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THE NUMBER OF ZEROS OF UNILATERAL POLYNOMIALS OVER
COQUATERNIONS AND RELATED ALGEBRAS ∗

DRAHOSLAVA JANOVSKÁ† AND GERHARD OPFER‡

Abstract. We have proved that unilateral polynomials over the nondivision algebras inR4 have at most
n(2n − 1) zeros, when the polynomial has degreen. Moreover, we have created an algorithm for finding all
zeros of polynomials over these algebras using a real polynomial of degree2n, calledcompanion polynomial. The
algebras in question are coquaternions,Hcoq, nectarines,Hnec, and conectarines,Hcon. Besides the isolated and
hyperbolic zeros we introduce a new type of zeros, theunexpectedzeros. There is a formal algorithm and there
are numerical examples. In a tutorial section on similaritywe show how to find the similarity transformation of
two algebra elements to be known as similar, where a singularvalue decomposition to a certain real4 × 4 matrix
related to the two similar elements has to be applied. We showthat there is a strong indication that an algorithm by
Serôdio, Pereira, and Vitória, [Computer and Mathematics with Applications, 42 (2001), pp.1229–1237] designed
for finding zeros of quaternionic polynomials is also valid in the nondivision algebras inR4 and it produces - though
with another technique - the same zeros as proposed in this paper.

Key words. Number of zeros of polynomials over nondivision algebras inR
4, Number of zeros of polyno-

mials over coquaternions, Number of zeros of polynomials over nectarines, Number of zeros of polynomials over
conectarines, Unexpected zeros, Computation of all zeros of polynomials over nondivision algebras inR4.
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1. Introduction. We present an algorithm for finding all zeros of unilateral polynomials
of degreen in one of the algebras:Hcoq,Hnec,Hcon. Beyond theisolatedand thehyperbolic
zeros, there will be a new type of zero which we will callunexpected zero. As an essential
result we determine the maximal number of zeros of unilateral polynomials of degreen over
any of the noncommutative algebras inR4, in particular incoquaternions(Hcoq), nectarines
(Hnec) , andconectarines(Hcon). These algebras are also nondivision algebras, which means
that there are noninvertible algebra elements different from the zero element. In order to
support our result we have developed an algorithm for findingall zeros of unilateral polyno-
mials over the mentioned algebras. The explicit names of these algebras were introduced by
Cockle, [1, 2] and Schmeikal, [23], for the last two algebras. If we use the letterA, we mean
one of these three algebras. For algebras in general, see Garling, [5]. Algebras inRN are in
many cases calledgeometric algebras, [6].

For finding all zeros and their number for unilateral polynomials of degreen over quater-
nionsH, see Janovská and Opfer, [14] and also Serôdio, Pereira, and Vitória, and De Leo,
Ducati, and Leonardi [24, 3]. The main ingredient in [14] for finding zeros of a quaternionic
polynomial of degreen is a real polynomial of degree2n which is calledcompanion polyno-
mial by the authors of [14] and it is denoted byq. At the end of this paper, we will explain that
the namecompanion polynomialis reasonable. In order to distinguish the zeros of the given
polynomialp from the solutions ofq(z) = 0 we called these solutionsrootsof q. We found
that the number of zeros of quaternionic polynomialsp cannot exceed the degree, which is in
coincidence with a result published 1965 by Gordon and Motzkin, [7]. Since zeros may fill a
whole similarity class, the count of zeros must be per similarity class which contains a zero.
The importance of the notion ofsimilarity was already discovered in1936 by Wolf, [25]. For
nondivision algebras it is reasonable also to introduce thenotion of quasi similarity. At a
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later occasion, we will point out the few cases in which quasisimilarity and similarity differ.
In another paper by Janovská and Opfer, [11], we have introduced an algorithm for find-

ing zeros of unilateral coquaternionic polynomials also bythe means of the real companion
polynomialq. The pairs of conjugate complex roots ofq gave rise to a zero ofp, however for
the real roots ofq we did not find a connection to the zeros ofp. Any conclusion on how many
zeros may exist inA could not be established. In [11] we extended the search for zeros by
employing Newton’s method where a special technique described by Lauterbach and Opfer
in [17] was used. Other attempts to find zeros by Newton’s method canbe found in [4, 16].

In this paper, we fill this gap and show how to find all zeros of unilateral polynomials
overA again by employing the companion polynomial, which also allows the conclusion, that
there are maximally

(

2n
2

)

= n(2n − 1) zeros of a polynomial of degreen. E. g., quadratic
polynomials inHcoq,Hnec,Hcon may have up to 6 and cubic polynomials up to 15 zeros.
It will be shown, that the essential gist is not to consider the individual real roots of the
companion polynomial, but to consider allpairsof real roots. A positive minimum number of
zeros does not exist inHcoq,Hnec,Hcon, since it was shown in [11] that there are polynomials
without zeros. This is in some analogy with the fact that there are matrices in these algebras
which have no eigenvalues, [10]. The algorithm for finding all zeros, which implies the above
upper bound, will be presented in the sequel.

2. Definitions and elementary properties.The polynomials considered here will have
the form

p(z) =

n
∑

j=0

ajz
j, aj , z ∈ A, an, a0 invertible.(2.1)

Let A be one of the three algebrasHcoq,Hnec,Hcon, and if a specific algebra is chosen, we
say thatp is a polynomial over A. The algebra of quaternionsH is not included in this
investigation, since there are already publications with algorithms for finding all zeros of
unilateral polynomials with quaternionic coefficients, see [24, 3, 14].

