z)z =: b2 + c2z,

which implies (multiply byz and use the formula forz2 again)

zk = bk + ckz, bk, ck ∈ R, for all k ∈ N.(2.18)

For more details and formulas for computing the constantsbk, ck see [6, p. 138] or [7, p. 247].
Thus,zk−ckz = bk ∈ R and therefore,h(zk−ckz) = (zk−ckz)h for all h ∈ A. Rearranging
yields (2.17).

In the next lemma we gather some information of the consequences of the violation of
the Lam condition.

LEMMA 2.7. LetA be one of the noncommutative algebras and letx, y ∈ A such that
x− y is invertible andx ∼ y. Then

(xk − yk)(x− y)−1 = ck(x) ∈ R for all k ∈ N and ally ∈ [x].(2.19)

Proof. Assume that the similarity is defined byy = h−1xh. We multiply equation (2.17)
form the left byh−1 and use that the real numberck commutes with all algebra elements and
obtainxk − yk = ck(x− y) from where (2.19) follows.

This lemma says, that in all four noncommutative algebrasA there are real numbers
ck, k ∈ N associated to all equivalence classes[a]. This also implies, that under the conditions
of Lemma2.7 we havef(x, y, z) = 0 wheref is defined in (2.16). Therefore, the Lam
condition excludes the casef(x, y, z) = 0, but not necessarily the case thatf(x, y, z) is not
invertible.

THEOREM 2.8. Let A be one of the noncommutative algebras. Then, the quadratic
interpolation problem has a unique solution if in addition tox1−x2, x2−x3 being invertible,
the quantityf(x1, x2, x3), defined in (2.16) is invertible.

Proof. Follows from the above derivation of the highest coefficient a3. The definition of
ϕ3(1) depends on the invertibility off(x1, x2, x3).

EXAMPLE 2.9. Letx1 = (2, 8, 4, 9), x2 = (8, 5, 5, 1), x3 = (4, 0, 2, 1),
f1 = (1, 2, 1, 1), f2 = (8, 6, 3, 5), f3 = (1, 2, 4, 0). Note thatx1 − x3 = (−2, 8, 2, 8) is not
invertible inHcoq. Nevertheless, this problem has a solution inHcoq, which shortened to four
digits is

a1 = (357.1411, 479.8347, 185.6411, 567.8347),

a2 = (−86.1452, −141.9758, −65.7823, −152.5806),

a3 = (5.2460, 10.0121, 5.1411, 10.0202).

∗This is according to some experiments possibly also true forother algebrasA thanR4 algebras, onlyR has to
be replaced by the centerCA of A. The center of an algebra is the set whose elements commute with all algebra
elements.
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This example shows, that the Vandermonde interpolation problem is not invariant under
permutation of the nodes and values. In the above example an exchange ofx1 andx2 and of
f1 andf2 will render the problem unsolvable.

2.2. The general case.The technique to find the solution of a polynomial interpolation
problem for degreen has been sketched already for the quadratic case. It consists essentially
of a triangulation of the underlying Vandermonde matrix. The general form of this procedure
will be summarized in the following theorem.

THEOREM 2.10. In order to solve the polynomial interpolation problem as stated in
(2.1) to (2.5) one has to do the following. Define

g1(j, k) := xj−1

k ,(2.20)

ϕ1(k) := fk, 1 ≤ j, k ≤ n+ 1,

gℓ(j, k) :=
(

gℓ−1(j, k)− gℓ−1(j, k + 1)
)(

gℓ−1(ℓ, k)− gℓ−1(ℓ, k + 1)
)

−1
,(2.21)

ϕℓ(k) :=
(

ϕℓ−1(k)− ϕℓ−1(k + 1)
)(

gℓ−1(ℓ, k)− gℓ−1(ℓ, k + 1)
)

−1
,(2.22)

ℓ ≤ 2 ≤ n+ 1, 1 ≤ k ≤ n− ℓ+ 2, ℓ+ 1 ≤ j ≤ n+ 1,

where we assume that all inverses ofgℓ−1(ℓ, k) − gℓ−1(ℓ, k + 1) occurring in (2.21) and
(2.22) exist. Then

aℓ +

n+1
∑

j=ℓ+1

ajgℓ(j, k) = ϕℓ(k),(2.23)

1 ≤ ℓ ≤ n+ 1, 1 ≤ k ≤ n− ℓ+ 2, and

an+1 = ϕn+1(1).(2.24)

If an+1 is known by (2.24), we compute the coefficientsan, an−1, . . . , a1 backwards by for-
mula (2.23) inserting at all placesk = 1.

