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Abstract

We present a deterministic scheme for the discrete Smoluchowski’s coag-
ulation equation based on a binary grid refinement. Starting from the binary
grid Ω0 = {1, 2, 4, 8, 16, . . . }, we first introduce an appropriate grid refine-
ment by adding at each level 2l grid points in every binary subsection of the
grid Ωl. In a next step we derive an approximate equation for the dynamic
behaviour on each level Ωl based on a piecewise constant approximation of
the right hand side of Smoluchowski’s equation. Numerical results show that
the computational effort can be drastically decreased compared to the cor-
responding complete integer grid. When considering unbounded kernels in
Smoluchowski’s equation we use an adaptive time step method to overcome
numerical instabilities which may occur at the tails of the density function.
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1 Introduction

Mathematical models of coalescence, like coagulation, gelation, aggregation etc.,
are based on the so–called Smoluchowski’s equation introduced by Smoluchowski in
[18, 19]. In discrete form, the model is defined by the infinite system of ordinary
differential equations

(1.1)
dci

dt
(t) =

1

2

∑

1≤j>i

k̃(i− j, j)ci−j(t)cj(t)−
∑

j≥1

k̃(i, j)ci(t)cj(t), (i = 1, 2, . . . )

where N0ci(t) denotes the number of clusters of mass i at time t and N0 is the total
number of clusters at time t = 0. The coagulation kernel k̃(i, j) in (1.1) is assumed
to be positive and symmetric, i.e.

k̃(i, j) ≥ 0, k̃(i, j) = k̃(j, i) ∀i, j ∈ N.

Introducing a density function by fi = ici equation (1.1) may be rewritten in the
form

(1.2)
dfi

dt
(t) =

∑

1≤j<i

k(i− j, j)fi−j(t)fj(t)−
∑

j≥1

k(i, j)fi(t)fj(t), (i = 1, 2, . . . )

where the modified coagulation kernel reads

k(i, j) =
1

j
k̃(i, j)

Assuming that an interchange of the summation order on the right hand side of
(1.2) is valid, one directly obtains the conservation principle (mass conservation) in
the form

(1.3)
d

dt

∑

i≥1

fi(t) = 0

In particular for numerical algorithms it seems to be more appropriate to use (1.2)
instead of (1.1), because numerical errors may be controlled looking at the mass
conservation (1.3) for approximate solutions. To our knowledge, Babovsky in [2]
was the first who proposed a stochastic scheme based on the form (1.2).
Exact solutions for Smoluchowski’s equation are known for particular kernels and
initial conditions, see [1]. In the case of monodisperse initial data, i.e. f1 = 1,
fj = 0, j ≥ 2 and the constant kernel k̃(i, j) = 1, one has

(1.4) fi(t) =
4i

(t + 2)2

(

t

t + 2

)i−1

For the unbounded kernel k̃(i, j) = i+ j the exact solution – again for monodisperse
data – reads

