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Abstract. Some of the known Haar spaces are linear hulls of shifts of a single
function G on C\{O} We study [V-dimensional and universal analytic Haar space
generators for some closed sets F' of C (in the sense that an arbitrary finite number
of shifts generates Haar spaces by forming linear hulls). The suitable function space
for our investigation is Ce (F ), the space of all complex valued, continuous f on F'
with the defining property limzep,z_,oo f(z) = 0. In many cases we are able to
characterize universal Haar space generators. We show, in addition, that in CO(F ) a
best approximation by elements of finitely dimensional spaces V' is unique if and only

if V is a Haar space.
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1 Introduction

Let V be an N-dimensional linear subspace of C(K), the normed space of all
continuous functions f on a compact set K endowed with the norm ||f||x :=
max,cx |f(2)|. A function h € V is called a best approzimation of a given
function f € C(K) if py(f) == ||f — hllx < ||f — hllx holds for all h € V.
The existence of a best approximation of f € C(K) is easy to show and the
uniqueness of the best approximation has been characterized by HAAR[4, 1918|
and KOLMOGOROFF[8, 1948] in terms of Haar spaces. We are interested in
an analogous study of continuous functions on a closed set F' of C, where C
stands for the field of complex numbers. In order to use the properties of a Haar
space, we have to restrict ourselves to continuous functions f which in case F'is
unbounded satisfy the relation

JJim f(2) =0. (1)
The correspondent linear space endowed with the norm ||f||r = sup,cp |f(2)|
will be denoted by C°(F"). The existence of a best approximation of f € C°(F') by
functions in the finite dimensional subspace V' of C°(F') can be shown applying
the same proof as given by MEINARDUS[10, 1967, p.1] for compact sets.



Let N € N be given and hq, ho, ..., hy € C°(F), where N := {1,2,...} is the set
of natural numbers. By

V.= <h1, hg, Ce 7h’N>
we understand the intersection of all subspaces of C°(F) which contain
hi,hg, ..., hy. This space is also called the linear hull of hi, ho,...,hy. We
also say that V is generated or spanned by hi, hs,..., hy. The space V has di-
mension N if and only if the N functions hq, hg, ..., Ay are linearly independent.

For the uniqueness of the best approximation, we need the following definition.

Definition 1.1 HAAR[4, 1918]. Let h; € C°(F), j = 1,2,...,N and V =
(h1,ha,...,hy) be an N-dimensional linear subspace of C°(F). We call V a
Haar space for F if each function h € V\{0} vanishes at most at N — 1 points
of F.

The above stated so called Haar condition is equivalent to each of the following
two properties.

1. For any selection of N pairwise distinct points t; € F' and any set of N
numbers 7; € C the interpolation problem

h(tj)znj, j=1,2,...,N
has a unique solution h € V.

2. Let V := (hy, hy, ..., hy) be the linear hull of the N linearly independent
functions h; € C°(F), j =1,2,...,N. Then, the (N x N) matrix

M = (h](tk)), j,k:1,2,...,N

is non-singular for any choice of pairwise distinct points t; € F,
j=1,2,...,N.

The correspondent characterization of Haar and Kolmogoroff becomes:

Theorem 1.2 Let V' be an N-dimensional linear subspace of C°(F). Then, for
each f € C°(F), there exists a unique best approzimation h in V if and only if
V' is a Haar space.

Proof: One readily verifies the proofs of Theorem 16 to Theorem 20, pp. 13-18,
in MEINARDUS[10, 1967]. O

Unfortunately, this theorem does not hold for the weaker assumption that f
is continuous and bounded on F. This will be shown explicitly in the next
example. Before we start the example, we introduce some common notation. By
R we understand the field of real numbers, by R" the set of non negative real
numbers, and R, & stand for real and imaginary part, respectively, of a complex
number.