We denote algebra elements fromA in the simple forma = (a1, a2, a3, a4). The four
units in anyR4 algebra will be denoted by1, i, j,k so that one can also use the representation

a = a1 + a2i+ a3j+ a4k, aj ∈ R, j = 1, 2, 3, 4.

For completeness we present the multiplication rules forHcoq, Hnec, Hcon in Table2.1.
TABLE 2.1. The three multiplication tables forHcoq, Hnec, Hcon.

Hcoq 1 i j k

1 1 i j k

i i −1 k −j

j j −k 1 −i

k k j i 1

Hnec 1 i j k

1 1 i j k

i i 1 k j

j j −k −1 i

k k −j −i 1

Hcon 1 i j k

1 1 i j k

i i 1 k j

j j −k 1 −i

k k −j i −1

(2.2)

DEFINITION 2.2. LetA be any noncommutative algebra. Thecenterof A, denoted by
CA, is the subset ofA whose elements commute with all elements ofA.

LEMMA 2.3. The center of all algebras inA is

CA = R,(2.3)

whereR is identified with algebra elements of the form(a, 0, 0, 0) ∈ A, a ∈ R.
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Proof. It is clear thatR belongs to the center. Leta /∈ R, then the assumptionab = ba
for all b ∈ A leads to a contradiction.

LEMMA 2.4. Let us abbreviate the four units inA also by

unit1 = 1, unit2 = i, unit3 = j, unit4 = k.

Then, the product unitrunits is real if and only ifr = s, 1 ≤ r, s ≤ 4.
Proof. In all three tables (2.2) only the diagonal elements are real.
We denote the first componenta1 of a = (a1, a2, a3, a4) by a1 = ℜ(a) and calla1 the

real part of a in all algebras considered here. The multiplication rules and Lemma2.4imply

ℜ(ab) = ℜ(ba) for all a, b ∈ A.(2.4)

DEFINITION 2.5. Leta = (a1, a2, a3, a4) ∈ A. We define theconjugateof a, denoted
either bya or by conj(a) by

a = conj(a) = (a1,−a2,−a3,−a4).(2.5)

For the productaa we use the notation
abs2(a) = aa.(2.6)

The importance of these two notions is expressed in the following lemma.
LEMMA 2.6. Leta, b ∈ A. Then
1. ab = b a, a+ a = 2ℜ(a),
2. abs2(a) = aa = aa ∈ R, abs2(a) = abs2(a),
3. a is invertible if and only ifabs2(a) 6= 0.
4. Letabs2(a) 6= 0. Then

a−1 =
a

abs2(a)
.

5. The functionabs2 : A → R defined in (2.6) is multiplicative, which means

abs2(ab) = abs2(ba) = abs2(a)abs2(b).(2.7)

For invertiblea (2.7) implies

1 = abs2(aa
−1) = abs2(a)abs2(a

−1).(2.8)

6. abs2(a) =















a21 + a22 + a23 + a24 for a ∈ H,
a21 + a22 − a23 − a24 for a ∈ Hcoq,
a21 − a22 + a23 − a24 for a ∈ Hnec,
a21 − a22 − a23 + a24 for a ∈ Hcon.

Proof. See [11].
Since similarity is an important concept in our investigation we will repeat the essential

features.

2.1. Similarity and quasi similarity. We start with the principal definition.
DEFINITION 2.7. Leta, b ∈ A. Thena, b are calledsimilar, denoted bya ∼ b, if there

is an invertibleh ∈ A such that

h−1ah = b.(2.9)
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We note that similarity is an equivalence relation. We call the transformationa → h−1ah
similarity transformationof a. We have a very simple lemma.

LEMMA 2.8. Let a, b ∈ A. 1. Leta, b be both real. Thena, b are similar if and only if
a, b are identical. 2. Leta or b be real but not both. Thena, b are not similar.

Proof. Real elements commute with all algebra elements. The defining equation (2.9)
under assumption 1. impliesa = b. In the second case it also impliesa = b. Because one of
the two elementsa, b is not real and the other is real, the equationa = b can never be valid in
case 2.

THEOREM 2.9. Leta, b ∈ A be similar. Then,

ℜ(a) = ℜ(b), abs2(a) = abs2(b).(2.10)

Proof. We putb = h−1ah and apply (2.4): ℜ(h−1ah) = ℜ(hh−1a) = ℜ(a) = ℜ(b).
We apply (2.7) and (2.9): abs2(h−1ah) = abs2(h

−1)abs2(h)abs2(a) = abs2(a) = abs2(b).

The main question is now, whether (2.10) implies similarity. Here we refer to [11,
Lemma 4.3]. This lemma says:

Let a, b ∈ Hcoq\R and let (2.10) be valid. Then,a ∼ b.(2.11)

The proof is by matrix arguments and it would also apply toHnec and toHcon instead of
Hcoq. However, for quaternionsH, (2.10) is a necessary and sufficient condition for similarity
without any restriction. See also [21] for coquaternions, where the conditiona, b /∈ R is
omitted.