(1.5) fi(t) =
ii

i!
(1− e−t)i−1e−i(1−e−t)−t
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These analytic expressions are perfectly suited to validate and compare numerical
simulation schemes, either deterministic are stochastic ones and we will validate our
numerical approach in Section 3 on the basis of the expressions given above.
Another important observation is that if the density functions fi are non–negative
at time t = 0, then the same holds for larger times, see [15, 13]. This yields a fur-
ther error indicator for (determistic) numerical schemes, which should respect this
property at the discretized level. Actually this restriction yields the necessarity to
introduce an adaptive time step method, see also the discussion on deterministic
schemes given below.
It is widely believed that from a computational point of view Smoluchowski’s equa-
tion is more tractable by stochastic algorithms compared to deterministic ones and
several authors proposed algorithms based on the Monte Carlo approach, see (in
chronological order) [9, 5, 20, 8, 14, 16, 2, 6]. The computational effort of deter-
ministic schemes is of the order O(N 2), where N denotes the total number of grid
points, which is used to approximate the infinite system of differential equations as
well as the infinite summation on the right hand side of Smoluchowski’s equation.
The number N has to be chosen large enough in order to satisfies a discrete mass
conservation, although the number of clusters with large mass, i.e. the tail of the
density function {f1, f2, . . . } is often rather small. This even prevents to use higher
order schemes to integrate the system of differential equations in time.
Besides the large computational effort a further problem occurs – at least for un-
bounded kernels k̃(i, j) – when one tries to integrate Smoluchowski’s equation nu-
merically. When integrating the system (1.2) spurious oscillations appear at the
tails of the density function, which can lead to negative values for the density values
fi at large i. These negative values, even arbitrary small, may lead in the sequel
to instabilities of the whole system. Hence, one should take care that the positivity
of solutions of Smoluchowski’s equation is taken over to the discretized system and
in our numerical results we force the strict positivity of the numerical approximates
using an adaptive time step method, see Section 2 and 3. This further indicates why
deterministic schemes for Smoluchowski’s equation are not at all straightforward.
In stochastic algorithms one performs a direct simulation of the dynamic behaviour
of M clusters, each carrying a specific mass. The mass of each cluster changes
according to a stochastic algorithm based on a weak form of the right hand side
of Smoluchowski’s equation. The computational effort of such schemes is linear
in the number of clusters, but the order of convergence is with O(1/M 1/2) rather
slow. Moreover, stochastic algorithms contain statistical fluctuations such that in-
dependent samples have to be performed and the number M has to be chosen large
enough, in particular M À N , in order to guarantee a sufficient accuracy, e.g., at
the tail of the density function.
The performance of Monte Carlo schemes may be improved using the concept of
variance reduction, see [11] for an application to Smoluchowski’s equation. More-
over it is known, that the use of quasi–random sequences in stochastic algorithms
may improve the accuracy as well as the computational effort [7]. Recently, Lecot
and Wagner proposed a quasi–Monte Carlo method on the basis of the Faure se-
quence in base 3 [12]. They proved an error estimate of the order O(1/M 1/3), where
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m denotes the number of simulation particles, which seems to be a lower order of
convergence compared to standard Monte–Carlo schemes. Nevertheless, the numer-
ical experiments given in [12] indicate, that the quasi–Monte Carlo approach yields
a higher accuracy then standard Monte Carlo schemes.
In the present work we propose a deterministic scheme which is based on a partic-
ular refinement technqiue starting from the binary grid {1, 2, 4, 8, 16, . . . }. At each
grid level l a finer grid is defined by adding exactly 2l grid points in every binary
subsection of Ωl such that the new grid Ωl+1 is uniformly in each binary subsection.
This technique allows us

• to catch the tails of the distribution function

• using a total number of grid points on Ωl, which is much smaller compared to
the full integer grid.

Given a certain refined grid Ωl we derive in a next step a suitable approximation of
Smoluchowski’s dynamic on the reduced grid Ωl. The reduced dynamic is obtained
from a piecewise constant approximation of the linear term on the right hand side
of (1.2). The approximation of the nonlinear term then follows from a physically
motivated detailed–balance relation and yields a dynamic on the refined grids which
is invariant at each level except that a modified kernel is introduced at each level.
Finally the resulting system is numerically integrated using standard schemes for
systems of ordinary differential equations, like a fourth–order Runge–Kutta method.
To ensure non–negativity of the numerical approximates, which is the discrete anal-
ogogn of the non-negativity of solutions of (1.2), an adaptive time step method is
used in the case of the unbounded kernel k̃(i, j) = i + j.
Because the number of grid points on a refined grid Ωl can be much smaller than
the number of points on a complete grid, even the computational effort, which is at
least quadratic in the number of unknown, when applying deterministic schemes, is
drastically decreased: numerical results (Section 3) show that (without any signif-
icant loss in the accuracy) the computational effort may be reduced by up to one
order of magnitude and even more.

2 A Deterministic Scheme based on Grid Refine-

ment

The deterministic scheme presented in the following is based on a sucessive grid
refinement starting from the binary grid Ω0 given by

Ω0 = {j ∈ N : j = 2k, k = 0, 1, . . . } = {1, 2, 4, 8, 16, . . . } =: {x01, x
0
2, x