Example 1.3 Let FF:={z € R:x > 1}, h:=1/z on F and V := (h). Then,
V is a Haar space over C of dimension one on F. By C°(F) we understand the
space of continuous and bounded functions on F. Certainly, V C C°(F). We
will see that the constant function f := 1 which belongs to C*(F) but not to
C°(F) admits several best approximations in V. We have

pv(f) := infyey sup 5, |1 — v(z)| = 1, since

\1_9\:{1 for 1 —a| <1, a€C,
X

Sup |1 —a| >1 otherwise.

z>1
Thus, all v(z) := % with |1 —a| < 1 and a € C are best approximations of f.

For further details on uniqueness of uniform approximation and Haar spaces see
e.g. [2], [3], [5], [9], [11].

Our next definition is concerned with Haar space generators.

Definition 1.4 1. Let N € N be a fixed natural number. A function G de-
fined on C\{0} with values in C will be called an N-dimensional Haar space
generator for F, if for each set of N pairwise distinct points t1,%9,...,tx €
C\F the functions h; defined by h;(z2) := G(2—t;),j =1,2,..., N, are lin-
early independent and span an N-dimensional Haar space on F for z € F'.

2. The function G is called a universal Haar space generator for F if G is an
N-dimensional Haar space generator for F' for all N € N.

In this paper we deal only with analytic Haar space generators. By H(S) we
understand the space of all analytic functions defined on the open, non empty set
S C C. We always suppose that G € H(C\{0}) which means that G is defined
everywhere in C with the (possible) exception of the origin and represents an
analytic function. Furthermore, in order that the theory makes sense, we assume
always (tacitly) that F is closed and F # C. This implies that the open set C\ F'
is not empty and contains infinitely many points.

Example 1.5 Let

G(z) := , |le*||lr < oo, A, BeC, z#0. (2)

Then, G € H(C\{0}) and G is a universal Haar space generator for all closed
subsets F' of C. Indeed, for ¢1,1s,...,%y, the function h(z) = XN | G (2 — ty)
belongs to C°(F) and can have at most (n — 1) zeros in C and hence in F.
Furthermore, |[e??||r = |e?*|||e**~D ||z < oo implies that for each fixed t € C\F,
the function G(z — t) € C°(F). We are aware of the fact that the convenient
notation ||e??||r is not quite accurate. One could introduce, say n4(z) = e??
and then write ||n4||F instead.



A suitable choice of values for the constant A to have the property ||e??||r < co
is contained in the following table for various domains F'.

Table 1.6 Values of A for various examples of domains F'.

F' = set under consideration = condition for A
F = R* = RA<O0,

F = R = RA =0,

F= iRt = 34 > 0,

F= iR = JA =0,

F = RTUiRT = RNA<0,34 >0,
F= RUiRT =RA=0,34 >0,
F= RTUIR =RA<0,34=0,
F = RUiIR = A=0,

F= {z€C:|z| > 1} = A=0,

F= {z=z+iy:y=2-2} =>A=a+ia,a€eR

If F is a compact subset of C, then, G € H(C\{0}) is a one dimensional Haar
space generator for F' if and only if G does not vanish on C\{0}. In Section 2
we give an example of a one dimensional Haar space generator for the real axis
which vanishes at infinitely many points. Furthermore, we collect in Section 2
some preliminary results concerning Haar space generators. In Section 3, we
study universal Haar space generators for closed sets F' with the property that
F° is a compact subset of C, where F° denotes the interior of F', and F° denotes
the closure of the interior of F. In Section 4, we assume that F' contains a
neighborhood of infinity.

2 Some elementary properties of Haar space
generators and auxiliary lemmata

HENGARTNER & OPFER, [7, 2003] have already shown that in the case where F
is compact there is no inclusion property of N-dimensional Haar space generators
neither with respect to the dimension N nor with respect to the inclusion F; C Fj
of two sets. Two simple, but useful properties of Haar space generators are
contained in the following two lemmata.

