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THE NUMBER OF ZEROS OF UNILATERAL POLYNOMIALS OVER
COQUATERNIONS AND RELATED ALGEBRAS *

DRAHOSLAVA JANOVSKAT AND GERHARD OPFER

Abstract. We have proved that unilateral polynomials over the nosiivi algebras ifR* have at most
n(2n — 1) zeros, when the polynomial has degree Moreover, we have created an algorithm for finding all
zeros of polynomials over these algebras using a real poliglof degree2n, calledcompanion polynomialThe
algebras in question are coquaterniohk,q, nectarinesH,ec, and conectarinedlco, . Besides the isolated and
hyperbolic zeros we introduce a new type of zeros, thexpectedzeros. There is a formal algorithm and there
are numerical examples. In a tutorial section on similawgy show how to find the similarity transformation of
two algebra elements to be known as similar, where a singalae decomposition to a certain refalx 4 matrix
related to the two similar elements has to be applied. We shatithere is a strong indication that an algorithm by
Seroadio, Pereira, and VitoriaCpmputer and Mathematics with Applications, 42 (2001),1#29-1237 designed
for finding zeros of quaternionic polynomials is also vafidtie nondivision algebras i®* and it produces - though
with another technique - the same zeros as proposed in thés.pa

Key words. Number of zeros of polynomials over nondivision algebra®ih Number of zeros of polyno-
mials over coquaternions, Number of zeros of polynomiaksr mectarines, Number of zeros of polynomials over
conectarines, Unexpected zeros, Computation of all zdrpslgnomials over nondivision algebrast.
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1. Introduction. We present an algorithm for finding all zeros of unilaterdypomials
of degreen in one of the algebradil.,q, Hyec, Heon. Beyond thasolatedand thenyperbolic
zeros, there will be a new type of zero which we will catlexpected zeroAs an essential
result we determine the maximal number of zeros of unilaynomials of degree over
any of the noncommutative algebragRf, in particular incoquaterniongH.,), nectarines
(Hye.) , andconectarinegH.,.,,,). These algebras are also nondivision algebras, which snean
that there are noninvertible algebra elements differemnfthe zero element. In order to
support our result we have developed an algorithm for findihgeros of unilateral polyno-
mials over the mentioned algebras. The explicit names aktladgebras were introduced by
Cockle, L, 2] and Schmeikal,43], for the last two algebras. If we use the letiérwe mean
one of these three algebras. For algebras in general, séad3§5]. Algebras inR™ are in
many cases callegeometric algebraq6].

For finding all zeros and their number for unilateral polyriaisiof degree: over quater-
nionsH, see Janovska and Opfetd] and also Serddio, Pereira, and Vitoria, and De Leo,
Ducati, and LeonardiZ4, 3]. The main ingredient inl4] for finding zeros of a quaternionic
polynomial of degree is a real polynomial of degrez which is calledcompanion polyno-
mial by the authors of]4] and it is denoted by. At the end of this paper, we will explain that
the namecompanion polynomiak reasonable. In order to distinguish the zeros of the given
polynomialp from the solutions of(z) = 0 we called these solutiomsotsof q. We found
that the number of zeros of quaternionic polynomiat&innot exceed the degree, which is in
coincidence with a result published 1965 by Gordon and Mot4k]. Since zeros may fill a
whole similarity class, the count of zeros must be per siityl@lass which contains a zero.
The importance of the notion afmilarity was already discovered in1936 by Wol?5. For
nondivision algebras it is reasonable also to introducentiteon of quasi similarity At a
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later occasion, we will point out the few cases in which qsasilarity and similarity differ.

In another paper by Janovska and Opfét][we have introduced an algorithm for find-
ing zeros of unilateral coquaternionic polynomials alsat®y means of the real companion
polynomialg. The pairs of conjugate complex rootsqgoflave rise to a zero gf, however for
the real roots off we did not find a connection to the zerogofAny conclusion on how many
zeros may exist ind could not be established. 1A]] we extended the search for zeros by
employing Newton’s method where a special technique desdrby Lauterbach and Opfer
in [17] was used. Other attempts to find zeros by Newton’s methodbedound in §, 16].

In this paper, we fill this gap and show how to find all zeros dfataral polynomials
over.4 again by employing the companion polynomial, which alsovadl the conclusion, that
there are maximall)(QQ") = n(2n — 1) zeros of a polynomial of degree E. g., quadratic
polynomials inHeoq, Hyec, Heon May have up to 6 and cubic polynomials up to 15 zeros.
It will be shown, that the essential gist is not to considex ithdividual real roots of the
companion polynomial, but to consider pHirs of real roots. A positive minimum number of
zeros does not exist ifiqoq, Hyec, Heon, Since it was shown irl[l] that there are polynomials
without zeros. This is in some analogy with the fact thatéreme matrices in these algebras
which have no eigenvalued,{]. The algorithm for finding all zeros, which implies the aleov
upper bound, will be presented in the sequel.

