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QUICKLY PROVING THE ANDRÁSFAI–ERDŐS–SÓS–THEOREM.

CHRISTIAN REIHER

Abstract. Given an integer r > 2, an important theorem first proved by B. Andrásfai,

P. Erdős, and V. T. Sós states that any Kr+1–free graph on n vertices whose minimum

degree is greater than (3r � 4)n/(3r � 1) is r–colourable, and determines the graphs that

are extremal in this context. The purpose of this note is to give an alternative proof of this

result using a di↵erent idea.

The origin of extremal graph theory, i.e. Turán’s Theorem (see [2]), gives us an exact answer

to the question how many edges are required for a graph on n vertices so that it necessarily

contains a Kr+1, a clique on r + 1 vertices. As it turns out, that number is approximately
r�1
2r ·n2 with an error of ±Or(1) and one way to show Turán’s Theorem proceeds by repeat-

edly removing vertices of lowest degree. Taking that route one usually realizes that every

graph on n vertices the minimum degree of which is greater than (r� 1)n/r contains a Kr+1.

This prompts the further question as to whether every graph destitute of (r+1)–cliques and

whose minimum degree is just a bit smaller than that needs to be structured in a way that

makes the absence of (r + 1)–cliques “easy to see”. In this vein, B. Andrásfai, P. Erdős,

and V. T. Sós proved the following result in 1974:

Theorem 1. (see [1]) Given an integer r > 2, each graph on n vertices whose minimum

degree is larger than (3r � 4)n/(3r � 1) is either r–colourable or contains a Kr+1.

They also described the corresponding extremal graphs. To introduce those, take any integers

r > 2 and k > 1, and define a graph Hr,k as follows: its vertex set is the disjoint union of

five sets P1, . . . , P5 of size k whose indices are considered modulo 5 as well as of r� 2 further

sets Q1, . . . , Qr�2 of size 3k. Each of those r + 3 sets is required to be independent and each

vertex from some Qi is adjacent to all other vertices except for those coming from the same

Qi. Moreover each vertex from some Ai is adjacent to all vertices from Ai±1 but to none of

the vertices from Ai±2.
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The stronger version of Theorem 1 mentioned above reads

Theorem 2. (also from [1]) Let r > 2 be an integer and let G be a graph on n vertices whose

minimum degree is at least (3r � 4)n/(3r � 1). Then either G is r–colourable, or it contains

a Kr+1, or n is divisible by 3r � 1 and G is isomorphic to Hr,n/(3r�1).

As far as we know the only published proof of those results appeared in [1] and the purpose

of this note is just to give another such proof. For the sake of exposition, we will first phrase

the argument so as to yield Theorem 1 only and then we shall briefly elaborate on a few

additional steps that may be used to obtain Theorem 2 as well.

Proof of Theorem 1. A.) We argue indirectly and fix for a given r > 2 a counterexample

G = (V,E) on n vertices that has subject to these conditions the maximal number of edges.

Evidently the addition of any further edge to G would result in the presence of a Kr+1. It

is plain that G cannot be a complete multipartite graph and thus it contains three distinct

vertices x, y, and z such that xy, xz 62 E but yz 2 E.

B.) Next we explain what we mean by a configuration of intensity k in G, where k 2
{0, 1, . . . , r� 1}, and why such a thing has to exist: such a configuration is a triple (A,B,C)

of disjoint sets of vertices from G � {x, y, z} satisfying the following three properties:

(K1) A, B, and C are cliques in G of sizes r � 1� k, k, and r � 1� k, respectively.

(K2) Each vertex from B is adjacent to every other vertex from A [ B [ C [ {x, y, z}.
(K3) Every vertex from A is adjacent to x and y, and every vertex from C has x and z

among its neighbours.
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To find such a configuration in our graph G we exploit that its edge maximality entails in

view of xy 62 E the existence of a (r � 1)–clique M consisting of common neighbours of x

and y. Similarly there is a (r � 1)–clique N whose members are joined to both x and z.

Setting now A = M �N , B = M \N , and C = N �M we have found a configuration in G.