Lemma 2.1 Let F' be a closed subset of C, and define F; := aF + b where
a € C\{0},b € C. Then, G is an N-dimensional Haar space generator for F
if and only if G defined by G1(2) := G(z/a) is an N-dimensional Haar space
generator for Fj.



Proof: Let z € F and t € C\F. Then, ( :=az+b € Fi,7:=at+b e C\F; and
we have G1(( — 7) = G1(az — at) = G(z — 1). O

Lemma 2.2 Suppose that GG is an analytic N-dimensional Haar space generator
for a closed set I' C C. Then G defined by

G1(2) == e BG(2), ||e*|r <0, A, B€C,

is also an analytic /N-dimensional Haar space generator for F.

Proof: The two (outer) linear combinations

Z )\kGl (Z — tk) = eAz Z )\ke_Atk+BG(Z - tk) = GAZ Z ,ukG(z - tk)
k=1 k=1 k=1

vanish simultaneously and belong to C°(F). Moreover, we have |[e4(*=9||p =
le=4|||e4?||r < oo for any fixed t € C\F. O

For example, G defined by G(z) := 2" 'e?**8 n € N, RA < 0, is an n-dimen-
sional Haar space generator for R™, but it is never a j-dimensional Haar space
generator for any closed set F'if j > n. It is also a one-dimensional Haar space
generator.

In the next example, we consider analytic one dimensional Haar space generators.
By definition, G € H(C\{0}) is a one dimensional Haar space generator for F,
if for all ¢ € C\F, the function G(z —t) # 0 on F and lim,ep, ,oc G(2 — t) = 0.
If F' is compact, then, G is a one dimensional Haar space generator for F' if and
only if G does not vanish on C\{0}. See HENGARTNER & OPFER, [6, 2002],
[7, 2003]. Such a result does not hold in general for arbitrary closed sets.

Example 2.3 The function G defined by G(z) = e * cos(z) is an analytic
one dimensional Haar space generator for the real axis R and vanishes at in-
finitely many points there. Indeed, fix ¢ € C\R. Then, we have for z € R,
limy yoo G(zx — t) = 0, and G(z — t) = 0 implies that the roots
z=t+ (1+2k)r/2,k € Z are not in R.

Hence, besides the definition, we do not know of any other universal criterion for
G to be an analytic one dimensional Haar space generator for closed, unbounded
sets F'. The criterion given for compact sets is only sufficient but not neces-
sary. Let G be a one dimensional Haar space generator for F'. By definition,
G(z —s) # 0 for all z € F and all s € OF, where C stands for complement.
Let AF = F—-CF = {ue C:u=2-s 2¢€ F, s € CF} be the al-
gebraic difference between F and CF. If AF = C\{0} then, it follows that
G(z) # 0 for all z # 0. For unbounded F however, in general AF # C\{0}.



To mention an example, let F' := {z € C : Rz < 0} be the closed, left half-
plane in C. Then, 0F = {z € C : Rz > 0} is the open right half plane and
AF ={z € C: Rz < 0} # C\{0}. Another class of examples is obtained if F' is
any straight line in C. But if we add to the straight line any compact set which
contains points outside that line, then AF = C\{0} and G is nonvanishing on
C\{0}. Another case will be treated in Lemma 4.2.

In what follows, we deal with analytic two dimensional Haar space generators.
Instead of assuming, that GG is also a one dimensional Haar space generator, we
assume that G(z) # 0 for z € C\{0} satisfying lim,cp, oo G(2 —t) = 0. Recall
that we always assume that F' # C, which implies that C\ F' contains infinitely
many points. We shall use the following notation.

Definition 2.4 Let f(xq,x2,...,2,) be any function with n > 1 variables. If
we consider f as a function of the first m < n variables x, s, ..., T, alone,
keeping the remaining variables %,,11, Tmy2, ..., T, fixed, then, we shall write
F(@1, %2, ooy T | Tt 1, a2y ey Tn)-

Our next lemma is an immediate consequence of the definition of a two dimen-
sional Haar space generator.