Proof. We start with the representation

a1 +

n+1
∑

j=2

ajx
j−1

k = fk, 1 ≤ k ≤ n+ 1,

which is the same as

a1 +

n+1
∑

j=2

ajg1(j, k) = ϕ1(k), 1 ≤ k ≤ n+ 1.(2.25)

Subtracting equationk + 1 from equationk in (2.25) and multiplicating the difference by
(xk − xk+1)

−1, assuming that this is possible, and applying (2.21) and (2.22) yields

a2 +

n+1
∑

j=3

ajg2(j, k) = ϕ2(k).(2.26)

Having arrived at (2.23), we can use induction, to show that

aℓ+1 +

n+1
∑

j=ℓ+2

ajgℓ+1(j, k) = ϕℓ+1(k).

Let us assume we have solved an interpolation problem successfully. How to judge the
quality of the computed coefficientsa1, a1, . . . , an+1. One possibility is to computẽfk :=
p(xk) and compare these values with the given valuesfk for all 1 ≤ k ≤ n + 1. For test
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purposes it is a good idea to choose all components offk as integers. Then the errors are the
deviation off̃k from being integer. This can be measured in the maximum norm by putting
bothf̃k andfk in one real4(n+1) column vector and then forme := max |col(f̃k)−col(fk)|
as measure for theerror wherecol indicates the forming of the column vector.

EXAMPLE 2.11. Letn = 3 andx1 = (2, 8, 4, 9), x2 = (8, 5, 5, 1), x3 = (4, 0, 2, 1),
x4 = (9, 9, 4, 4), f1 = (1, 2, 1, 1), f2 = (8, 6, 3, 5), f3 = (1, 2, 4, 0), f4 = (3, 9, 3, 1).
These data were chosen randomly. There are no solutions inHcotes becausex1 − x2 is not
invertible inHcotes and inHnec becausex2 − x3 is not invertible inHnec. For all other cases
the interpolation problem has a solution, given in the following tables, shortened to 4 digits.
Solution forH with error= 2.5757e · 10−14:

a1 = (−6.4416, −15.2697, 8.2518, 2.6443),
a2 = (1.0192, 4.8057, 0.9450, −3.7386),
a3 = (−0.0542, −0.0930, −0.4554, 0.4117),
a4 = (−0.0063, −0.0076, 0.0215, 0.0002).

Solution forHcoq with error= 5.4001 · 10−13: (x1 − x3 is not invertible)

a1 = (176.1447, 257.9025, 114.5842, 290.1670),
a2 = (−69.1053, −115.1597, −55.6326, −122.4325),
a3 = (10.2252, 14.3371, 6.0045, 16.4766),
a4 = (−0.5421, −0.4238, −0.0404, −0.6820).

Solution forHtes (commutative) with error= 3.7303 · 10−14:

a1 = (−5.1033, 9.7931, −5.4347, 5.3327),
a2 = (1.0124, −2.5193, 0.8486, −1.9091),
a3 = (−0.1439, −0.0969, 0.2835, 0.4170),
a4 = (0.0535, 0.0014, −0.0606, −0.0041).

Solution forHcon with error= 6.3594 · 10−13 (x1 − x3 is not invertible):

a1 = (−1.4124, −6.9135, 11.4218, −16.4555),
a2 = (9.9449, 0.5466, −3.5760, 10.3660),
a3 = (−2.9882, 0.6470, 1.0686, −1.9385),
a4 = (0.1220, −0.0208, −0.0261, 0.1024).

Solution forHtan (commutative) with error= 3.4195 · 10−14:

a1 = (−23.9102, −17.9102, 3.6414, 1.6414),
a2 = (6.6223, 4.1439, −4.5867, −3.8300),
a3 = (−0.2334, −0.0737, 0.528, 0.4998),
a4 = (−0.0036, −0.0038, 0.0198, −0.0454).

Solution forHcotan (commutative) with error= 5.4179 · 10−14:

a1 = (2.7916, 46.4053, −41.7540, 4.0301),
a2 = (0.4118, −14.6794, 14.4364, −0.4932),
a3 = (0.1728, 1.5803, −1.4896, 0.1744),
a4 = (−0.0166, −0.0503, 0.0482, −0.0125).

