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NIVEN'S ALGORITHM APPLIED TO THE ROOTS OF THE COMPANION
POLYNOMIAL OVER R* ALGEBRAS

GERHARD OPFER

Abstract. This paper will contain an extension of Niven’s algorithm 1841, which in its original form is
designed for finding zeros of unilateral polynomigl®ver quaternionsll. The extensions will cover the algebra
Hoq of coquaternions, the algedfé,,e. of nectarines and the algetth.., of conectarines. These are nondivision
algebras irR*. In addition, it is also shown that in all algebras the mofiadilt part of Niven's algorithm can easily
be solved by inserting the roots of the companion polynomiafl p, with the result, that all zeros of all unilateral
polynomials over all noncommutative* algebras can be found. In addition, for all four algebras rtreximal
number of zeros can be given. For the three nondivision egebesides the known types of zeros: isolated,
spherical, hyperbolic, a new type of zero will appear, whidgh be calledunexpecteaero ofp.

Key words. Zeros of polynomials over noncommutati# algebras, Isolated, Spherical, Hyperbolic, Unex-
pected zeros.
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1. Introduction. This paper will contain a revival and an extension of Nivdni&orical
paper of 1941,18]. Niven discussed in his paper the possibilities of findihg zeros of
polynomialsp with quaternionic coefficients by dividingby a quadratic polynomial with
real coefficients. The result of this division can be put it form

(1.1) p(2) = q(2)r(z) + Ro + R1z,

wheregq is thequotient and R + R; z is theremainder after divisiorffor short:remaindej.
If pis a polynomial of degree > 2, thenq is a polynomial of degree — 2. The extension
mentioned refers to the possibility to apply Niven's al¢jom also to polynomials with other
coefficients than quaternionic coefficients. We will rettorthe details later in this paper.

We will use the following notationsN set of positive integers® set of real numbers,
C set of complex numbers4 one of the four algebral, Hcoq, Hyec, Heon defined as
algebras ifR*, where an algebra iiR* is the linear spac®&* equipped with an associative
multiplicationR? x R* — R*. H is the field ofquaternionsdiscovered 1843 by Hamilton,
which explains the letteH. For Hamilton see (. H.., is the algebra otoquaterions
sometimes also called algebra split quaternionsintroduced by Cockle,Z, 1849]. See
also B]. The algebradl,,.., H.,, are the algebras afectarines, conectaringsespectively,
introduced by Schmeikal2f, 2014]. The new algebrds..q, Hyec, Heon belong to the class
of nondivision algebraswhich means that there exist noninvertible elements wiitfler
from the zero element. All four algebréis Hcoq, Hiee, Heon are noncommutative. Algebras
in RV, N € N are often calledyeometric algebras See ]. For algebras in general see
Garling, [b, 2011] and also Gurlebeck and Sprossig, 1997]. More details about these
algebras will be given later in this paper.

Niven's algorithm, L8, 1941] is tailored for finding zeros of unilateral polynomsiwith
coefficients from the fieldl of quaternions. All polynomials to be treated in this papélk w
have the unilateral form

n
1.2) p(z) = Zajzj, z,a; € A, 0 < j <n, ag,ay invertible
J=0
fUniversity of Hamburg, Faculty on Mathematics, Informatiand Natural Sciences [MIN], BundestraRe 55,
20146 Hamburg, Germanger har d. opf er @ini - hanbur g. de
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wheren € N is thedegreeof p. The existence of zeros of polynomials of a general type
with coefficients front is guaranteed under a very mild condition by a theorem ofhibibeg
and Niven, §, 1944]. Already in Niven's paperB, 1941], there is a theorem stating that
unilateral, quaternionic polynomials have zeros, wheselts by Ore, 19, 20] are used. For
polynomials with coefficients from the algebris,,, Hyec, Heon the existence of zeros
cannot be guaranteed. S€&[13, 21]. E. g. the polynomiap(z) = 22 — (1,2, 3,4) has no
zeros inH,.. The form of the algebra elemefit, 2, 3, 4) is explained in 2.1).

The novelty of this paper will consist of two parts. 1. We vghow that the roots of
the realcompanion polynomiat (to be introduced in a later part of this paper as a com-
panion polynomial of) will serve to solve the most difficult part of Niven’s algtimn and
2. we will show that Niven’s algorithm can be extended to tlgelrasH.,q, Hyec, and
Heon- In the course of this extension we will see, that a new typeeods arises, which will
be calledunexpectederos ofp.

That the roots of the companion polynomial serve as a toohtbdil zeros of a given
polynomial with coefficients fronHl was shown in I5, 2010], and for coefficients from
Heoqs Hiee, Heon Was shown in 11, 2016]. However, in the context ofL], 15 Niven’s
algorithm was not used.