C.) For the remainder of the proof, we fix a configuration K = (A,B,C) in G the intensity k

of which is maximum. As B [ {y, z} cannot be a (r+ 1)–clique, we must have k 6 r� 2 and

consequently none of the sets A and C is empty. Let us assign the weight 3 to all vertices

from B, the weight 1 to all vertices from A and C as well as to the vertices x, y, and z, and

the weight 0 to all other vertices of G; finally the weight of an edge is defined to be the sum

of the weight of its endvertices. The total weight of all vertices amounts to 2r+ k+1, which

is at most 3r� 1. By our minimum degree condition, the sum of the weights of all edges can

thus be estimated to be

(1) > (2r + k + 1) · 3r�4
3r�1 · n > (2r + k � 2)n.

Therefore there is a vertex u 2 V the weights of whose neighbours sum up to at least

2r + k � 1. To say the same thing more verbosely, this sum is by at most 2 units smaller

than its theoretical maximum value, i.e. the sum of the weights assigned to all vertices. In

particular, u sends an edge to all members of B. If u were also adjacent to all vertices from

A, then neither ux nor uy could be edges of G for neither A [B [ {u, x} nor A [B [ {u, y}
is an (r+1)–clique. But this in turn implied that B [C [ {u, z} had to be an (r+1)–clique

by our choice of u. This argument reveals that there has to be some a 2 A satisfying ua 62 E

and for similar reason there exists c 2 C with uc 62 E. Now by its very choice, the vertex u

has to be adjacent to all vertices from A [B [ C [ {x, y, z} except for a and c. Hence

(A� {a}, B [ {u}, C � {c})

is a configuration in G the intensity of which exceeds k. This contradicts our choice of K and

Theorem 1 is thereby proved. ⌅

Proof of Theorem 2. As indicated above, we shall now mention some amendments that

can be made to the above proof if one is also interested in demonstrating Theorem 2. So

take an integer r > 2 as well as a graph G on n vertices that is neither containing a Kr+1

nor r–colourable and whose minimum degree is at least (3r � 4)n/(3r � 1). If n were not

divisible by 3r � 1, this fraction were not integral and Theorem 1 yielded a contradiction.

Thus ` = n/(3r � 1) is an integer and our aim is to show G ⇡ Hr,`. Since the addition of

a further edge edge to Hr,` always results in the presence of a Kr+1, we may again assume

that G is edge maximal and thus containing three vertices x, y, and z as above. Thus if the

concept of a configuration gets introduced as above we may look again at a configuration

(A,B,C) of maximum intensity, say k 2 {0, 1, . . . , r � 2}. Set K = A [B [ C [ {x, y, z}.
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Repeating the above degree estimate (1) we can prepare for the same contradiction as before

unless k = r � 2, each vertex from K has degree (3r � 4)`, and each vertex u 2 V has the

property that the sum of the weights of its neighbours is exactly 2r + k � 2. So A = {p1}
and C = {p3} for some distinct vertices p1 and p3. It is convenient to relabel x = p2, y = p5,

and z = p4 and to consider those indices modulo 5. Let B = {q1, . . . , qr�2}. The absence of

(r+1)–cliques and the above information regarding the distribution of weights discloses that

there are no further edges between the vertices from K except for those postulated by (K1),

(K2), and (K3) and that each u 2 V �K is adjacent either to all vertices from K except for

some qj or to all vertices from K except for three cyclically not consecutive vertices among

p1, . . . , p5. In other words if we denote the neighbourhood of a vertex x by N(x) and set

Pi = {pi} [ {x 2 V �K |N(x) \K = K � {pi, pi+2, pi+3}},
for i = 1, . . . , 5 as well as

Qj = {qj} [ {x 2 V �K |N(x) \K = K � {qj}},
for j = 1, . . . , r� 2, then (P1, . . . , P5, Q1, . . . , Qr�2) forms a partition of V . If v 2 Pi for some

i, then the adjacencies in K [ {v} � {pi} are analogous to those in K and all arguments

we have so far done with K may be carried out for that “configuration” as well. The same

remark applies to K [ {w} � {qj} whenever w 2 Qj, where 1 6 j 6 r � 2. Combining all

those arguments we infer that G is (3r � 4)`–regular, that all vertices from Qj are adjacent

to all vertices from V � Qj, and that all vertices from Pi are adjacent to all vertices from

Pi±1. The absence of (r + 1)–cliques reveals that there can be no further edges in G. Hence

we have |Qj| = 3` for all j by regularity and similarly |Pi+1|+ |Pi�1| = 2` for all i. It is now

plain that the partition (P1, . . . , P5, Q1, . . . , Qr�2) witnesses G ⇡ Hr,`. ⌅
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