THEOREM 2.10. Let a, b ∈ Hcoq\R and a ∼ b. Then, a similarity transformation,
expressed by an invertibleh ∈ Hcoq can be found by computing the kernel (= null space) of
the homogeneous, singular matrix equation

Mh = 0,(2.12)

whereM is the real4× 4 matrix equivalent to Sylvester’s equation

ah− hb = 0, h invertible.(2.13)

See [12, 15]. The kernel ofM can be computed by applying a singular value decomposition
(svd) to the matrixM. Details can be deduced from Example2.12.

Let a ∈ A andabs2(a) − (ℜ(a))2 = 0. In such a situation it is sometimes desirable,
that (ℜ(a), 0, 0, 0) anda are in the same similarity class. This can be achieved by slightly
changing the definition of similarity to the condition whichis given in (2.10).

DEFINITION 2.11. Leta, b ∈ A. The two elementsa, b are calledquasi similar, abbre-
viated asa

q∼ b, if (2.10) is valid. The quasi similarity classes will be denoted by[a]q.
Quasi similarity is also an equivalence relation. It is clear that similarity implies quasi

similarity and that

[a] ⊂ [a]q for all a ∈ A.

See [11] for more details.
EXAMPLE 2.12. Leta = (1, 5, 4, 3) ∈ Hcoq andb = (1, 1, 1, 0) ∈ Hcoq. According to

(2.11) these elements are similar inHcoq, and they are both quasi similar toℜ(a) = ℜ(b) = 1.
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We will furnish a direct proof ofa ∼ b by finding the corresponding similarity transformation
explicitly by using Theorem2.10. ForM we find in this case (see [12])

M =









0 −4 3 3
4 0 3 −5
3 3 0 −6
3 −5 6 0









.(2.14)

This matrixM has rank 2 and therefore, the corresponding kernel has dimension 2 which im-
plies that the kernel contains invertible elements. In order to find the corresponding similarity
transformation, we apply a singular value decomposition (abbreviated svd) toM and obtain
svd(M) = [U, S, V ] (using MATLAB notation) whereU, S, V are again4 × 4 matrices.
More details can be found in the classical reference by Horn and Johnson, [9, p. 414]. The
last two columns ofV contain two linearly independent vectors spanning the kernel. This
result can be found in standard textbooks, like [19, p. 311]. These two vectors are here

[h1, h2] =









−0.682852186027397 0.454741481629430
0.338967359220833 0.635870976388783
0.623898892364393 0.302521739509271

−0.171942413403282 0.545306229009106









.(2.15)

As elements ofHcoq, h1, h2 are invertible. Now we make the following numerical checks:

h
−1
1 ah1 = (1.000000000000000, 1.000000000000003, 1.000000000000003, −0.000000000000004),

h
−1
2 ah2 = (1.000000000000001, 1.000000000000000, 1.000000000000004, −0.000000000000001),

h1bh
−1
1 = (1.000000000000000, 5.000000000000009, 4.000000000000004, 3.000000000000008),

h2bh
−1
2 = (1.000000000000000, 5.000000000000002, 4.000000000000004, 2.999999999999999),

and the check is affirmative,a andb are indeed similar inHcoq within computer precision.
The computations were carried out by MATLAB.

3. Finding zeros from similarity classes.We will treat the following problem: Given
a polynomialp overA and a quasi similarity class[z]q ⊂ A, which is known to contain a
zeroz0 ∈ [z]q of p. How to find the zero. The main idea is to write the polynomialp in a
formally linear form. For this purpose, we use the identity

z2 = −abs2(z) + 2ℜ(z)z,(3.1)

which is valid inA and inH. It implies

zk = αk + βkz, αk, βk ∈ R,(3.2)

α0 = 1, β0 = 0,(3.3)

αk+1 = −abs2(z)βk, βk+1 = αk + 2ℜ(z)βk, k ≥ 0.(3.4)

This means, that for a givenz ∈ A the representation (3.2) is easily computable. For a first
application of (3.2) in H see [20]. If we restrict our attention to one quasi similarity class[z]q,
then the coefficientsαk, βk, k ≥ 0 are constant on this class. This follows from (2.10). If we
apply (3.2) to all powers in the polynomialp we obtain

p(z) =
n
∑

k=0

akz
k =

n
∑

k=0

ak(αk + βkz) =
n
∑

k=0

αkak +

(

n
∑

k=0

βkak

)

z =: A+Bz(3.5)
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andA,B ∈ A are constant on the quasi similarity class[z]q. Though we have writtenA,B
without arguments, they depend onz. More precisely,A,B depend onabs2(z) and onℜ(z)
but not fully onz.

THEOREM 3.1. In the representationp(z) = A + Bz, let B be invertible on the given
class[z]q and let[z]q contain a zeroz0 of p. Then,

z0 = −B−1A(3.6)

is the only zero ofp in [z]q. If A = B = 0, then all elements in[z]q are zeros ofp.
Proof. From (3.5) it follows, thatp(z0) = 0. Let there be two distinct zeros,z0, z1 ∈ [z]q.

Then,p(z0) = A +Bz0 = 0 andp(z1) = A +Bz1 = 0, which impliesB(z0 − z1) = 0. If
B is invertible, thenz0 = z1 would follow, a contradiction. Thus,B is noninvertible if there
are two distinct zerosz1, z2 ∈ [z]q. The last part is obvious.