2. Preliminaries. This part serves as an introduction into some technicas pdrich are
needed for the understanding. In particular, we will prées corresponding multiplication
tables for the new algebras. For simplicity we will denote ¢lements frord by

(2.1) a=(ai,a2,a3,a4),a; € R, 1 <j <4
The four units in4 will be denoted by
1:=(1,0,0,0), i:=(0,1,0,0), j=(0,0,1,0), k=(0,0,0,1).
With this notation it is also possible to write
a = a1 + asi + asj + aqk,

however, in most cases we will prefer the shorter notativargin (2.1). The first component
ay of a will be calledreal partof a in the notatiom; = R(a). We will identify (a1, 0,0, 0)
with R. Thus, a real element od will have the form(a1,0,0,0). The second component,
as Will be calledimaginary partwith the notatioru, = $(a), the third components will
be calledj-part with the notatiomus = $3(a), and the fourth component; will be called
k-part with the notatioruy = Sy(a).

LEMMA 2.1. In all four algebras.A, the real elements are the only elements which
commute with all algebra elements.

Proof. [11]. O

In a general, noncommutative algelirathe set of elements which commutes with all
elements of~ is calledcenterof G' and denoted b¢s. Thus, Lemma.1 could be written
asCyq = R.

The process of conjugation plays an important role. &ef (a1, a2, a3, a4) € A we
define theconjugateof a in the notatior or conj(a) by

(22) a= COHj(a) = (a’la —a2, —as, _a4)'
An important new function is

(2.3) absg(a) = aa
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implying absz(1) = 1 -1 = 1. In the following lemma several properties@fnj(a) and of
abss (a) are collected.
LEMMA 2.2.Leta,b € A. Then

1. R(adb) = R(ba),

2. ab=ba, a+a=2%R(a),

3. absa(a) =aa =aa € R, R(a) = R(a), absz(a) = abss(a),

4. ais invertible if and only ifabsz (a) # 0.

5. Letabsy(a) # 0. Then

a

absa(a)’

(2.4) at=

6. The functiormbs; : A — R defined in 2.3 is multiplicative, which means
(2.5) absa(ab) = absy(ba) = absa(a)absy(b).
For invertiblea (2.5 implies
(2.6) 1 = absy(aa™') = absg(a)absg(a™1).

7. Forabs, there are the following formulas.

a? +a3 +a3 +a3 foraeH,

at +a3 —a3 —a3 fora e Heq,

at — a3 +a3 —a? fora € Hye,
a3 — a3 — a3 + a3 fora € Heop.

(2.7) absa(a) =

Proof. See [L3]. d
Thus, inH we haveabss(a) = ||al|?> where|| - || is the euclidean norm iR*.

For completeness we present the multiplication rulesfforH..q, Hnec, Heon in Ta-
ble2.3

TABLE 2.3. The multiplication tables fdfl, H.oq, Huee, Heon-

H | 1 i j k Heoq | 1 i j k

1 1 i j k 1 1 i j k

(2.8) i i -1 k —j i i -1 k —j
j j -k -1 i j j -k 1 —-i

k k j i -1 k |k j i 1

anc | 1 i j k Hcon | 1 i j k

1 1 i j k 1 1 i j k

(2.9) i i 1 k j i i 1 k j
j j -k -1 i j j -k 1 -

k |k —j -—i 1 k |k —j i -1

For all algebrasA the realsR are a subalgebra of. HoweverC is a subalgebra only of

H and ofHoq.
EXAMPLE 2.4. Let

p(z)=224+1, zecHorz € Heq
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Apparentlyp(£i) = 0in H and inHc.q. See Tabl@.3 Letp(zy) = 0 for nonrealz, and let
h be an invertible element i or in H.,. We multiply equatiomp(z) = 0 by ! from the
left and byh from the right. This yields

htp(z0)h = h™t25h + 1 = (b t20h)* + 1 = p(h~'2z0h) = 0.

The equalityl = h~'1h follows from Lemma2.1. Thus, not only, but alsoh =z, A for all
invertibleh are zeros op, and, therefore, the number of zeroga$ infinite.

DEFINITION 2.5. Two elements, b € A will be calledsimilar, denoted by: ~ b, if
there is an invertiblé € A such that

(2.10) a=h"'bh.

The set of elements which are similar to a fixed elemeat.A is called thesimilarity class
of a and denoted biu].

Similarity is an equivalence relation. The number of eletaerf a similarity classa] is
either one or infinite. Itis one if and only if € R. If a ~ b in any of the four algebrad,
the transformatior € A which defines the similarity can be computed by a method given
in [11]. In Example2.4 [z] is a similarity class which consists only of zerogof

LEMMA 2.6.Leta,b € Aand leta ~ b. Then,

(2.11) R(a) = N(b), absa(a) = absa(b).