2. Definitions and elementary properties.The polynomials considered here will have
the form

(2.1) p(z) =Y _a;27, aj,z € A, an,a invertible
j=0

Let A be one of the three algebrig,, Hnec, Heon, @and if a specific algebra is chosen, we
say thatp is a polynomial over .A. The algebra of quaterniori is not included in this
investigation, since there are already publications wigothms for finding all zeros of
unilateral polynomials with quaternionic coefficientsg §24, 3, 14].

We denote algebra elements fromin the simple forma = (aq, a2, as, aq). The four
units in anyR* algebra will be denoted biy, i, j, k so that one can also use the representation

a=a;+ai+azj+ask,a; €R, j=1,2,34.

For completeness we present the multiplication ruledffQy,, Hyec, Heon in Table2.1
TABLE 2.1. The three multiplication tables félf..q, Hyec, Heon-

Heoo |1 i j Kk Hee |1 i j k Heow |1 i j k

T |1 i j k T [T 1 j k T |1 1 j k
22 i |i -1 k —j i i 1 k j i |11 ko
i i -k 1 —i i li -k -1 i i ol -k 1 —i

k |k j i 1 k |k —j —i 1 k |k —j i -1

DEFINITION 2.2. LetA be any noncommutative algebra. Ttenterof A, denoted by
C4, is the subset oft whose elements commute with all elementsiof
LEMMA 2.3.The center of all algebras idl is

(2.3) Ca=R,

whereR is identified with algebra elements of the fofm0,0,0) € A, a € R.
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Proof. Itis clear thafR belongs to the center. Let¢ R, then the assumptiomh = ba
for all b € A leads to a contradiction. [
LEMMA 2.4.Let us abbreviate the four units ia also by

unit; = 1, unity = i, unity = j, unity = k.

Then, the product unitinit is real if and only ifr = s, 1 < r, s < 4.

Proof. In all three tables4.2) only the diagonal elements are real. O

We denote the first componemt of a = (a1, as, as, as) by a1 = R(a) and calla; the
real partof a in all algebras considered here. The multiplication rulesd lekemma2.4imply

(2.4) R(ab) = R(ba) for all a, b € A.

DEFINITION 2.5. Leta = (a1, as,as3,a4) € A. We define theonjugateof a, denoted
either bya or by conj(a) by

(2.5) @ = conj(a) = (a1, —az, —az, —as).
For the product:a we use the notation
(2.6) abss(a) = aa.

The importance of these two notions is expressed in theviglig lemma.
LEMMA 2.6.Leta,b € A. Then
1. ab=ba, a+a=2R(a),
2. absy(a) = aa =aa € R, absy(@) = absa(a),
3. aisinvertible if and only ifabsz (a) # 0.
4. Letabsy(a) # 0. Then

_1 a

~ abs; (a)

5. The functiorabss : A — R defined in 2.6) is multiplicative, which means
(2.7) absy(ab) = absa(ba) = absa(a)absa (D).
For invertiblea (2.7) implies
(2.8) 1 = absy(aa™') = absy(a)absy(a™1).

a%—i—a%—i—a%—i—ai for a € H,
at +a3 —a3 —a3 fora e Heoq,
6. absa(a) = 33 53
aj —as5+a3—ai fora e Hpe,
a? —a3 —a3+a3 fora € Heon.
Proof. See [L1]. d
Since similarity is an important concept in our investigative will repeat the essential

features.

2.1. Similarity and quasi similarity. We start with the principal definition.
DEFINITION 2.7. Leta,b € A. Thena, b are calledsimilar, denoted by: ~ b, if there
is an invertibleh € A such that

(2.9) h=tah =b.
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We note that similarity is an equivalence relation. We d¢adltransformation — h~'ah
similarity transformatiorof a. We have a very simple lemma.

LEMMA 2.8. Leta,b € A. 1. Leta,b be both real. Them, b are similar if and only if
a, b are identical. 2. Let: or b be real but not both. Them b are not similar.

Proof. Real elements commute with all algebra elements. The degfimuation Z.9)
under assumption 1. implies= b. In the second case it also implies= b. Because one of
the two elements, b is not real and the other is real, the equatios b can never be valid in
case 2. d

THEOREM2.9. Leta, b € A be similar. Then,

(2.10) R(a) = R(b), absz(a) = absa(b).

Proof. We putb = h~tah and apply 2.4): R(h~tah) = R(hh~ta) = R(a) = R(D).
We apply €.7) and @.9): absy(h~tah) = absy(h~1)absa(h)absa(a) = absa(a) = absa(b).
d

The main question is now, whethe2.{0 implies similarity. Here we refer tol[l,
Lemma 4.3]. This lemma says:

(2.11) Leta,b € Heoq\R and let .10 be valid. Theng ~ b.