THEOREM 3.2. Let B 6= 0 butB be noninvertible on the given class[z]q and let [z]q
contain a zero ofp. Assume that there is a real constantγ such that

A+ γB = 0.(3.7)

Then, for all realα the quantity

z0 = αB + γ(3.8)

is a zero ofp, provided,z0 ∈ [z]q.
Proof. We have

p(z0) = A+Bz0 = −γB +B
(

αB + γ
)

= −γB + αBB + γB = 0.

The quasi similarityz0
q∼ z has to be checked separately and will restrict the possible values

of α.
LEMMA 3.3. Let in Theorem3.2ℜ(B) 6= 0. Then, there is at most oneα which defines

a zeroz0 which is contained in the quasi similarity class[z]q.
Proof. Since the real part is fixed in the whole quasi similarity class [z]q, the equation

ℜ(z0) = ℜ(αB + γ) = αℜ(B) + γ allows several real parts for varyingα. This is a
contradiction.

DEFINITION 3.4. Zerosz0 of p with the property, that there is no other zero in[z0]q
are calledisolated. Zerosz0 with the property, that all elements in[z0]q are zeros are called
hyperbolic. See [11, p. 139]. Zerosz0 which are computed by formula (3.8) are called
unexpectedzeros.

It should be noted, that the similarity classes[z] either contain infinitely many elements,
in this case[z] does not contain real elements, or[z] consist of a single element, which is
possible only ifz ∈ R. However, inA there are no quasi similarity classes which contain
only one element.

Examples related to the Theorems3.1, 3.2will be presented later.

4. The companion polynomial and its roots.Conjugation plays an important role in
the following definition.

DEFINITION 4.1. Letp be a polynomial of degreen of the form defined in (2.1). The
real polynomialq of degree2n defined by

q(z) =

n
∑

j,k=0

ajakz
j+k =

2n
∑

ℓ=0

bℓz
ℓ, bℓ =

min(ℓ,n)
∑

j=max(0,ℓ−n)

ajaℓ−j ∈ R, 0 ≤ ℓ ≤ 2n,(4.1)
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is called thecompanion polynomialof p.
In [11, Lemma 6.2] it is shown that the coefficientsbℓ defined in (4.1) are real. We

will keep the word zerosfor solutionsz of p(z) = 0 and will use the wordroots for the
solutions ofq(z) = 0. Sinceq has even degree2n and the coefficientsbℓ of q are all real,
there is an even number2n1 of complex roots and an even number2n2 of real roots such that
2(n1 + n2) = 2n wheren1 = 0 orn2 = 0 is possible. And it is clear, that the complex roots
always appear in pairs of complex conjugate roots. There is one important property ofq,
which will be used on certain occasions, namely

q(z) = p(z)p(z) for all z ∈ R.(4.2)

It follows, that a real zero ofp will be a real double root ofq since the reals commute with
all algebra elements. Note, thatp(z)p(z) = 0 does in general not implyp(z) = 0. In another
paper, [11] we have called az with p(z)p(z) = 0 a singular pointof p. The companion
polynomialq, though not with that name, was already introduced 1941 by Niven, [18]. In a
later paper (2004) it was calledbasic polynomialby Pogorui and Shapiro, [20].

THEOREM 4.2. Let q have at least one pair of complex conjugate rootsc = u ± vi,
wherev > 0. Define

s :=

{

u+ vi for A = Hcoq,
u+ vj for A = Hnec,
u+ vk for A = Hcon.

(4.3)

Then in[s]q there may be a zero ofp which can be found by applying one of the Theorems3.1
or 3.2.

Proof. ForH the proof is given in [14]. In [11] it is shown forA = Hcoq, that under the
given conditions,[s]q contains a zero ofp. The remaining part follows from Theorem3.1.
The proof given in [11] can easily be extended to the remaining two algebrasHnec,Hcon.

Since there are at mostn1 ≤ n pairs of complex conjugate roots,p may have at mostn1

zeros derived from complex zeros ofq. ForH, the paper [14] contains a complete description
on how to find all (maximallyn) zeros ofp overH. An extension to two-sided polynomials
overH was given in [13].

THEOREM 4.3. Let the companion polynomialq of p have at least one pair of real roots,
r1, r2 and assume (without loss of generality) thatr1 ≥ r2. Define

u :=
1

2

(

r1 + r2
)

, v :=
1

2

(

r1 − r2
)

,(4.4)

s :=

{u+ vj, or u+ vk for A = Hcoq,
u+ vi, or u+ vk for A = Hnec.
u+ vi, or u+ vj for A = Hcon.

(4.5)

Then in[s]q there may be a zero ofp which can be found by applying one of the Theorems3.1
or 3.2. If r1 = r2, then,s = u = r1 is a real zero ofp and possibly also an unexpected zero
of p. See Example4.9.

Proof. The proof has to be made under three assumptions: i:B is invertible, ii: A =
B = 0, iii: B 6= 0 andB is not invertible. Assumer1 > r2. Though we have writtenA,B
without an argument, bothA andB depend ons and both are constant on[s]q. We will show
thats ands0 are quasi similar which means that (2.10), mentioned in Theorem2.9 is valid
for s, s0. The real part ofs isℜ(s) = u, andabs2(s) = u2 − v2 = (u+ v)(u− v) = r1r2 in
all three algebrasA. We have to show, that



8 DRAHOSLAVA JANOVSKÁ AND GERHARD OPFER

ℜ(s0) = u, abs2(s0) = u2 − v2 = r1r2,(4.6)

and assume thatB is invertible. We have

ℜ(s0) = −1

2
(B−1A+B−1A) =

−1

2 abs2(B)
(BA+AB),

abs2(s0) = (−B−1A)(−B−1A) =
abs2(A)

abs2(B)
.