Proof. Apply Lemma2.2part1 and formula®.5) to a = h~'bh. d

THEOREM 2.7. Leta,b € H. Then @.1]) is a necessary and sufficient condition for
a ~ b. Let A # H, then @.11) is a necessary and sufficient condition for b under the
restrictiona, b ¢ R.

Proof. See [L5]. Compare also withZ3]. d

DEFINITION 2.8. INH¢oq, Hyec, Heon two elements;, b € A will be calledquasi similar

denoted by: < b, if (2.1]) is valid. The set of elements which are quasi similar to adfixe
is called thequasi similarity clas®f « and denoted bju],,.

Quasi similarity is an equivalence relation. Hhsimilarity and quasi similarity is the
same. Thus, if we, occasionally, use the term quasi sirtyilatso forH, similarity is meant.
In general, similarity implies quasi similarity and

[a] C [a],foralla € A, [a] = [a],if a ¢ Rand.A # H.

In Heoq the two elements = (a1,0,0,0),b = (a1, az, as, as) With abss(b) = a? are quasi
similar, but not similar. Two real elements are similar iflaanly if they are identical. Or, in
other words, a real and a nonreal element can never be similar

DEFINITION 2.9. Letzy be a zero of the polynomial. If in the quasi similarity class
[20]4 there is no other zero, then the zeypois called arisolated zeraf p. If all elements of
[20], are zeros op then for A = H the zeroz, is calledspherical For. A # H the zero is
calledhyperbolic

As we have seen, it may happen that all elements of a sinyileldss contain zeros of a
given polynomial, therefore, we cannot count zeros piecpibge.

DEFINITION 2.10. Letp be a polynomial over one of the algebtds Let there bex
guasi similarity classes, which contain at least one zego dhen we say that theumber of
zeros ofp is k.

LEMMA 2.11. Leta € A, where A is any of the four algebra®l, Hcoq, Hnec, Heon-
Then

(2.12) a ~ a.
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Proof. If a € R, thena =@ and .19 is valid. Leta ¢ R. Then,a ¢ R. The remaining
part follows from Lemma.2, part3 and Theoren2.7. O

From Lemma2.11we learn thai and—i are similar in all algebras. This implies that
according to Definitior2.1Q p of Example2.4 has one zero. Similarity for quaternionic
matrices was already considered by Wo5,[1936] and early contributions to quaternionic
matrices can be found in Brennet, L951]. and Lee,]7, 1949].

For more details related to this section s&g.

3. The companion polynomial. Let p be a polynomial of degree given as in {.2),
namely

n
(3.1) p(z) = Zajzj, z,a; € A, 0 <j <mn, ag,a, invertible
§=0

The introduction of the&eompanion polynomiadf p serves as a means to find all similarity
classes or quasi similarity classes which contain zerosepblynomialp. The companion
polynomial ofp, denoted by, will be a real polynomial of degre®. It is defined by

n 2n min(£,n)
(3.2) ¢(2) = Z a_jak,zj'HC = Zbgzg, by = Z ajar—; € R, 0 <0< 2n.
7,k=0 £=0 j=max(0,0—n)

For the quadratic case = 2, the coefficients of the companion polynomiah all noncom-
mutativeR* algebras are

by = absz(ag),
b1 = Ggay + arap = 2R(aga1),
(3.3) by = @paz + absa(a1) + azag = 2R(agas) + absa(aq),
by = aras + aza; = 2R(araz),
by = abss(as).

We will call the solutions of:(z) = 0 rootsof ¢ and will keep the nameerosfor the solutions
of p(z) = 0. The companion polynomialhas an even number (including zero) of real and an
even number (including zero) of complex roots. The nammpanion polynomiaias been
introduced in a paper by Janovska and OpfEs, P010]. It was introduced already by Niven,
1941, [Lg] without a specific name and also used by Pogorui and Sh&if, P2] under
the namebasic polynomial

The essential property of the companion polynomial is thdefines by its roots sim-
ilarity classes or quasi similarity classes which may ciontzros ofp. And outside these
similarity classes there are no zerogofSee L5, 13].