The proof is by matrix arguments and it would also applyHtg.. and toH,,, instead of
H..q. However, for quaterniorid, (2.10 is a necessary and sufficient condition for similarity
without any restriction. See als@]] for coquaternions, where the conditianb ¢ R is
omitted.

THEOREM 2.10. Leta,b € Heoq\R anda ~ b. Then, a similarity transformation,
expressed by an invertible € Hc,, can be found by computing the kernel (= null space) of
the homogeneous, singular matrix equation
(2.12) Mh=0

3

whereM is the reald x 4 matrix equivalent to Sylvester’s equation
(2.13) ah —hb =0, hinvertible

See [L2, 15]. The kernel ofM can be computed by applying a singular value decomposition
(svd) to the matrixM. Details can be deduced from Examplé 2

Leta € A andabsy(a) — (R(a))? = 0. In such a situation it is sometimes desirable,
that (R(a),0,0,0) anda are in the same similarity class. This can be achieved bytlig
changing the definition of similarity to the condition whishgiven in ¢.10).

DEFINITION 2.11. Leta,b € A. The two elements, b are calledquasi similar abbre-
viated asz < b, if (2.10) is valid. The quasi similarity classes will be denoted dy.

Quasi similarity is also an equivalence relation. It is clémat similarity implies quasi
similarity and that

[a] C [a]4 foralla € A.
See [L1] for more details.

EXAMPLE 2.12. Leta = (1,5,4,3) € Heoq andd = (1,1,1,0) € Heoq. According to
(2.11) these elements are similarlf,, and they are both quasi similar¥ifa) = R(b) = 1.
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We will furnish a direct proof ofi ~ b by finding the corresponding similarity transformation
explicitly by using Theoren2.1Q For M we find in this case (seé }])

0 -4 3 3
4 0 3 =5
(2.14) M = 3 3 0 —6
3 -5 6 0

This matrixM has rank 2 and therefore, the corresponding kernel has diore® which im-
plies that the kernel contains invertible elements. In ptdénd the corresponding similarity
transformation, we apply a singular value decompositidaviated svd) tdVI and obtain
svd(M) = [U, S, V] (using MATLAB notation) wherdJ, S,V are agaii x 4 matrices.
More details can be found in the classical reference by HathJahnson,q, p. 414]. The
last two columns oft” contain two linearly independent vectors spanning the éderifhis
result can be found in standard textbooks, lik8, [p. 311]. These two vectors are here

—0.682852186027397 0.454741481629430
0.338967359220833 0.635870976388783
0.623898892364393 0.302521739509271

—0.171942413403282  0.545306229009106

(2.15) [h1, ho] =

As elements oH...q, 11, ko are invertible. Now we make the following numerical checks:

hi‘ah, = (1.000000000000000, 1.000000000000003, 1.000000000000003, —0.000000000000004),
hy ah2 = (1.000000000000001, 1.000000000000000, 1.000000000000004, —0.000000000000001),
hibhi" = (1.000000000000000, 5.000000000000009, 4.000000000000004, 3.000000000000008),
habhy ' = (1.000000000000000, 5.000000000000002, 4.000000000000004, 2.999999999999999),

and the check is affirmative, andb are indeed similar ift.., within computer precision.
The computations were carried out by MATLAB.

3. Finding zeros from similarity classes.We will treat the following problem: Given
a polynomialp over A and a quasi similarity clags], C A, which is known to contain a
zerozy € [z]4 of p. How to find the zero. The main idea is to write the polynomiéh a
formally linear form. For this purpose, we use the identity

(3.1) 2% = —absy(2) + 2R(2)z,

which is valid in.A and inH. It implies

(3.2) =+ Pz, kB €R,
(3.3) ap=1, Bo=0,
(3.4) Qg1 = —absa(2) Bk, Br1 = ok +2R(2) Bk, k> 0.

This means, that for a givene A the representatiorB(2) is easily computable. For a first
application of 8.2) in H see 0. If we restrict our attention to one quasi similarity clas,
then the coefficientay, 8x, k > 0 are constant on this class. This follows fro(0. If we
apply 3.2 to all powers in the polynomial we obtain

n n

(3.5) p(z) = Z apz® = Z ag(ap + Brz) = Z apay + <Z ﬂk%) z=:A+ Bz

k=0 k=0 k=0 k=0
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andA, B € A are constant on the quasi similarity cldsk,. Though we have writterl, B
without arguments, they depend enMore preciselyA, B depend orabsy(z) and on¥(z)

but not fully onz.
THEOREM 3.1. In the representatiop(z) = A + Bz, let B be invertible on the given

class[z], and let[z], contain a zeroz, of p. Then,
(3.6) zo=—-B A

is the only zero op in [z],. If A = B = 0, then all elements ifx], are zeros op.