We note, that the powers,sk, k ≥ 0 of s have the form

sk =

{

uk + vkj for A = Hcoq,
uk + vki for A = Hnec and forA = Hcon,

(4.7)

where in all algebras

uk =
rk1 + rk2

2
, vk =

rk1 − rk2
2

, k = 0, 1, . . .(4.8)

This can be shown by induction usingj2 = 1 in Hcoq andi2 = 1 in Hnec and inHcon. If we
comparesk from (4.7) with sk from (3.2) we obtain inA

αk = uk − u
vk
v
, βk =

vk
v
.

From here,

A =

n
∑

k=0

αkak =

n
∑

k=0

(

uk − u
vk
v

)

ak =

n
∑

k=0

ukak −
u

v

n
∑

k=0

vkak,

=
1

2
(p(r1) + p(r2))−

u

2v
(p(r1)− p(r2))

=
−r2

r1 − r2
p(r1) +

r1
r1 − r2

p(r2),

B =

n
∑

k=0

βkak =
1

v

n
∑

k=0

vkak =
1

r1 − r2
(p(r1)− p(r2)) .

These formulas imply, by using (4.2) frequently

abs2(A) = AA

=

( −r2
r1 − r2

p(r1) +
r1

r1 − r2
p(r2)

)( −r2
r1 − r2

p(r1) +
r1

r1 − r2
p(r2)

)

=

( −r2
r1 − r2

)2

p(r1)p(r1) +

(

r1
r1 − r2

)2

p(r2)p(r2) +

+

( −r2
r1 − r2

)(

r1
r1 − r2

)

p(r1)p(r2) +

(

r1
r1 − r2

)( −r2
r1 − r2

)

p(r2)p(r1)

= −2

(

r1r2
(r1 − r2)2

)

ℜ
(

p(r1)p(r2)
)

.

abs2(B) = BB
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=

(

1

r1 − r2

)2
(

p(r1)p(r1) + p(r2)p(r2)− 2ℜ
(

p(r1)p(r2)
)

)

= −2

(

1

r1 − r2

)2

ℜ
(

p(r1)p(r2)
)

,

BA+AB =
1

r1 − r2

(

p(r1)− p(r2)
)

( −r2
r1 − r2

p(r1) +
r1

r1 − r2
p(r2)

)

+

+
1

r1 − r2

( −r2
r1 − r2

p(r1) +
r1

r1 − r2
p(r2)

)

(p(r1)− p(r2))

= 2
r1 + r2

(r1 − r2)2
ℜ
(

p(r1)p(r2)
)

.

Finally, also using (2.4)

abs2(A)

abs2(B)
= r1r2, −BA+AB

2 abs2(B)
= u,

which coincides with (4.6). The last part of the theorem is obvious.
The motivation for the use of the formulas (4.4), (4.5) is taken from [10, Table 5], where

under certain conditions the two eigenvalues of a2× 2 matrix are the sum and the difference
of two real numbers.

DEFINITION 4.4. Let a pair of real rootsr1, r2 or a pair of conjugate complex roots
u± vi of the companion polynomialq have the property that it defines a zeros0 of the given
polynomialp by applying one of the Theorems4.2, 4.3. Then, we say that the pair of roots
of q generatesa zeros0 of p.

THEOREM 4.5. Let p be a polynomial of degreen as defined in (2.1) overA. Then, the
companion polynomialq of p generates at mostn(2n− 1) zeros ofp.

Proof. Let the companion polynomialq (defined in (4.1)) have only real roots, such that
their number is2n. Then, the number of real pairs is

(

2n
2

)

= 2n(2n− 1)/2 = n(2n− 1) and
according to Theorem4.3, each pair may generate a zero ofp. In Example7.1on p.13with
a polynomial of degreen = 3 we will show that the upper bound2(2n − 1) = 15 of zeros
will be attained. Another example of a polynomial of degree 4with the maximum number of
zerosn(2n− 1) = 28 is presented in Example7.5on p.13.

We can more precisely estimate the number of zeros ofp if the companion polynomial
has2n1 (nonreal) complex roots and2n2 real, simple roots.

THEOREM 4.6. Let p be a polynomial of degreen over A and let the roots of the
companion polynomialq be r1, r2, . . . , r2n. Assume that the first2n1 roots are (nonreal)
complex and that the remaining2n2 := 2n − 2n1 roots are real and simple. Then, the
number of zeros ofp is

#{z : p(z) = 0} ≤ n1 +

(

2n− 2n1

2

)

= n1 + (n− n1)(2n− 2n1 − 1),(4.9)

where all quasi similar zeros are counted as one zero. The maximum,n(2n− 1), is attained
for n1 = 0, when there are no complex roots ofq.