Let ¢ be the companion polynomial fgr wherec has degreen. Let the roots of: be

(34) P1,P25 - -5 P2k ClaCQv"'aCnfliv 5757"'7<n757

wherep;, j = 1,2,...,2x are the real roots, an§}, j = 1,2,...,n — x are the complex
roots with positive imaginary part of the companion polynalm. If x = n, all roots are real,
and if x = 0, all roots are complex and the number of complex roots witkitpe real part
is n. The existence of one real root implies the existence ofreratal root.
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4. Niven’s algorithm. We will give a short introduction of Niven’s algorithm1§,
1941] for determining the zeros of unilateral quaternigmtynomialsp over the field of
quaterniondl with n > 2, wheren is the degree gb. For the form of the polynomial see
(1.2 with A = H. Let

(4.2) r(z) =22 —2uz+v, u,v €ER, z € H

be a quadratic polynomial with real coefficientsy and with a quaternionic variable In-
stead ofr(z) we also writer(z; u, v) if we want to stress the dependence-ain u, v. We
note thatr defined in ¢.1) vanishes foru = R(z), v = ||2||*>. And r remains zero if
u = RN(20),v = ||20]|? for all zy € [2]. See R.11) in Lemma2.6. Thus, instead of inserting
u = R(z), v = ||z]|%, it is sufficient to insertu = R(zg), v = ||20/|?, wherez, is sim-
ilar or quasi similar toz. Then, Niven in 1941,18, p. 655] writes (with slightly different
terminology)

(4.2) p(2) = q(2)r(z;u,v) + Ro(u, v) + Ra(u,v)z,
whereRy(u, v) + R1(u,v)z is called theemainder after divisionfor shortremainderof p.
In order to find the representatiof.p) let ¢ be defined by

n—2

(4.3) q(z) = bj2d, 2,b; €H, 0 < j <n—2,bg # 0,by_2 #0,
Jj=0

and letu, v € R. Comparing the two sides of(9) yields
(4.4) by = .
(4.5) Ifn>2:
bn73 =ap-1+ 2Ubn72a
bpk-1= On—k+1 T 2ubp— g — Ubn—k+17

k=3,4,5,...,n—1.

The last loop is empty fon = 3. By this recursion, alby, k = n —2,n—3,...,1,0 are
determined uniquely, in this order. For the remainder tenm®btain

ar + 2ubg forn = 2,

(4.6) RO = ap — 'Ub()a Rl = { a 4 2ub0 — Ubl fOI‘ n > 2.

Actually, we only need the remainder term®g, R, most of the coefficients af are not

needed. LeR?; # 0. Then the vanishing of the remainder can be expressed by

Ry

4.7 z=-R;7'Ry = ———— Ry.

If Ry = 0 the vanishing of the remainder impliég = 0, and in this casg(z,) = 0 for all
20 € [#].
LEMMA 4.1.For the space of quaternioris there is the equivalence

(4.8) p(z) = q(z)r(z;u,v) + Ro(u,v) + R1(u,v)z =0 < Ro(u,v) + Ri(u,v)z = 0.

Proof. Niven, [18, p. 655]. O



Niven’s algorithm applied to the roots of the companion pofyial 7

It follows from (4.7) that

—— — R
Z=-RoR;'=—Ry

! || R [?

and
1 _

(49) 2u = 2%(2) =zZ+Z=- ||R1||2 (RlR() + R()Rl),

Rol?
4.10 = |22 = 2z = IR

Equations4.9), (4.10 require, therefore, to find, v € R such that
u 2 P N
(4.11) U(v) = 2u||Ry||> + BiRo + RoRy = 0,
u
(4.12) V(1) = 1R = (1 Roll? = 0.

Niven writes ([L8, p. 654]) with respect to these two equation: “... we give déhoé for
obtaining the roots of [the quaternionic polynomial in ctigag, which is not very practical
in the sense that it involves the simultaneous solving ofriea equations...”.

In Section5 and in Sectiors we will show how to circumvent the described difficulties.
For A = H the real roots ot directly define real zeros gf and the (nonreal) complex roots
¢ = a + bi define a similarity class which contains a zeropof Thus, we apply Niven’s
algorithm withu, = R(¢) = a, v = absz(¢) = ||¢||? = a® + b* and obtain a zero qf.

For the nondivision algebrdd..q, Hyec, Heon the matter is a little more complicated.
But also in this case the roots of the companion polynomithdeeal quantities,, v which
may lead to a zero qf.

5. Niven’s algorithm in H applied to the roots of the companion polynomial.In this
section only4 = H is admitted. Given is the polynomialdefined in (.2) with .4 = H, and
with degreen > 2. Let

(51) P15P25 "5 P2k Cl7<27"'7<n—ﬁa

be the roots of the companion polynomialwherep;,1 < j < 2x are the real roots and
¢j,1 < j < n — k are the complex roots with positive imaginary parts. The plemroots
with negative imaginary parts are omitted because they daneate new similarity classes.
See Lemma&.11 For the real roots no algorithm is necessary. There is th@fimg result:
THEOREM5.1. The real roots of c appear always as double roots apds a zero ofp.