Proof. From @3.5) it follows, thatp(zp) = 0. Let there be two distinct zerog,, z1 € [z],.
Then,p(z9) = A+ Bzy = 0 andp(z1) = A + Bz, = 0, which impliesB(zp — z;) = 0. If
B is invertible, therzg = z; would follow, a contradiction. Thud3 is noninvertible if there
are two distinct zeros, , z; € [z],. The last part is obvious. 0

THEOREM 3.2. Let B # 0 but B be noninvertible on the given clagg, and let|z],
contain a zero op. Assume that there is a real constansuch that

(3.7) A+~B=0.
Then, for all reala the quantity
(3.8) 20 =abB + 7

is a zero ofp, provided,zg € [z],.
Proof. We have

p(z0) = A+ Bzg = —yB+ B(aB +~) = —yB+aBB +vB = 0.

The quasi similarity:, ~ = has to be checked separately and will restrict the possiies
of a. a

LEMMA 3.3. Letin TheorenB.2R(B) # 0. Then, there is at most orewhich defines
a zeroz which is contained in the quasi similarity clags,.

Proof. Since the real part is fixed in the whole quasi similarityssla],, the equation
R(20) = R(aB +v) = aR(B) + v allows several real parts for varying This is a
contradiction. O

DEFINITION 3.4. Zerosz, of p with the property, that there is no other zero[ip],
are calledsolated Zerosz, with the property, that all elements ji], are zeros are called
hyperbolic See L1, p. 139]. Zerosz, which are computed by formul&©) are called
unexpecteaderos.

It should be noted, that the similarity classeseither contain infinitely many elements,
in this case[z] does not contain real elements, [o} consist of a single element, which is
possible only ifz € R. However, inA there are no quasi similarity classes which contain
only one element.

Examples related to the Theoref4, 3.2will be presented later.

4. The companion polynomial and its roots. Conjugation plays an important role in
the following definition.

DEFINITION 4.1. Letp be a polynomial of degree of the form defined inZ.1). The
real polynomialy of degree2n defined by

n 2n min(4,n)
(4.1)q(2) = Z a_jakszrk = Zbgzg, by = Z ajar—; €R, 0 <0< 2n,
J,k=0 £=0 j=max(0,£—n)
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is called thecompanion polynomiaif p.

In [11, Lemma 6.2] it is shown that the coefficieriis defined in ¢.1) are real. We
will keep the word zerosfor solutionsz of p(z) = 0 and will use the wordroots for the
solutions ofg(z) = 0. Sinceq has even degre2n and the coefficients, of ¢ are all real,
there is an even numben; of complex roots and an even numRer, of real roots such that
2(n1 + n2) = 2n wheren, = 0 orny = 0 is possible. And it is clear, that the complex roots
always appear in pairs of complex conjugate roots. Theraésimportant property of,
which will be used on certain occasions, namely

(4.2) q(z) = p(z)p(z) forall z € R.

It follows, that a real zero gf will be a real double root of since the reals commute with
all algebra elements. Note, that:)p(z) = 0 does in general not imply(z) = 0. In another
paper, [L1] we have called a with p(z)p(z) = 0 a singular pointof p. The companion
polynomialg, though not with that name, was already introduced 1941 bemNi[Lg]. In a
later paper (2004) it was calldzhsic polynomiaby Pogorui and Shapiro2().

THEOREM 4.2. Let g have at least one pair of complex conjugate roots u + vi,

wherev > 0. Define

(4.3) u+wvj for A= Hye,

{u—i—vi for A = Heoq,
S =
u+ vk for A= H,.

Then in[s], there may be a zero gfwhich can be found by applying one of the Theor8rits
or3.2

Proof. ForH the proof is given in14]. In [11] it is shown forA = H., that under the
given conditions][s|, contains a zero of. The remaining part follows from Theore®l
The proof given in 11] can easily be extended to the remaining two algebias, Hcoy.
O

Since there are at most < n pairs of complex conjugate roogsmay have at most,
zeros derived from complex zerosg@fForH, the paper14] contains a complete description
on how to find all (maximally:) zeros ofp overH. An extension to two-sided polynomials
overH was given in [L3].

THEOREM4.3. Let the companion polynomialof p have at least one pair of real roots,
r1, 1o and assume (without loss of generality) that> r». Define

1

(4.4) U= %(ﬁ + T2)7 vi= 5(7"1 - T2)v

(4.5) u—+vi, oru+ovk for A= H,ec.

{u—i—vj, oru+uvk for A= Heq,
5=
u+ i, oru+wvj for A= Hen.

Then in[s], there may be a zero gfwhich can be found by applying one of the Theor8rits
or 3.2 If r; = ry, then,s = u = r; is a real zero ofp and possibly also an unexpected zero
of p. See Examplé.9.