There is one general result for interpolation polynomials in commutative algebras.
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THEOREM 2.12.LetA be one of the commutative algebras. Then, the Vandermonde in-
terpolation polynomial of degreen exists if and only if for the underlying nodesx1, x2, . . . , xn+1

the node differences

xk − xℓ+k−1, 2 ≤ ℓ ≤ n+ 1, 1 ≤ k ≤ n− ℓ+ 2(2.27)

are invertible.
Proof. The formulas (2.20) to (2.22) for computing the interpolation polynomial contain

one part which requires computing the inverse and this is

gℓ−1(ℓ, k)− gℓ−1(ℓ, k + 1) = xk − xℓ+k−1.(2.28)

For ℓ = 2 this follows directly, becauseg1(2, k) − g1(2, k + 1) = xk − xk+1, 1 ≤ k ≤ n.
Now, for ℓ = 3

g2(3, k)− g2(3, k + 1) =

=
(

g1(3, k)− g1(3, k + 1)
)(

g1(2, k)− g1(2, k + 1)
)

−1
−

−
(

g1(3, k + 1)− g1(3, k + 2)
)(

g1(2, k + 1)− g1(2, k + 2)
)

−1
=

= (x2
k − x2

k+1)(xk − xk+1)
−1 − (x2

k+1 − x2
k+2)(xk+1 − xk+2)

−1 =

= (xk + xk+1)− (xk+1 + xk+2) = xk − xk+2, 1 ≤ k ≤ n− 1.

For ℓ = 4 we compute

g3(4, k)− g3(4, k + 1).

The first part is
g3(4, k) =

(

g2(4, k)− g2(4, k + 1)
)(

g2(3, k)− g2(3, k + 1)
)

−1
=

=
(

g2(4, k)− g2(4, k + 1)
)(

xk − xk+2

)

−1
.

We continue with the first factor
g2(4, k)− g2(4, k + 1) =

=
(

g1(4, k)− g1(4, k + 1)
)(

g1(2, k)− g1(2, k + 1)
)

−1
−

−
(

g1(4, k + 1)− g1(4, k + 2)
)(

g1(2, k + 1)− g1(2, k + 2)
)

−1
=

= (x3
k − x3

k+1)(xk − xk+1)
−1 − (x3

k+1 − x3
k+2)(xk+1 − xk+2)

−1 =

= (x2
k + xkxk+1)− (xk+1xk+2 + x2

k+2) = x2
k − x2

k+2 + xk+1(xk − xk+2) =

= (xk − xk+2)(xk + xk+1 + xk+2).

Thus, the first and second part are
g3(4, k) = xk + xk+1 + xk+2, g3(4, k + 1) = xk+1 + xk+2 + xk+3,

and the final result, the difference isxk − xk+3, 1 ≤ k ≤ n − 2, as desired. For generalℓ
induction should be used with respect toℓ to prove (2.28).

A simple count reveals that the list of node differences in (2.27) contains all possible
differencesxk1

− xk2
with 1 ≤ k1 < k2 ≤ n+ 1.

COROLLARY 2.13.LetA be one of the commutative algebras. Then, the Vandermonde
interpolation polynomial exists if and only if all node differences are invertible.

In H, the field of quaternions, the Lam condition is equivalent tothe condition that all
quadratic interpolation problems on three arbitrarily selected, pairwise distinct nodes have a
solution.
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DEFINITION 2.14. Let there ben+1 ≥ 3 pairwise distinct nodes in one of the algebras
A. If for all subsets of three nodes the quadratic interpolation problem has a solution, we say
that the nodes obey theextended Lam condition.

CONJECTURE2.15. Let the extended Lam condition be valid. Then, the Vandermonde
interpolation polynomial exists.

The conjecture is apparently true for commutative algebras. It is also true for equidistant
nodes, which have the formxk+1 := (ℓk + k0)ξ, 0 ≤ k ≤ n, whereξ is a fixed, invertible
algebra element, andℓ, k0 are fixed integers withℓ 6= 0. The standard case isℓ = k0 = 1.
It is not difficult to show, that equidistant nodes always lead to an invertiblef , wheref
is defined in (2.16). Thus, the extended Lam condition is valid, and the decisive quantity
gℓ−1(ℓ, k)− gℓ−1(ℓ, k + 1) needed in (2.21), (2.22) is always an integer multiple ofξ, thus,
it is invertible and the Vandermonde interpolation polynomial exists in this case.

3. The Newton approach.The Vandermonde approach has the advantage of working
with a polynomial in standard form (2.1), but it has also several disadvantages. Just by look-
ing at the nodes, it is difficult to judge whether an interpolation polynomial exists for data
from nondivision algebras. And if it exists, then the Vandermonde approach may lead to
numerically bad results, since it is known already for a longtime, (see Gautschi, [4]) that
the Vandermonde matrix in the standard form has a very bad condition number. There are
also several papers to prevent this difficulty by various measures. One example is a paper
by Reichel, Opfer, [12]. Though the present author does not know about investigations of
the condition number for Vandermonde matrices with entriesfrom nondivision algebras, it
cannot be expected, that the condition number is smaller than for the standard case.