Proof. See [L5]. A simple argumentis(z) = p(z)p(z) for z € R. a

THEOREM5.2. Let( be a complex (nonreal) root of the companion polynomiad p.
Then the similarity clasg] contains a zero op.
Proof. See [L5]. O

THEOREMS.3.Let{ = a + bi, b > 0 be a complex root of the companion polynonaial
Apply Niven's algorithm tac = a, v = a?+b2. Ifthe remainder ternk; of Niven’s algorithm
is invertible, then

z=—R;"'Ry

is an isolated zero af. If R; = 0, { is a spherical zero gp.
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Proof. One has to show that and¢ are similar. NowR(¢) = w,|[¢[]? = u? + v2
The quadratic polynomiat(z) = 2% — 2uz + u? + v? also vanishes at, which implies
R(z) = NC) = u, ||2]|* = ||¢||* = u? + v%. Thus,z and( are similar. IfR; = 0, then
r(z) = 0 forall z € [¢], which impliesp(z) = 0. O

EXAMPLE 5.4. Let the quaternionic polynomial
(5.2) p(z) =28 +j20 +i2t — 22 —jz —i.

be given. This is Example 3.8 o5, p. 251]. The 12 roots of the companion polynomial
are

P1 :17p2:17p3:_17p4:_15<1 :ivé2:i7<3:(1+\/§i)/27<4:(_1+\/§i)/27

where the four complex roots with negative imaginary pagtrast needed and therefore are

not listed. According to Theore®.1the four real rootg, to p, of ¢ define two real zeros

1,—1 of p. In order to compute the remaining zeros we have to competedhresponding

remaindersRy, R, for (; to {4, which are contained in Tabke5, and apply Theorer.3
TABLE 5.5. Zeros op, wherep is defined in §.2).

root of ¢ | zero ofp | type of zero| Ry | Ry
pr=p2=1 1 real not neede not needed
p3=ps=—1 -1 real not neede not needed
G=C=1 i spherical 0 0
G=(1++3i)/2]05(1,-1,-1,-1) isolated | (2,—1,1,0) | (=1,—1,-2,0)
Ci=(—1++3i)/2]05(-1,1,-1,-1) isolated | (2,—1—1,0) (1,1,-2,0)

There are altogether 5 zeros. All possible types of zerosap this example.

We end this section with a more detailed example of a quateimipolynomialp of
degree 4.

EXAMPLE 5.6. We use example 7.6 df]] as a polynomial oveH. In [1]] it is used as
a polynomial ovef..q. This polynomial is

(5.3) pz)=2"+ % ((6,4,11, -1)2° + (—8,12,-2,2)2" + (2,2,-12,8)z + (3,-7,4,-8)) .
The companion polynomialof p is
13 2 1 4 20 23
c(z) =28+ 22" + FZG — §z5 + §z4 + 523 — §z2 — ?Z—i_ 5

It has only complex roots. The four roots with positive imagly part are given in Table.7.
TABLE 5.7. Roots with positive imaginary part of the companionypomialc.

¢1 = —1.003718721498504 + 1.5400594036197891,
(2 = —1.266027996825196 + 0.4442619039535481,
(3 = 0.611025310795246 4 0.992525881224344 1,
G4 = 0.658721407528452 + 0.173064784357881 i.

The next step is to find the coefficientsv of the quadratic polynomial which are defined
in (6.1). In the current case we have

uj =R(CG), vy =R(G)*+(S(G)? 7 =1,2,3,4.

Since these values are easy to calculate, we omit the numheaites ofu;, v;. Now we can
compute the remainder ternig, R, using @.4) to (4.6). They are given in Tables.8, 5.9.



Niven’s algorithm applied to the roots of the companion pofyial 9

TABLE 5.8. Values ofR, belonging tou;,v;, j = 1,2, 3, 4.

I

(9.590815703078643, —3.402734251027647, 14.229680534632516, —3.590344969380023
(—0.842446669610599, —1.728260471738801, 9.623424283007916, —2.693097822106674
(0.467851436993603, —4.990323339998328, —1.924041778888646, —1.509468794444240
(—0.082568325300301, —2.501807973223255, —0.299090937824172, —1.386102433628440

I

)

= =

TABLE 5.9. Values ofR?; belonging tou;,v;, j = 1,2, 3, 4.

(9.138108497227318, —3.247827653339322, —0.138140962533935, 0.555759044170659
(1.203122049821211, —1.656703969346634, 7.297724047257375, —0.279204002372001
(—2.656312182428501, 2.867400020779066, —2.159945235468775, 1.718192179463977
(0.912928087493344, 3.816079135863114, —0.107532130875048, 1.560515895248309

I

)

)

e — —

We find, that all four remainder terni; are invertible and by applyindg(2) we obtain the
four zeros ofp.