Proof. The proof has to be made under three assumptions: is invertible, ii: A =
B =0, iii: B # 0andB is not invertible. Assume; > r,. Though we have writted, B
without an argument, botH and B depend ors and both are constant ¢s,. We will show
thats and s, are quasi similar which means th& 10, mentioned in Theorer.9is valid
for s, so. The real part of is R(s) = u, andabsy(s) = u? —v? = (u+v)(u —v) = riryin
all three algebrasl. We have to show, that
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(4.6) R(so) =u, absa(sg) = u? — 0% =rirg,

and assume tha® is invertible. We have

R = Y
absy(sg) = (—B 1A)( A= ZE: Eg; '

We note, that the powers®, k > 0 of s have the form

4.7) sk = { up, +vpj  for A = Heoq,

up +vpi for A = He. and forA = Heop,
where in all algebras

k k k
ry +r ry —r
(4.8) wp= Ao g = A

L k=0,1,...

This can be shown by induction usifig= 1 in Heoq andi? = 1in Hyee and inHeoy. If we
compares® from (4.7) with s* from (3.2) we obtain in4

Oékzuk—uv—k, Br = Sy
v v
From here,
n n n U n
(= 22) o =S
Z Z U u ap = UrQr 0 kaak,
k=0 k=0 k=0 k=0
1 U
= 5(p(r1) +p(r2)) — 5= (p(r1) — p(r2))
2 2v
o — sz(rl) * ry— rzp(?"g),
" 1 & 1
B fmd = — fmd — .
I;Jﬁkak " ]gz—ovkak 1 — 7 (p(r1) —p(r2))

These formulas imply, by using (2) frequently
absy(A) = AA

— (T1_j2T2p(r1) + T_l TQp(Tg)) (Tl__rzwp(rl) o TQP(TQ))
- ( "2 )Qp(rl)p(rl) + ( & )Qp(rz)p(rz) +

KL —To TKE —T9

* (Tl_jg,,2> (n - m) p(ri)p(ra) + (n n TQ) (m—_’“?w) p(r2)p(r1)

=2 (ﬁ) R (P(Tl)p(Tz)) :
absy(B) = BB
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_< . )2(p(ﬁ)p(ﬁ)+p(T2)W—2§R(p(T1)W))

M — T2

=2 (rl i T2>2 R (p(rl)m) ,

P(r1) - p(r2) ) [ —2p(r) + —2—p(rs) ) +
2 rL—=r

2 TL— T2
1 ry ——
p(r) +

— — 1
BA+ AB =
r —

")) () - plr2)

TKE — T2 TyE —T9 T1
. 1+ 7o —
= 27(7,1 - s (p(rl )p(rg)) .
Finally, also usingZ.4)
absa(A) BA + AB
=rir —— =
absy(B) 2 abss(B) ’

which coincides with4.6). The last part of the theorem is obvious. O

The motivation for the use of the formulas4), (4.5 is taken from [LO, Table 5], where
under certain conditions the two eigenvalues 8fxa2 matrix are the sum and the difference
of two real numbers.

DEFINITION 4.4. Let a pair of real roots;, r, or a pair of conjugate complex roots
u + vi of the companion polynomial have the property that it defines a zegoof the given
polynomialp by applying one of the Theoremds2, 4.3. Then, we say that the pair of roots
of ¢ generates zeros, of p.

THEOREM4.5. Letp be a polynomial of degree as defined inZ.1) over.A. Then, the
companion polynomiaj of p generates at most(2n — 1) zeros ofp.

Proof. Let the companion polynomigl(defined in ¢.1)) have only real roots, such that
their number i2n. Then, the number of real pairs(§') = 2n(2n — 1)/2 = n(2n — 1) and
according to Theorem.3, each pair may generate a zergpofin Example7.1on p.13with
a polynomial of degree = 3 we will show that the upper bourz[2n — 1) = 15 of zeros
will be attained. Another example of a polynomial of degreeith the maximum number of
zerosn(2n — 1) = 28 is presented in Examplé5on p.13. d

We can more precisely estimate the number of zergsibthe companion polynomial
has2n, (nonreal) complex roots arith, real, simple roots.

THEOREM 4.6. Let p be a polynomial of degree over A and let the roots of the
companion polynomiaj bery,ry, ..., re,. Assume that the firstn; roots are (nonreal)
complex and that the remainirn, := 2n — 2n; roots are real and simple. Then, the
number of zeros qf is

2n — 2nq

(49 #{z:p(z)=0}<n;+ ( 5

) =n1+ (n—n1)(2n—2n; — 1),
where all quasi similar zeros are counted as one zero. Thermanr,n(2n — 1), is attained
for n; = 0, when there are no complex rootsqf