Proof. Follows from formulas (4.3) and (4.5) in Theorems4.2, 4.3. In (4.3) there are at
mostn1 complex roots with positive imaginary part, and in (4.5) there are at most

(

2n−2n1

2

)

real pairs.
EXAMPLE 4.7. We start with an extremely simple example. Let

p(z) = d− z, z, d ∈ A.
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Then, the companion polynomial is

q(z) = z2 − 2ℜ(d) + abs2(d)

and the zeros ofq areℜ(d)±
√

(ℜ(d))2 − abs2(d). The formally linear form ofp is

p(z) = A+Bz;A = d,B = −1,

andA,B do not depend onz andB is always invertible. Thus, independent ofq we have

z0 = −AB−1 = −d(−1)−1 = d,

andz0 is an isolated zero ofp.
EXAMPLE 4.8. Let

p(z) = (z − 1)(z − 2) = z2 − 3z + 2

=
(

− abs2(z) + 2
)

+
(

2ℜ(z)− 3
)

z =: A(z) +B(z)z

be a polynomial overA. The companion polynomial is in all algebrasA, H

q(z) = z4 − 6z3 + 13z2 − 12z + 4,

and the zeros ofq are1, 1, 2, 2. There are three distinct real pairs(1, 1), (1, 2), (2, 2). We
apply Theorem4.3and find for the the first and the last pairs = 1, s = 2, respectively, and
A(1) = 1, A(2) = −2, B(1) = −1, B(2) = 1. Which implies

s0 = −B(1)−1A(1) = 1, s0 = −B(2)−1A(2) = 2,

and both zeros are isolated, which is no surprise. However, in Hcoq the pair(1, 2) defines,
with the same theorem,s = 1

2 (3 + j) or s = 1
2 (3 + k) and in both cases we haveA = B = 0

and the above mentioned (similar) zeros are hyperbolic zeros. Thus,p overHcoq has 3 zeros.
The same is valid inHnec and inHcon if we apply Theorem4.3correspondingly.

We will furnish an example which shows by the application of Theorem3.2the existence
of unexpected zeros.

EXAMPLE 4.9. Fora ∈ A buta /∈ R and(ℜ(a))2 − abs2(a) = 0 we define

p(z) := z2 − 2az + a2(4.10)

= (−abs2(z) + a2) + 2(ℜ(z)− a)z =: A(abs2(z)) +B(ℜ(z))z.(4.11)

It is easy to see thatp(a) = 0. In this case the companion polynomial is

q(z) = (z −ℜ(a))4.

It defines only one pair of real roots
(

ℜ(a),ℜ(a)
)

and the evaluation ofA andB ats = ℜ(a)
yields

A = −abs2(ℜ(a)) + a2 = −(ℜ(a))2 + a2, B = 2(ℜ(a)− a).(4.12)

LEMMA 4.10. In this example we have

B 6= 0,ℜ(B) = 0, B noninvertible, A = −ℜ(a)B.
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Proof. The first two properties follow from the last part of (4.12). For the third one we
have BB = 4(ℜ(a) − a)(ℜ(a) − a) = 4

(

(ℜ(a))2 − ℜ(a)(a + a) + aa
)

= 4
(

ℜ(a))2 − 2(ℜ(a))2 + (ℜ(a))2)
)

= 0. Thus,B is noninvertible. Finally,−ℜ(a)B =
−2ℜ(a)2 + 2ℜ(a)a = −ℜ(a)2 − abs2(a) + 2ℜ(a)a = −ℜ(a)2 + a2 = A.

This lemma implies that Theorem3.2is applicable which shows that for all realα

z0 = αB + ℜ(a) = 2α(ℜ(a)− a) + ℜ(a)

is a zero ofp. Leta = (a1, a2, a3, a4). Then the zeros have the form

z0 = (a1, αa2, αa3, αa4) for all α ∈ R.

Thus, they are all quasi similar toa1 = ℜ(a). However, not all elements quasi similar to
ℜ(a) belong to that quasi similarity class. The unexpected zerosconsist of an infinite subset
of [ℜ(a)]q but do not exhaust this set.

It should be noted, that the similarity classes[z] either contain infinitely many elements,
in this case[z] does not contain real elements, or[z] consist of a single element, which is
possible only ifz ∈ R. However, inA there are no quasi similarity classes which contain
only one element.

5. All zeros of p are generated by roots ofq. We will show that all zeros ofp are
generated by roots ofq.

THEOREM 5.1. Let p have a zeros0 where the similarity class[s0] contains an element
of the form

s := u+ vi, if p is a polynomial overHcoq,

s := u+ vj, if p is a polynomial overHnec,

s := u+ vk, if p is a polynomial overHcon, v > 0 in all cases.

Then there exists a (nonreal) complexs such thatq(s) = 0 ands generatess0.
Proof. Theorem 6.10 for coquaternions in [11], which can be adapted to the other two

algebrasHnec,Hcon.
In the paper [11, p. 146] we have written with respect to the algebra of coquaternions:

“The previous theorem tells us that we can find all zeros ofp employing the companion
polynomial provided that the zero has a complex number in itsequivalence class. ... but
all others cannot be found.” This is now not true anymore. We are able to find all zeros by
employing the companion polynomial, and the gap is closed byTheorem5.2.

THEOREM 5.2. Let p have a zeros0 where the similarity class[s0] contains an element
of the form

s := u+ vj, if p is a polynomial overHcoq,

s := u+ vi, if p is a polynomial overHnec or overHcon, v > 0 in all cases.

Then, there exists a pair of real, distinct rootsr1, r2 of q which generatess0.
Proof. In all three algebras it is easy to retrieves from s0 uniquely. And the equations

(r1 + r2)/2 = u, (r1 − r2)/2 = v have the unique solutionr1 = u + v,
r2 = u − v. For the further proof we will use an identity for the companion polynomial
q taken from [11, Formula (6.3)] which reads

q(z) = abs2(A) + 2ℜ(BA)z + abs2(B)z2.
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For the coefficients of this real quadratic equation we insert the results from the proof of
Theorem4.3. Then, the standard solutions of ofq(z) = 0 arez = r1 andz = r2. Thus, the
real pairr1, r2 generatess0.