The interpolation problem to be treated here has the following setting. Given data
(xk, fk), 1 ≤ k ≤ n+1 representing the nodes, and values, respectively, which are members
of an algebraA. The minimal requirement is, that the nodes are pairwise distinct. Wanted is
a polynomialp of degreen in the form

p(x) :=

n+1
∑

j=1

ajpj−1(x), x, aj ∈ A, 1 ≤ j ≤ n+ 1, where(3.1)

p0(x) := 1, for all x ∈ A,(3.2)

pj(x) :=

j
∏

k=1

(x− xk), 1 ≤ j ≤ n and the requirement that(3.3)

p(xk) = fk, 1 ≤ k ≤ n+ 1.(3.4)

We will call this problem theNewton interpolation problem.
LEMMA 3.1. Let the data(xk, 0) be given with the property that the differencesxk1

−xk2

of the nodes are invertible for all1 ≤ k1 < k2 ≤ n + 1. Then the solution of the Newton
interpolation problem isp(x) = 0 for all x ∈ A.

Proof. The requirement for the nodes implies that all differencesxk − xℓ, k 6= ℓ are
invertible. We show thataj = 0, 1 ≤ j ≤ n+1. For this purpose, we insertx1, x2, . . . , xn+1

in p, in this order, and obtaina1 = p(x1) = 0, p(x2) = a1 + a2(x2 − x1) = 0 which implies
a2 = 0 sincex2−x1 is invertible. Then,p(x3) = a1+a2(x3−x1)+a3(x3−x1)(x3−x2) = 0
impliesa3 = 0, since(x3 − x1)(x3 − x2) is invertible. Thus, allaj, 1 ≤ j ≤ n+ 1 vanish.

This implies that solutions are unique.
COROLLARY 3.2. Assume that all node differencesxk − xℓ for k 6= ℓ are invertible. Let

there be two solutions,p andq to the Newton interpolation problem. Then,p = q.
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For the general problem we can state the following theorem.
THEOREM 3.3. Let all node differencesxk − xℓ for k 6= ℓ be invertible. Then, there is

a unique Newton interpolation problem for the data(xk, fk), 1 ≤ k ≤ n + 1. If one of the
node differencesxk −xℓ for k 6= ℓ is not invertible, then no Newton interpolation polynomial
exists.

Proof. The assumption that all node differences are invertible, implies that

pj(xℓ) =

{

0 for ℓ ≤ j,
invertible forℓ > j.

Now,

p(x1) = a1 = f1.(3.5)

Assume thataj are known for all1 ≤ j ≤ ℓ. Then,

p(xℓ+1) =

ℓ
∑

j=1

ajpj−1(xℓ+1) + aℓ+1pℓ(xℓ+1) = fℓ+1.

This implies

aℓ+1 =
(

fℓ+1 −

ℓ
∑

j=1

ajpj−1(xℓ+1)
)(

pℓ(xℓ+1)
)

−1
, 1 ≤ ℓ ≤ n,(3.6)

and all coefficients are known. If one of the differences has no inverse, then there will be one
ℓ such thatpℓ(xℓ+1) has no inverse and formula (3.6) cannot be applied.

EXAMPLE 3.4. We use the data from Example2.11and choose the commutative tes-
sarine caseA = Htes. For commutative algebras the two types of polynomials mustcoincide
in the sense that they have the same values at allx ∈ A, which does not imply that the
coefficients are the same with the exception of the highest coefficient.

Solution forHtes (commutative) with error= 1.7764 · 10−15:

a1 = (1.0000, 2.0000, 1.0000, 1.0000) = f1,
a2 = (0.1765, 0.2059, −0.3235, 0.7059),
a3 = (−0.0335, −0.0933, 0.0626, 0.1760),
a4 = (0.0535, 0.0014, −0.0606, −0.0041).

Note, that the error here is by a factor 21 smaller than the corresponding error forHtes in
Example2.11. The polynomial value atx := (1, 2, 3, 4) is

(6.458660398875651, 4.787370206864643, 1.650198860414113, 4.589677899172335).

It differs from the corresponding value for the Vandermondepolynomial with the same data
by at most two digits in the last two places. The coefficienta4 coincides in all computed
places with the corresponding coefficienta4 from the Vandermonde polynomial.

It would be of interest to see an error development with growing degreen for both types
of interpolation. However, this may be a topic for another paper.

4. Concluding remarks. Though we have chosen examples fromR4 algebras, the two
algorithms given in (2.20) to (2.24) and in (3.5), (3.6) are valid for all types of algebras. An
easy way of implementing them is to use the “overloading technique” offered by MATLAB.
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