Proof. Follows from formulas4.3) and @.5) in Theoremst.2, 4.3 In (4.3 there are at
mostn; complex roots with positive imaginary part, and %) there are at mos(tzn_rf"l)

real pairs. O
EXAMPLE 4.7. We start with an extremely simple example. Let

p(z)=d—2, z,deA
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Then, the companion polynomial is

q(2) = 22 — 2R(d) + absa(d)

and the zeros of areR(d) £ \/(R(d))? — abs(d). The formally linear form o is
p(z)=A+Bz;A=d,B= -1,

and A, B do not depend on and B is always invertible. Thus, independentofve have
20=—AB ' = —d(-1)"' =4,

andz is an isolated zero gf.
EXAMPLE 4.8. Let

p(z)=(z—1)(z—2)=2> -3z +2
= (—absa(2) +2) + (2R(z) — 3)z =: A(2) + B(2)z
be a polynomial oved. The companion polynomial is in all algebras H
q(z) = 2" —62° + 1322 — 122 4 4,

and the zeros of arel,1,2,2. There are three distinct real pais 1), (1,2), (2,2). We
apply Theoremt.3and find for the the first and the last paie= 1, s = 2, respectively, and
A(l)=1,A(2) = —2,B(1) = —1, B(2) = 1. Which implies

so=—B(1)"'A(1) =1, so=—-B(2) tA((2) =2,

and both zeros are isolated, which is no surprise. Howenéi i, the pair(1,2) defines,
with the same theorem,= 1 (3 + j) or s = 1(3 + k) and in both cases we have= B =0
and the above mentioned (similar) zeros are hyperbolicszéiousp overH.,q has 3 zeros.
The same is valid ifil,,.. and inH.,, if we apply Theorenat.3 correspondingly.

We will furnish an example which shows by the application bédrens.2the existence
of unexpected zeros.

EXAMPLE 4.9. Fora € Abuta ¢ R and(R(a))? — absa(a) = 0 we define
(4.10) p(2):=2* —2az+a®
(4.11) = (—absy(2) + a?) + 2(R(2) — a)z =: A(absy(2)) + B(R(2))z.

Itis easy to see thai(a) = 0. In this case the companion polynomial is
q(2) = (z — R(a))".

It defines only one pair of real roof&(a), R(a)) and the evaluation ofl andB ats = R(a)
yields

(4.12) A= —absy(R(a)) + a® = —=(R(a))® +a*, B =2R(a) —a).

LEMMA 4.10.In this example we have

B # 0,R(B) = 0, B noninvertible A = —%(a) B.
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Proof. The first two properties follow from the last part @f.{2. For the third one we
have BB = 4(R(a) — a)(R(a) — @) = 4((R(a))* — R(a)(a + @) + aa)
= 4(R(a))? — 2(R(a))*> + (R(a))?)) = 0. Thus,B is noninvertible. Finally—R(a)B =
—2R(a)? + 2R(a)a = —RN(a)? — absa(a) + 2R(a)a = —R(a)? + a® = A. O

This lemma implies that Theoreg2is applicable which shows that for all real

20 = aB + R(a) = 2a(R(a) — @) + R(a)
is a zero ofp. Leta = (a1, az, as, as). Then the zeros have the form
20 = (a1, aas, aasz, aay) forall o € R.

Thus, they are all quasi similar @ = R(a). However, not all elements quasi similar to
R(a) belong to that quasi similarity class. The unexpected zeoosist of an infinite subset
of [R(a)], but do not exhaust this set.

It should be noted, that the similarity classgelseither contain infinitely many elements,
in this case[z] does not contain real elements, [o} consist of a single element, which is
possible only ifz € R. However, inA there are no quasi similarity classes which contain
only one element.

5. All zeros of p are generated by roots ofg. We will show that all zeros of) are
generated by roots @f

THEOREM5.1. Letp have a zera, where the similarity clasgs,] contains an element
of the form

s :=u +vi, if pis a polynomial ovetl.oq,
s := u + vj, if pis a polynomial oveH,..,
s := u + vk, if pis a polynomial ovef,.,,, v > 0in all cases

Then there exists a (nonreal) compleguch thaty(s) = 0 ands generates.

Proof. Theorem 6.10 for coquaternions ihl], which can be adapted to the other two
algebradl,,cc, Heop. ad

In the paper 11, p. 146] we have written with respect to the algebra of cogunédns:
“The previous theorem tells us that we can find all zerop @mploying the companion
polynomial provided that the zero has a complex number irdpsivalence class. ... but
all others cannot be found.” This is now not true anymore. Véeadle to find all zeros by
employing the companion polynomial, and the gap is close@hgorenbt.2

THEOREM5.2. Letp have a zera, where the similarity clashs,] contains an element
of the form

s :=u+vj, if pis a polynomial ove,
s := u + vi, if pis a polynomial ovei,,.. or overH..,, v > 0in all cases

Then, there exists a pair of real, distinct roets r» of ¢ which generates,.

Proof. In all three algebras it is easy to retrievérom sy uniquely. And the equations
(ri + 12)/2 = wu, (rn — r2)/2 = v have the unique solutiom; = wu + v,
ro = u — v. For the further proof we will use an identity for the compampolynomial
g taken from [L1, Formula (6.3)] which reads

q(2) = absy(A) + 2R(BA)z + absy(B)z2.
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For the coefficients of this real quadratic equation we in#er results from the proof of
Theorem4.3. Then, the standard solutions ofgf:) = 0 arez = r; andz = ro. Thus, the
real pairry, 7o generates,. O

CoROLLARY 5.3. All unilateral polynomials of degree overHecoq, Hyecc, Heon have at
mostn(2n — 1) zeros, which means that there are at mo&tn — 1) similarity classes which
contain zeros.