COROLLARY 5.3. All unilateral polynomials of degreen overHcoq,Hnec,Hcon have at
mostn(2n− 1) zeros, which means that there are at mostn(2n− 1) similarity classes which
contain zeros.

Proof. In Theorem4.5we have shown that a polynomial may haven(2n− 1) zeros. In
Theorems5.1, 5.2we have shown, that this number cannot be exceeded.

6. An algorithm to find all zeros of polynomials overA. In order to find all zeros of
a given polynomialp overA follow the steps of Algorithm6.1.

ALGORITHM 6.1. Algorithm for finding all zeros of polynomialsp overA, defined in
(2.1) by means of the companion polynomial.

1. Leta0, a1, . . . , an be the coefficients of the polynomialp overA. Assume thatan
is invertible.

2. Define an empty list of zeros ofp.
3. Compute the real coefficientsc0, c1, . . . , c2n of the companion polynomialq by for-

mula (4.1).
4. Compute all2n real and complex roots ofq by a standard routine.

for all complex rootsu+ vi with v > 0 of q do
5. Define the algebra elementroot = (u, v, 0, 0) if A = Hcoq.
6. Define the algebra elementroot = (u, 0, v, 0) if A = Hnec.
7. Define the algebra elementroot = (u, 0, 0, v) if A = Hcon.
8. ComputeA,B at root by using formula (3.5).
9. Apply Theorems3.1, 3.2.

10. If the result is a zeros0, adds0 to the list of zeros ofp. Also note the type of zero
(isolated, hyperbolic, unexpected).

end for
for all real pairsr1, r2 of the roots ofq do [do not distinguish between(r1, r2)

and(r2, r1)]
11. Defineu = (r1 + r2)/2; v = abs

(

(r1 − r2)/2
)

;
12. Define the algebra elementroot = (u, 0, v, 0) if A = Hcoq.
13. Define the algebra elementroot = (u, v, 0, 0) if A = Hnec.
14. Define the algebra elementroot = (u, v, 0, 0) if A = Hcon.
15. Repeat all steps from8. to 10.

end for
The result of this algorithm is a list of zeros ofp where the number of entries may vary from
0 to n(2n− 1). The list may contain multiple entries.

REMARK 6.2. In order to produce an executable program from Algorithm 6.1 the fol-
lowing computational steps must be possible:

1. Adding and multiplying algebra elements
2. Finding the companion polynomial
3. Finding roots of real polynomials
4. FindingA,B
5. Finding inverses of algebra elements
6. Evaluating a polynomial overA at an algebra element

All these steps can be easily accomplished if one makes use ofthe overloading technique
offered by MATLAB.
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7. Examples. We present a few numerical examples.
EXAMPLE 7.1. For the coquaternionic polynomialp of degree 3, defined by the coef-

ficients a3 = (2, 2,−1, 0); a2 = (−1, 0,−5,−1); a1 = (−4,−5, 1, 1); a0 = (2,−2, 2, 3) we
have presented 8 zeros in [11, Table 10.1]. In this case the companion polynomialq of degree
six is defined by the coefficientsb6 = 7,−14,−59, 24, 61,−6, b0 = −5 and it has exactly
6 pairwise distinct real zeros. With this paper we know, thatthere must be 15 zeros ofp. In
Table7.2 we present the missing 7 zeros. The other examples 10.2 to 10.4 in [11] have the
correct number of zeros.

TABLE 7.2. Seven missing zeros of example 10.1 in [11].

1.410018698387151, 40.927688450784920, −26.484628029183256, −31.296139541593462
2.078329585493254, 35.227789879357942, −23.037052468108019, −26.708143691872522
1.780207170581877, −3.512185413662750, 3.899454035433289, 1.136051036343325

−0.820915616403146, −0.132277571822474, 0.994132668916126, −0.607528109039788
−1.119038031314515, −0.708374333154589, 0.481092542977948, −1.004459188532533
−0.331689112894335, 70.975467125897083, −43.119928985136582, −56.379387168520203
−0.629811527805284, 0.558924803050916, −0.631505659586322, −0.225026759123903

If we measure the error of the zerosz of Table7.2by

e :=
||p(z)||
||z|| ,

where|| · || is the euclidean norm inR4, then in all casese ≤ 10−10.

EXAMPLE 7.3. We consider a slightly altered polynomial inHcoq, namelyπ(z) =
p(z)(z−1), wherep is the polynomial defined in Example7.1. We expect the same zeros ofp
as before with the additional zeroz = 1. However, the companion polynomialq has degree 8
and could define maximally 28 zeros. The coefficients ofq areb8 = 7,−28,−24, 128,−46,
−104, 68, 4, b0 = −5. The computed rootsrj , 1 ≤ j ≤ 8 of q are all real and the double
root 1 was listed asr5 andr6. For the cases(r5, rj), (r6, rj), j > 6, we foundA + B =
0, A 6= 0, B 6= 0, B not invertible andℜ(B) 6= 0, such that Lemma3.3applies and indicates
that these pairs do not define a zero ofp. The pair(5, 6) defines the zero1 and all other pairs
define the zeros known from Example7.1. Altogether there are 16 zeros as expected.