TABLE 5.10. The four zeros;, j = 1,2, 3,4 of p derived from 6.2) in TheoremtG. 1

z1 = (—1.003718721498503, —0.079115849118361, —1.535357907798967, —0.090552438151575
22 = (—1.266027996825196, —0.234526677155184, —0.377305663619825,  0.002512609675671
zz3 = (0.611025310795246, —0.233586955372734, —0.452816554678455, —0.851764008977247
z4 = (0.658721407528453, 0.144858931809357, 0.093444124119135, —0.015346176315263

)

)

)

e — —

Lete; = %ﬁ)‘” be the relative error of the zerg. Thene; < 10~ '* forall j = 1,2,3, 4.
The norm|| - || is the euclidean norm iR*.

The previous example of a quaternionic polynomial of degréas four zeros. This is
not by chance. Ip has degree, the real companion polynomialhas degre@n. There
are2n; real double roots anfin, complex roots which always appear as pairs of complex
conjugate roots anéd(n; + ne) = 2n. Altogether these roots define at mastzeros ofp.
This is in coincidence with a result of Gordon and Motzki, 1965], that a quaternionic
polynomial of degree has at mosh zeros.

6. Niven’s algorithm in Hc,, applied to the roots of the companion polynomial.
Let the polynomialp be defined as inl(2) have coefficients from the algebra of coquater-
nionsHeoq. It will be shown, that the use of the roots of the companiolypamial ¢ of p
together with an application of Niven’s method will lead tbzros ofp.

However, there is a principal difference between the spdaaternionst and the
spacedlcoq, Huee; Heon.  For H there is formula 4.8) in Lemma4.1, which reduces the
problem of zero finding op to finding a vanishing remainder. There is the phenomenon
that the remainder term®; may be not zero but noninvertible. In this case one has tesolv
Ry + R1z = 0 which may have no solution or various types of solutions. Ror= 0 one
has to check whether there is a hyperbolic solution.

We will denote the roots of the companion polynomial in thmsavay as in%.1), which
means that we delete the complex roots with negative imaget. This is a consequence
of Lemma2.11 We have to distinguish between (nonreal) complex and oedsof the com-
panion polynomiat. Each complex root will - essentially - define one zergpoHowever,
an individual real root of is not good enough to define a zergofWe start with the simplest
case.

THEOREMG.1. Letp be the polynomial defined b¥.¢) with coefficients froni.. Let
¢ be the companion polynomial pfand assume that there exists a nonreal, complex, root
¢ =a+bi,b > 0 of c. Define the quadratic polynomialdefined in 4.1) but overH., by

(6.1) u=R(C)=a, v=absy(¢)=a*+0b%
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and computd?y, R, by Niven's algorithm (formulasi(4) to (4.6)). If R, is invertible, then
(6.2) z:= =Ry (u,v)Ro(u,v)

is an isolated zero af. If R; = 0, then,( may be a hyperbolic zero pf

Proof. The main argument s, that the ra@oas a root of the companion polynomighas
the property that the similarity clagg in .4 may contain a zero gf. One has to show that
and¢ are similar. Now, by defintior(1) and by @.9), (4.10 we haveR({) = a = u = R(2)
andabsy(¢) = a® + b* = v = abss(z). This shows the similarity of andz. In order to
show thatr(z) = 0 we use the connection betweeyw and Ry, R; given in 4.9), (4.10 and
use the inversion formul&(4) which is valid in all four algebras ofl. We have (deleting the
arguments of?; and ofRy)

(6.3) r(2) = (Ry'Ro)? + 2uR; 'Ry + v
Ry RyR1 Ry R Ry
= (absa(R0)2 T absa(R) T
_ RiRoRiRy RiRo+ RoRi RiRg absa (Ro)
- (absz(Rl))Q B absz(Rl) absz(Rl) absz(Rl)
RoR1R1Ry  absa(Ro)
(absa(Ry))? | absy(R1)

For invertibleR;, formula 6.2) implies that the remainder vanishes and that) = 0.
Altogether, an invertiblé?, impliesp(z) = 0. The termmay be a hyperboiic zermeans that
either( is a hyperbolic zero, or itis not a zero at all. This has to kec&bd separately. O

It should be noted, that formul®.Q) is valid in all algebras. Thus, in all algebras an
invertible R, generates an isolated zerofThe above Theore® 1 does not cover the case
of real roots of the companion polynomial And it also does not cover the case tligtis
noninvertible butk; # 0.