Proof. In Theorem4.5we have shown that a polynomial may haM@n — 1) zeros. In
Theorems.1, 5.2we have shown, that this number cannot be exceeded]

6. An algorithm to find all zeros of polynomials over A. In order to find all zeros of
a given polynomiap over A follow the steps of Algorithn®. 1

ALGORITHM 6.1. Algorithm for finding all zeros of polynomiajsover A, defined in
(2.1) by means of the companion polynomial.

1. Letag,as,...,a, be the coefficients of the polynomialover A. Assume that,,
is invertible.

2. Define an empty list of zeros pf

3. Compute the real coefficientg, c1, . . ., co,, 0f the companion polynomiaglby for-
mula @.1).

4. Compute alkn real and complex roots @fby a standard routine.
f or all complex roots: + vi with v > 0 of ¢ do

5. Define the algebra elemeniot = (u, v,0,0) if A = Heoq.
6. Define the algebra elementot = (u,0,v,0) if A = Heec.
7.  Define the algebra elementot = (u,0,0,v) if A = Heop.
8. Computed, B atroot by using formula 8.5).
9. Apply Theorems$.1, 3.2
10. Iftheresultis a zersy, addsy to the list of zeros op. Also note the type of zero

(isolated, hyperbolic, unexpected).
end for
f or all real pairsry, > of the roots ofy do [do not distinguish betweefry, )
and(TQ, Tl)]
11.  Defineu = (ry +r2)/2; v = abs((r1 — r2)/2);
12.  Define the algebra elementot = (u,0,v,0) if A = Hcoq.
13. Define the algebra elementot = (u,v,0,0) if A = Hjc.
14. Define the algebra elementot = (u, v, 0,0) if A = Heop.
15. Repeat all steps fro to 10.
end for
The result of this algorithm is a list of zeros pfvhere the number of entries may vary from
0ton(2n — 1). The list may contain multiple entries.

REMARK 6.2. In order to produce an executable program from Algoriéhl the fol-

lowing computational steps must be possible:

1. Adding and multiplying algebra elements

2. Finding the companion polynomial

3. Finding roots of real polynomials

4. FindingA, B

5. Finding inverses of algebra elements

6. Evaluating a polynomial oved at an algebra element
All these steps can be easily accomplished if one makes uthe obverloading technique
offered by MATLAB.
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7. Examples. We present a few numerical examples.

ExamMpLE 7.1. For the coquaternionic polynomjabf degree 3, defined by the coef-
ficients as = (2,2,-1,0); a2 = (=1,0,-5,-1); a1 = (=4,-5,1,1); ap = (2,—2,2,3) we
have presented 8 zeros inl] Table 10.1]. In this case the companion polynomiaf degree
six is defined by the coefficientg = 7, —14, —59, 24,61, —6,by = —5 and it has exactly
6 pairwise distinct real zeros. With this paper we know, thate must be 15 zeros pf In
Table7.2 we present the missing 7 zeros. The other examples 10.24adri(L1] have the
correct number of zeros.

TABLE 7.2. Seven missing zeros of example 10.11if |

1.410018698387151,  40.927688450784920, —26.484628029183256, —31.296139541593462
2.078329585493254,  35.227789879357942, —23.037052468108019, —26.708143691872522

1.780207170581877, —3.512185413662750, 3.899454035433289, 1.136051036343325
—0.820915616403146, —0.132277571822474, 0.994132668916126, —0.607528109039788
—1.119038031314515, —0.708374333154589, 0.481092542977948, —1.004459188532533
—0.331689112894335,  70.975467125897083, —43.119928985136582, —56.379387168520203
—0.629811527805284, 0.558924803050916, —0.631505659586322, —0.225026759123903

If we measure the error of the zerosf Table7.2 by

bl

el

)

where|| - || is the euclidean norm iR*, then in all cases < 10~1°,

EXAMPLE 7.3. We consider a slightly altered polynomial iy, namelyn(z) =
p(2)(z—1), wherep is the polynomial defined in Exampfel We expect the same zerogof
as before with the additional zeto= 1. However, the companion polynomighas degree 8
and could define maximally 28 zeros. The coefficientg afebs = 7, —28, —24, 128, —46,
—104,68,4,bp = —5. The computed roots;, 1 < j < 8 of ¢ are all real and the double
root 1 was listed as; andrg. For the case$rs,r;), (r6,75),j > 6, we foundA + B =
0,A #0, B # 0, B notinvertible and®(B) # 0, such that Lemma.3applies and indicates
that these pairs do not define a zergof he pair(5, 6) defines the zerd and all other pairs
define the zeros known from Examplel. Altogether there are 16 zeros as expected.