EXAMPLE 7.4. The above polynomialp in algebraHnec defines a companion polyno-
mial q with two real roots and two pairs of complex conjugate roots,thus,p has three zeros.
The polynomialπ(z) = p(z)(z − 1) in Hnec, wherep is defined in Example7.1of degree 4
has 4 zeros.

EXAMPLE 7.5. The same polynomialp in Hcon defines a companion polynomialq with
4 real roots and one pair of complex conjugate roots, thus,p has 7 zeros. The polynomial
π(z) = p(z)(z − 1), again inHcon, wherep is defined in Example7.1 of degree 4 has 8
zeros.

We will end this section with a rare species of polynomialp namely one which has degree
n = 4, where the corresponding companion polynomialq has only real roots.

EXAMPLE 7.6. LetA = Hcoq and

p(z) = (1, 1,−2, 0)z4 + (4, 2, 0, 3)z3 + (−4, 0, 2, 4)z2 + (−4,−2,−4, 0)z + (3, 2, 1,−3).(7.1)

The polynomial is not monic, but the highest coefficient is invertible inHcoq, and one could
divide all coefficients by the highest coefficient. But this does not effect the zeros ofp. The
companion polynomial is

q(x) = −2x8 + 12x7 + 11x6 − 84x5 − 30x4 + 98x3 − 24x+ 3,
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and the 8 roots ofq (byroots of MATLAB) are

r1 = −2.111197229212920,
r2 = −1.264898455994286,
r3 = −0.580911934832195,
r4 = 0.134343403046716,
r5 = 0.584463189626376,
r6 = 0.767284309708206,
r7 = 2.860897723805642,
r8 = 5.610018993852465.

Applying Theorem4.3we obtain 28 possible similarity classes defined by

uj,k = 0.5(rk + rj) + 0.5(rk − rj)j or 0.5(rk + rj) + 0.5(rk − rj)k,

j = 1, 2, . . . 8, k = j + 1, j + 2, . . . , 8

which may contain zeros. Checking these similarity classesby Theorem3.1, we find that
the formally linear polynomial formp(z) = A + Bz has in all cases the property thatB is
invertible which means that all 28 pairs(rj , rk), j < k, define a zero ofp and that all these
zeros belong to a similarity class of the form[a+

√
−b j], b < 0.The zero ofp corresponding

to the pair(r1, r2) is

x1 = (−1.688047842603601, −0.168989609556503, 0.405751318682548, 0.207313190398666),

and the zero corresponding to the pair(r7, r8) is

x28 = (4.235458358828954, −7.292058894146280, 6.971671162937881, 2.541523372096755).

This example shows, that the maximal number of zeros,n(2n− 1) = 28 is attained.
For n > 4 we were not able to find coquaternionic polynomials of degreen where the

corresponding companion polynomialq of degree2n had2n real roots. This implies the
following problem: Givenn > 4, can we find a coquaternionic polynomial of degreen with
the maximal number of

(

2n
2

)

zeros?

If one is interested in polynomials over commutative algebras one should consult [22,
11].

8. A relation to an algorithm by Serôdio, Pereira, and Vitória. The algorithm pub-
lished in [24] is taylored for the quaternionic case. It is based on the companion matrix of a
monic polynomial overH

p(z) := zn + an−1z
n−1 + · · ·+ a0, z, aj ∈ H, j = 0, 1, . . . , n− 1, a0 6= 0(8.1)

and the quaternionic companion matrix is

C :=

















0 0 . . . 0 −a0
1 0 . . . 0 −a1

. . .
. . .

0 0
. . . 0 −an−2

0 0 . . . 1 −an−1

















.(8.2)

Now, the2n real or complex eigenvalues ofC are determined by transferringC to a real
2n× 2n matrix. These eigenvalues are used to apply Niven’s algorithm resulting in the zeros
of p. For details see [24].
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The results of our observations are put into the following conjecture.
CONJECTURE8.1. Let p be the polynomial defined in (8.1) overH or overA. Then the

2n real or complex eigenvalues ofC coincide with the the2n real or complex roots of the
corresponding companion polynomial ofp.

This conjecture is based on many numerical experiments, andfor the degreen ≤ 3 we
can prove it.

This means, that the algorithm [24] can also be extended to algebras inA and the algo-
rithms [11, 14], and [24] produce the same zeros, provided Conjecture8.1 is true.

And this connection between the companion matrix and the companion polynomial also
justifies the name companion polynomial.

9. Epilogue. The algebra elements considered here have an isomorphic image in2 × 2
matrices where details are given in [11] including the form of the matrices. Which means that
the whole paper could have been based on matrix equations. The details would be different,
but the main results would be the same. As authors we had to make a decision and our
decision favored algebra elements.

In [11] one also finds that the three algebrasA are isomorphic. Here one also has to make
a decision. If a certain problem has to be solved in two distinct, but isomorphic algebras, say
A1, andA2 one can apply the isomorphism rules to reduce the problem in AlgebraA2 to
algebraA1 and solve it there. The solution has then to be be retransformed to algebraA2.
Another technique which we prefer, is the adaption of the algebraic rules to the corresponding
algebras. In our computer program we could adapt the algebraic rules to the rules for one
specific algebra just by setting one integer variable to the corresponding algebra number.
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