THEOREM 6.2. Letp be the polynomial defined b§.¢) overH..q. Letc be the com-
panion polynomial op and assume that there exists a pair of real roptsps of c. Define

1 1 .
(6.4) a=§(P1+P2)7 b=§‘p1—p2’, ¢=a+10j
Put
(6.5) u=R() =a, v=absy(¢)=a*—"b"

With these constants apply Niven’s algorithm to com@geR;. If Ry is invertible,z with
the same formula as ir6(2) is an isolated zero of. If R, = 0, then{ may be a hyperbolic
zero ofp.

Proof. Since the number of real roots is even (sed)f, the existence of one real root
implies the existence of another second real root. Thatsimilar toz has been shown in
[11] where also the use ob(5) is justified. For the ternrmay be a hyperbolic zersee the
proof of Theorent.1 O

We present an example which shows the effect of the two pitigsibof R, being non-
invertible. If R; # 0 but nevertheless noninvertible we may encounter a new tipero of
p which we have callednexpectedero ofp. This is a type of zero which does not exist for
guaternionic polynomials.
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EXAMPLE 6.3. Let
(6.6) p(z) =22 —2az +d?, ac Heoq \R.

Clearly,p(a) = 0. Leta = (ai, as, as, as) andabsy(a) — a? = 0. This means, that < ;.
Let « € R be arbitrary andd := (a1, aas, aas, aay). Thus, A < a;. Now, we use the
identity

(6.7) r(z) = 22 = 2R(2)z + absa(2) =0, z € A,

valid in all algebras of4 in order to show that

p(A) = A% — 20 A + d®
= 2R(A)A — absz(A) — 2aA + 2R (a)a — absa(a)
=2a1A — a? — 2aA + 2a1a — a3
=2(a; — a)A + 2a,a — 2a}
=2(a; — a)A+2a1(a —ay)
=2(a—ai)(ay — A)

= —2a(0, as, as, as)? = 0.

The last equation also follows frong.(7) sinceR(0, as, as, as) = absa(0, as,as,aq) = 0.
Let B = (a1, a2, a4, as), (note the change of the enumeration of the indices in coisgar
to a) then B < ayin Heoq. However,B is in general not a zero gf. Thus, A is not a
hyperbolic zero. The companion polynomial in this example i

c(z) = (z —ay)*.
If we computeRy, R; from (4.6) using 6.4) and 6.5 we obtainu = a;,v = a2 and
RO = (O, 2&1@2, 2&10,3, 20,10,4), Rl = (O, —2@2, —2@3, —2@4),

which meansky = —a1 Ry or Ry + a1 R; = 0 or in other words,Ry, and R, are linearly
dependent as vectors .

Why does this example not work ifi? If A = H, then the requiremenbss(a)—a? = 0
impliesa € R which was excluded in§.6). The zeros of the type of belongs to the type
of unexpected zerodHow can we recognize unexpected zeros? According to theque
theorems a necessary condition is that the quaititpf Niven’s algorithm is not invertible
and distinct from the zero element. In order to find all unetpe zeros one has to consider
all solutions ofRy + R1z = 0. A solution technique is described ih4 where it is shown,
that the equatio®y + R,z = 0 is equivalent to a real, linedrx 4 system.

THEOREM®6.4.Let{ = a + bi be a nonreal, complex zero of the companion polynomial
or let{ = a+ bj, where the construction is described in formutad] of Theoren®.2. Define
in the first case: = a, v = a? + b? and in the second case= a, v = a® — b%. Assume
in both cases thai > 0. With the quantities, v computeR,, R; by Niven'’s algorithm and
assume thaR; # 0 but noninvertible. Let there be a real constanguch that

Ry +~vR; =0.
Then, for alla € R

zo = aRy + 7
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is a zero ofp, providedz, is quasi similar to(.
Proof. We show, that the remaind&y, + R, zo vanishes:

Ro+ Riz0 = —yR1 + Ri(aRy +7) = aabsy(Ry) = 0.

d

Theoren6.2 has the following important consequence.

COROLLARY 6.5. The maximal number of zeros of a coquaternionic polynonfial o
degreen is (%) = n(2n — 1).

Proof. The maximum number of real pairs out &f real numbers i5(22"). For more
details seel1]. O

That a real double root can generate an unexpected zero caebén Examplé.6.

EXAMPLE 6.6. Let

(6.8) p(2) = 2% — (2a 4+ 1)2% + (a® + 2a)z — a*.

Itis easy to see that in all algebra@) = p(a) = 0. Fora = (-5, 10, 8,6) € Hcoq, Which
impliesabsy(a) = a? = 25, the companion polynomialis

c(z) = 2% +182° 4+ 1112* + 2202° — 22522 — 7502 + 625.

The 6 roots of the companion polynomiaérel, 1, —5, —5, —5, —5. There are 15 pairs of
real roots, but only 3 of them are distin¢t:, 1), (1, —5), (=5, —5). The zeros which belong
to these pairs are listed in Talfler.