Lemma 2.5 Let F' be an infinite closed subset of C, F # C, containing the two
distinct points z1 and zy. Let G € H(C\{0}) and let t € C\F, G(z) # 0 on
C\{0}. Furthermore, suppose that lim,cp, 0o G(2 —t) = 0 for all t € C\F.
Then, G is a two dimensional analytic Haar space generator for F if and only if

G(21 — t)

Q(t]z1, 22) == Gla—1)

21,29 € F) tEC\F (3)
is univalent in C\F, i.e. Q(s|z1,22) = Q(t|21,22) implies s = t.

Proof: Suppose Q(s|z1,22) = Q(t|z1,22), s # t, s,t € C\F. This is equivalent

0 Gler—1) _Gla—t) _,
G(z1—5) Glzg—s)

for some A € C\{0}. Then, it follows that

G(z1 —t) — ANG(z1—s) = 0,
G(zg—t) —AG(22—s) = 0

which contradicts the fact that G is a two dimensional Haar space generator
for F. O

The next lemma sharpens Lemma 2.5. The proof of it is exactly the same as the
proof in Lemma 2.4 in HENGARTNER & OPFER, [7, 2003] which is the equivalent
statement for compact sets F'.



Lemma 2.6 Let F' be an infinite closed subset of C, F # C, containing the two
distinct points z; and zy. Suppose that G € H(C\{0}),G(z) # 0 on C\{0} and
that lim,ep, 0o G(2 —t) = 0 for all t € C\F. Then, G is a two dimensional
analytic Haar space generator for F if and only if Q(t|z1, 22), defined in (3) is
univalent in C\[F° U {21} U {2}].

3 The case where F° is bounded

Our main result of the section is the following theorem.

Theorem 3.1 Suppose that the set F' and the function G satisfy the following
properties:

1. F is a closed subset of C, F # C,

2. F contains at least one cluster point in C,
3. F° is bounded and F # F°,

4. G € H(C\{0}),

5. G(z) # 0 on C\{0}.

Then, G is a universal Haar space generator for F if and only if G is of the form

eAz—|—B

G(z)i=——, lle*|r<o0, A, BeC, z#0.

Proof: The case where F' is bounded is proved in HENGARTNER & OPFER, [7,
2003]. Hence, suppose that F is unbounded. Fix z; € F\F° and 2z, € F, 2; # 2.
By Lemma 2.6, Q(t|z1, z2) (cf. (3)) defines an analytic nonvanishing function on
C\[{21} U{2}] and is univalent on C\[F° U {21} U {2}]. Therefore, there is an
m € {—1,0, 1} such that the three limits

. t—=z
1. llmt_>21 <i

) Q(t]21, 22),

. t—z\ "
2. limy,,, <t 1) Q(t|z1, z2),
t . m
3. limyyeo (t zl) Q(t|21, 22)
— 29



exist and are in C\{0}. Item 2 follows from the special form of @ and the
analyticity. Nonvanishing at infinity follows from the argument principle ap-
plied to Q(t|z1, 22) and the domain bounded by the three circles {z : |z| = R},
{z:|z—21|=p} and {2 : |z — 23| = p} where R > 0 is large and p > 0 is small.!
The case m = 0 is excluded since Q(t|z1, z2) would be a bounded nonvanishing
entire function and hence, by Liouville’s theorem, a constant which is impossi-
ble. Applying Liouville’s theorem to (i:—;;)m Q(t|z1, z2) for m = £1 yields that
Q(t|z1, 22) is a Mobius transformation of the form

Q) = clonm) ) or (@)
Q(t|z1,20) = 0(21722)2—:1;- (5)

Since F' contains at least one cluster point in C, we conclude by the identity
principle that

c(21]22) =

G(z —t) (22 —t
G(ZQ —t) Z1 -1

m
) mef-11} (6)
admits as a function of z; an analytic continuation onto C which is independent

of t. Differentiation of logc(z1, z2) with respect to ¢ yields

1
ZQ—t

G'(21 — t) 4 [ 1 ] _ Gt =A (7)