EXAMPLE 7.4. The above polynomialin algebraH,,.. defines a companion polyno-
mial ¢ with two real roots and two pairs of complex conjugate rotitss,p has three zeros.
The polynomialr(z) = p(z)(z — 1) in H,e., Wherep is defined in Exampl&.1of degree 4
has 4 zeros.

EXAMPLE 7.5. The same polynomialin H.., defines a companion polynomiaivith
4 real roots and one pair of complex conjugate roots, thuss 7 zeros. The polynomial
m(z) = p(z)(z — 1), again inHe,,, wherep is defined in Exampl&.1 of degree 4 has 8
zeros.

We will end this section with a rare species of polynorpinbmely one which has degree
n = 4, where the corresponding companion polynomikhs only real roots.

EXAMPLE 7.6. LetA = H.,q and

(7.1) p(z) = (1,1,-2,0)2" + (4,2,0,3)2° + (=4,0,2,4)2% + (-4, -2, -4,0)z + (3,2,1,-3).

The polynomial is not monic, but the highest coefficient igirible inH.,,, and one could
divide all coefficients by the highest coefficient. But thised not effect the zeros pf The
companion polynomial is

q(z) = —22% + 1227 4 1125 — 8425 — 302 + 9823 — 242 + 3,
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and the 8 roots of (byr oot s of MATLAB) are

rp = —2.111197229212920,
rog = —1.264898455994286,
r3 = —0.580911934832195,
Ty = 0.134343403046716,
rs = 0.584463189626376,
re = 0.767284309708206,
Ty = 2.860897723805642,

5.610018993852465.

T8
Applying Theorenvt.3we obtain 28 possible similarity classes defined by

Uj ke = 0.5(7’k + Tj) + 0.5(7’k — Tj)j or O5(Tk + Tj) + O5(Tk — ’I’j)k,
7=12...8k=7+1,74+2,...,8

which may contain zeros. Checking these similarity clatse$heorem3.1, we find that
the formally linear polynomial formp(z) = A + Bz has in all cases the property thatis
invertible which means that all 28 pais;, ), j < k, define a zero op and that all these

zeros belong to a similarity class of the fofa+- v/—bj], b < 0.The zero of corresponding
to the pair(rq,r2) is

1 = (—1.688047842603601, —0.168989609556503, 0.405751318682548, 0.207313190398666),
and the zero corresponding to the pair, rs) is
xos = (4.235458358828954, —7.292058894146280, 6.971671162937881, 2.541523372096755).

This example shows, that the maximal number of zen¢3p — 1) = 28 is attained.

Forn > 4 we were not able to find coquaternionic polynomials of degreehere the
corresponding companion polynomiglof degree2n had 2n real roots. This implies the
following problem: Givem > 4, can we find a coquaternionic polynomial of degreeith
the maximal number of') zeros?

If one is interested in polynomials over commutative algsbone should consulR?,
11].

8. A relation to an algorithm by Serodio, Pereira, and Vitoria. The algorithm pub-
lished in 24] is taylored for the quaternionic case. It is based on thepaorion matrix of a
monic polynomial ovef

(8.1) p(2):=z2"+a, 12"+ -+ ap, z,a; € H, j=0,1,...,n—1, a9 #0

and the quaternionic companion matrix is

0 0 0 —ap

1 O O —aq
(8.2) C .=

0 0 . 0 —anos

0 0 ... 1 —ap_

Now, the2n real or complex eigenvalues @ are determined by transferring to a real
2n x 2n matrix. These eigenvalues are used to apply Niven’s algoriesulting in the zeros
of p. For details see4].
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The results of our observations are put into the followingjeoture.

CONJECTURES.1. Let p be the polynomial defined i8.(1) overH or over. A. Then the
2n real or complex eigenvalues @ coincide with the th&n real or complex roots of the
corresponding companion polynomialjof

This conjecture is based on many numerical experimentsfaritie degreer < 3 we
can prove it.

This means, that the algorithri4] can also be extended to algebrasdrand the algo-
rithms [11, 14], and [24] produce the same zeros, provided Conjec8uias true.

And this connection between the companion matrix and thepamion polynomial also
justifies the name companion polynomial.

9. Epilogue. The algebra elements considered here have an isomorphieima x 2
matrices where details are given itl] including the form of the matrices. Which means that
the whole paper could have been based on matrix equatiorsddthils would be different,
but the main results would be the same. As authors we had t@ malecision and our
decision favored algebra elements.

In [11] one also finds that the three algebrhare isomorphic. Here one also has to make
a decision. If a certain problem has to be solved in two distiout isomorphic algebras, say
A1, and. A, one can apply the isomorphism rules to reduce the problenigebka.A; to
algebraA; and solve it there. The solution has then to be be retransitm algebrad..
Another technique which we prefer, is the adaption of theladgic rules to the corresponding
algebras. In our computer program we could adapt the algehries to the rules for one
specific algebra just by setting one integer variable to treesponding algebra number.
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