TABLE 6.7. Zeros op, wherep is defined in 6.8) with a = (-5, 10, 8, 6) € Heoq.

real pairs of zeros ofp
roots ofc aelR ‘ type of zero Ro R,
(1,1) 1 real | (—36,120,96,72) | (36, —120,—96, —72)
(1,-5) (—2,0,3,0) hyperbolic 0 0
(=5,—5) | (—5,10a,8a,6a) | unexpected| (0,600,480,360) (0,120, 96, 72)

To find polynomial® with zeros different from isolated zeros requires a speciastruc-
tion of p. If we generate polynomials with integer, but random coefficients, the resulting
zeros are almost always isolated. This is the outcome of mamerical experiments.

7. Niven’s algorithm in H,.. and in H.,, applied to the roots of the companion
polynomial. The construction proposed for coquaternions also worksdrspacesl,,.. and
in Heon. Apart from adapting the algebraic rules almost no changes@eded. Neverthe-
less, if we use the same polynomial for, ddy,, andH,,.. the results will be different. If
we choose Examplé.6 with the samer = (-5, 10,8,6) € H,,.., then thisa will not have
the propertyabsy(a) = a? in H,e., and we cannot expect an unexpected zero. The corre-
sponding companion polynomiali$z) = (2 + 922 — 57z + 47)2. It has three real double
roots,1, (6v/2 — 5), —(6/2 + 5) and the 15 real pairs generate only two different zergs of
1 anda.

Serbddio, Pereira, and Vitéria2p] have proposed an algorithm for finding the zeros of
guaternionic polynomials, also based in Niven’s algoritfithey define a quaternionic com-
panion matrix and use the eigenvalues of this matrix asesnitni Niven’s algorithm. In11],
the authors Janovskéa and Opfer conjecture that thesevaiges coincide with the roots of
the companion polynomial. A variation of this algorithms@lapplicable only for quater-
nions which involves also eigenvectors of the companiorrismags been proposed by De
Leo, Ducati, and Leonordif]. A survey on eigenvalue problems for quaternionic magrice



Niven’s algorithm applied to the roots of the companion pofyial 13

has been presented by Zhangy][ A different approach for finding zeros for quaternionic
polynomials has been chosen by Kalantalf]|[

If we have a look at the two Theorengsl, 6.2 we see, that a distinction between the
various algebras has not to be made. By the two definitiérB, ((6.5 of the quadratic
polynomialr all cases can be accommodated. As such, this algorithmtigeasimpler than
the algorithms proposed previously by the authorslaf L3, 15].

8. Niven’s algorithm and the approach of Pogorui and Shapiro Let.A be one of the
four algebrad, Heoq, Hyec, Heon @ndp be a unilateral polynomial oved. See (.2). By
systematically using the identity

(8.1) 22 —2R(2)z +absa(z) =0, z€ A,

Pogorui and Shapiro2p, 2004], arrived (only for quaterniorig) at a representation @fin
the form

(8.2) p(z) = A(R(2),absa(z)) + B(R(z),absa(2)) z, A,B,z € A.

The two quantitiesd, B do depend ofR(z) andabsy(z) but not fully onz. This allows to
insertz, instead ofz into A, B if zy € [z],, without changing the values of and B. This
representation was used by D. Janovska and the present §lithl3, 15 to extend this idea
also to the remaining three algebras and to obtain an agofibr finding all zeros op in all
algebras. The main tool was the use of the roots of the corapgualynomial.

In order to computel and B one need8n real multiplications plug(n + 1) multipli-
cations of an algebra element by a real number. $8ed] 247].

Niven's algorithm (seel.2)) is essentially based on the representation

(8.3) p(2) = q(2)r(z;u,v) + Ro(u,v) + Ri(u,v)z,
(8.4) r(z;u,v) = 22 —2uz+wv, Ry,Ri,z€ A uveR,

whereRy(u, v) + R1(u,v)z is theremainder after divisiorgshort: remainde}.

By using the recursior4(4) to (4.6), we see that we neexth — 2 multiplications of an
algebra element by a real number for computitig R .

We found, that essentially the remaind&y+ R, z is the same ad + Bz. More precisely,
we have the following statement.

THEOREM 8.1. Let a unilateral polynomiap over A be given. For a given, arbitrary
z € Aputu = R(z),v = absa(z) and compute both representatiors3) and 8.3 of p.
For the definition of- defined in 8.4), use the quantities, v. Then,

(8.5) A=Ry, B=R.

Proof. The construction of impliesr(z;u,v) = 0 which impliesp(z) = A+ Bz =
Ry + R1z. From here, 8.5) follows. O
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