Gl =) o tl~ Gla—1) i[

for all ¢, where A is independent of z;. Fix ¢t € C\F and substitute ( = z; — ¢.
The integration of relation (7) with respect to ¢ implies

G) = (M lim G(z2)=0, A, BeC or

z2€F,z—00
pAC+B N
G(C) = C ’ ||e Z”F < o0, A7 B e C.
The first case is excluded because there is no closed set F' for which G is a three
dimensional Haar space generator. O

As an immediate corollary of our theory we obtain:

Theorem 3.2 Suppose that the set F' and the function G satisfy the conditions
of Theorem 3.1. If G is a one, two and three dimensional Haar space generator
for F, then, G is a universal Haar space generator for F.

Examples of sets F' C C satisfying the three properties of the foregoing two
theorems can be constructed easily.

'In this sense large and small means sufficiently large and small. This will also be applied
to complex numbers z in the sense that |2| > 0 and |z| is large or small.
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Example 3.3 Define
F={z€C:|z|<1}U{z€eC:z=a+iy,z > 1,y =0}

Then, F is closed, different from C, unbounded, contains cluster points, F*° =
{z € C:|z| <1} is bounded and F° = {z € C: |z| < 1} # F. Another class of
examples is obtained by choosing a closed, unbounded F' with cluster points in
C such that F° = (.

4 The case where F' contains {z : |z| > R} for
some R >0

First, let us remark that the requirement lim,ep .00 G(2—1) = 0 for all t € C\F,
reduces to the condition G(o0) = 0.

Theorem 4.1 Suppose that the set F' and the function G satisfy the following
properties:

1. F is a closed subset of C, F # C containing {z : |z| > R} for some R > 0,
2. F\F° is nonempty,

3. G € H(C\{0}),

4. G(z) # 0 on C\{0}.

Then, G is a universal Haar space generator for F if and only if G is of the form
1
G(z) = —.
() =2

Proof: Fix z; € F\F° and 2, € F, 21 # zo. By Lemma 2.6, Q(t|21, 22) (cf. (3))
defines an analytic nonvanishing function on C\[{2:} U {22}] and is univalent on
C\[F°U{z} U{z}]|. Hence, there is an m € {—1,0,1} such that the two limits

t— m
1. limg,,, (t_?«’1> Q(t|z1,22) and

exist and are in C\{0}. Define K(z|t1,tq) := gg;:gg, t1,to € C\F, t; # t.

Then, the statements on the two limits are equivalent to the existence of the two
limits



2=t \"

1. lim, ( t:) K(z|t1,t2) and
2=t \"

2 lll’nz_,t2 ( — t:) K(Z‘tl,tg),

which are again in C\{0}. Next, K(z|t1,t2) is univalent on {z : |z| > R}. Hence,
there isan M € {—1,0, 1} such that K (z|t1, t2) = 2MC(z|t1, t2), where C(z|t1, )
is analytic at infinity and C(oolti,t3) # 0. By the argument principle applied
to K(z|ti,t2) and the domain bounded by the three circles {z : |2| = R},
{z : |z —t1| = p}, and {z : |z — to] = p} where R is large and p is small,
we conclude that M = 0 and that the limit lim, (ijg)mK (z|t1,t9) exists
and is in C\{0}. Again the case m = 0 is excluded since K (z|t1,2) would be a
bounded nonvanishing entire function and hence, by Liouville’s theorem, a con-
stant which is impossible. Replacing z by t1, t; by 21, t2 by 2o and K (z|t1,t3) by
Q(t|z1, 22) we follow the proof of Theorem 3.1 which leads us to the conclusion
of Theorem 4.1. 0

We now study the special case F' = F°. We shall establish several lemmata.
We have already seen (Example 2.3) that in general one dimensional Haar space
generators may have infinitely many zeros. The first lemma shows that this is
impossible if F' contains {z : |z| > R} for some R > 0 and F = F°.

Lemma 4.2 Let F be a closed subset of C containing {z : |z| > R} for some
R > 0 which has the property F' = F°. Let G € H(C\{0}) and G(c0) = 0.
Then, G is a one dimensional Haar space generator for F' if and only if G does
not vanish on C\{0}.

Proof: If G does not vanish on C\{0}, then, G(z —t) # 0 for all z € F and
all t € C\F. Hence, G is a one dimensional Haar space generator. Suppose now
that G(z*) = 0 for some z* # 0. Choose zy € F° and denote by d the straight
line d := {2z : z = 29 + i A\z*; A € R}. Define

pr =sup{p > 0: (2 + pd) N C\F # 0}

and let t; be one of the support points of zy + p1d with respect to C\F. Put
21 =t +2*. Then, we have z; € F° and t; € OF. Since F = F°, there is a small
a € Csuch that z = z;+a € Fandt =t;+a € C\F. Since G(z—t) = G(2*) = 0,
we conclude that G is not a one dimensional Haar space generator. (]

Since C\F' is compact we obtain by Lemma 2.2 HENGARTNER & OPFER, |7,
2003] immediately the following lemma.

Lemma 4.3 Let F be a closed subset of C containing {z : |z| > R} for some
R > 0 which has the property F = F°. Suppose that G € H(C\{0}), G(cc) = 0.
Then, G is a one dimensional Haar space generator for F if and only if G,
defined by G1(z) := G(—=2) is a one dimensional Haar space generator for C\F.
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In the next lemma we show, that the previous lemma is also true for two dimen-
sional Haar space generators.

Lemma 4.4 Let F be a closed subset of C containing {z : |z| > R} for some
R > 0 which has the property F = F°. Suppose that G € H(C\{0}), G(c<) =0,
and that G does not vanish in C\{0}. If G is a two dimensional Haar space
generator for I then, G1, defined by G1(z) :== G(—=2) is a two dimensional Haar
space generator for C\F.

Proof: Let us first note that under the given conditions for F' the closed set
C\F can be expressed in the form C\F = C\F*. In the proof of Theorem 4.1
we find that G is a two dimensional Haar space generator for F' if and only if
G(Z - tl)
K(z|ty,t = = € F;t,to e C\F, t t 8
(Z‘la 2) G(Z—tz)’ z y ULy U2 \ 3 1752 ()
is univalent. Similarly, G; is a two dimensional Haar space generator for C\ F*°

if and only if
G1 (t - 21)
L(t|z, = ————=, t e C\F°; 21,29 € F°,
( ‘21 22) Gl(t — 22) \ 21, %2 21 # 2

is univalent. We have C\F' C C\F°. A point ¢ € C\F” is not in C\F if and
only if t € OF, where OF is the boundary of F. Suppose that G; is not a two
dimensional Haar space generator for C\F°. Then, the above defined L is not
univalent and by using the definition of G, points 21,2, € F°, 21 # 2z, and
t1,to € C\F°, t; # 1o exist, such that the non univalence of L can be written
as K(z|t1,t2) = K(za|t1,12), where we allow here that ti,¢{, € OF which is
permissible since z1, zo € F°. We will distinguish three cases:

Case 1: Both points ¢1, t are not boundary points of F', i.e. t1,ty € C\F. Thus,

K in (8) is not univalent, and G is not a two dimensional Haar space generator
for F.

Case 2: In this case, we suppose that one of the two points ¢1, t5, say ty ¢ C\F
or equivalently, to € OF. We have K (z|t1,t2) = K(22|t1,t2). There exists a small
complex number a such that 2] = z14+a € F°, 2, =2 +a € F°,t) =t; +a € C\F
and t, = t, + a € C\F which leads to K (z}|t},t,) = K(2|t],t,). Thus, K de-
fined in (8) is not univalent and G is not a two dimensional Haar space generator
for F.

Case 3: Suppose that t;,ty € OF. Then K(z|t1,t2) = K(2o|t1,t2) := A # 0.
It will be shown that an equation of the form K (2,|t1,ts) = K(2:|t1,t2) holds
for 21,2 € F° and #; € C\F. This would bring us to Case 2 and the lemma is
proved.

Consider the two open disks Dy := D(z1,7) and Dy := D(z, ) with center 21, 2,
respectively and radius r > 0. Choose r so small that

(a) Dy N Dy =0, possible because of z; # 2,

11



(b) Dy, Dy C F°, possible because of z1, 29 € F°,
(c) EN{0} =0, where E := K(D|t1,t3) N K(Ds|t1,t3). Since E is an open set
containing A # 0, (c) is possible.

The assumptions on G imply that K is analytic and thus, (locally) invertible
at all points where the derivative is not vanishing. Now, the derivatives can
vanish only at isolated points, otherwise K would be constant. Thus, there is
a )N € E 2| € Dy and z, € Dy such that K(21|t,t2) = K(z5|t1,t2) = X where
the derivatives at 2}, 2z, do not vanish. Fixing the point t5, we apply the implicit
function theorem to K in a neighborhood U; C Dy of 2{. In other words, there
is a univalent mapping z;(¢) from a neighborhood V; of ¢; to a neighborhood U,
of 2} such that K (z;(¢)|t,t2) = K(2}|t1,t2) = X'. Analogous, there is a univalent
mapping 29(t) from a neighborhood V, of ¢; to a neighborhood U, C Dy of 2
such that K (zy(t)|t,t2) = K (2}|t1,t2) = . Now choose £ € (V,NV,)N(C\F) and
put 2, = 2z(t) and 2, = 2,(f). Then, K(2i|t),ts) = K(21|t,t2) = K(%l|t, ts) =
K (Z|t1,12) and we are in the situation of Case 2. O

HENGARTNER & OPFER, [7, 2003] have shown that one and two dimensional
Haar space generators for a compact subset K of C have to be of the form

eAz+B
G(z) == , me{0,£1+2}.

Zm

The cases m = 0,—1,—2 are not 4-dimensional and hence not universal Haar
space generators, since any four functions G(z — t;),t; € C\K, are linearly de-
pendent. Furthermore, the condition G(c0) = 0 is equivalent to A = 0. Together
with Lemma 4.3 and Lemma 4.4, we have proved so far that a universal Haar
space generator G for a closed set F' = F°, C\F compact, is of the form

Applying Lemma 4.4 to results obtained in HENGARTNER & OPFER, [7, 2003],
we can eliminate the case m = 2 for most closed sets of the form F = F°,C\F
compact. In particular, we obtain the following theorem.

Theorem 4.5 Let I be a closed subset of C containing {z : |z| > R} with the
property that F = F°. Suppose that G € H(C\{0}), G(o<) = 0, and that G
does not vanish in C\{0}. Let G be a two and three dimensional Haar space
generator for F. Then, G defined by G(z) := 1/z is the only universal Haar
space generator for F' provided that one of the following conditions holds.
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1. C\F is not a nonempty convex set.

2. C\F is conver and OF contains a corner of angle less than m seen from
the outside of F'.

3. C\F is an ellipse or a disk.

Example 4.6 Let F:= {x € R: 2z > 1} and f(z) := exp(—xz) for z > 1. We ap-
proximate with functions v(x) := 37, zfjsj where —1 <51 <59 <--- <5, < 1.
With n = 3 and shifts s = (—0.5, —0.1,0.1)" we obtained an approximation with
coefficients a = (—5.15678,8.51799, —3.53861)T resulting in an error of 0.0061.

The error curve is depicted in Figure 4.7.

x10°

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Figure 4.7 Error curve of best approximation of exp(—z) in z > 1.
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