0
3, . . . }

The idea is to introduce a hierarchy of grids Ωl, l ≥ 1, which tends for l →∞ to the
integer set N. Then we use at each grid level Ωl Smoluchowski’s equation given in
the form (1.2), by introducing an appropriate way how to derive a modified kernel
Kl(i, j) out of the given kernel k(i, j).
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In Section 2.1 we formulate our grid refinement technique and state some basic
properties of the grid levels Ωl, which are useful to implement the grid refinement
on a computer. An approximation of Smoluchwoski’s dynamic which can be used
on an arbitrary grid Ωl is proposed in Section 2.2. The procedure is based on the
construction of a modified kernel for the linear part on the right hand side of (1.2)
using a piecewise constant approximation. The approximation of the nonlinear term
in (1.2) then directly follows from a physical detailled–balance principle. Section 2.3
collects some basic remark polynomial reconstructions on Ωl in order to reconstruct
the solution on grid points not included at the level l, Section 2.4 deals with an
adaptive time setp method, which should ensure positivity of the numerical approx-
imates and is necessary at least for unbounded kernels to prevent the formation of
instabilities.

2.1 Hierarchic grid refinement

Let us first look at a way how to define a successive refinement of the initial binary
grid Ω0 formulated above: given a grid Ωl at level l we define the next finer grid Ωl+1

by introducing between two binary points 2k and 2k+1 ∈ Ωl exactly 2l new points
xm, such that the grid Ωl+1 is uniformly between 2k and 2k+1. If the grid Ωl already
contains a complete binary subsequence, no new grid points are introduced. Like
above, we will denote the grid points of Ωl by xl

1, x
l
2, . . . .

E.g., the refined grids Ωl, l = 1, . . . , 4 are given by

Ω1 = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, . . . }

Ω2 = {1, . . . , 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, . . . }

Ω3 = {1, . . . , 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, . . . }

Ω4 = {1, . . . , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, . . . }

Let us summarize some basic properties of the grid refinement given above.

Proposition 1

1) The grid Ωl contains the first 2l+1 integers, i.e.

{xl
1, x

l
2, . . . , x

l
2l+1} = {1, 2, . . . , 2

l+1}

2) The number of grid points of Ωl in the interval [2n, 2n+1 − 1], n = 0, 1, . . . , is
given by the following:

#{xl
m ∈ Ωl : 2n ≤ xl

m < 2n+1} = min{2n, 2l}

3) The number of grid points of Ωl with xl
n ≤ 2q, q ∈ N is given by the following:

#{xl
n ∈ Ωl : xl

n ≤ 2q} =

{

2q : q ≤ l
2l+1 − 1 + (q − l − 1) · 2l : q > l
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4) The indices of the binary grid points of the grid Ωl are given by the relation:

ik = 2k−1, k = 1, . . . , l + 2

ik+1 = ik + 2l, k > l + 2

Proof

The proof directly follows from the construction principle given above. Looking at
the grid level Ωl the total number of grid points included in each binary section is
equal to 2l − 1. Because the length of a binary section 2n, . . . , 2n+1 − 1 is equal to
2n, it follows that every section with n ≤ l is contained in the grid Ωl. From this we
can conclude that

{xl
1, x

l
2, . . . , x

l
2l+1} = {1, 2, . . . , 2

l+1}

Statement 2) directly follows from the observation that every binary section is either
completely contained in Ωl, if n ≤ l, such that

#{xl
m ∈ Ωl : 2n ≤ xl

m < 2n+1} = 2n

or it contains exactly 2l < 2n points.
If q ≤ l, then the set {1, 2, . . . , 2q} is contained in Ωl. For q > l, the grid Ωl contains
the set {1, 2, . . . , 2l+1−1} and the following (q−l−1) binary sections each consisting
of 2l points, from which we can conclude the expression given in 3). The recursion
given in 4) directly follows from the considerations above.

2.2 A Smoluchowski–type equation on grid level Ωl

Let us first consider the binary grid Ω0 and look for a way how to formulate an equa-
tion on Ω0, which approximates the dynamics given by the complete Smoluchowski–
system. The task is to define an appropriate approximation of the right hand side
of Smoluchowski’s equation using the reduced number of grid points on Ω0 and this
is obviously connected to a way how to recover values fi for i ∈ N from discrete
values given on the binary grid Ω0.
Let us denote by g0n, n = 1, 2, . . . , the approximate solution of fi with i = 2n−1 on
the binary grid Ω0 and by LΩ0

(i) the approximation of fi, i ∈ N, using the values
g0n, n = 1, 2, . . . ,.
Then the linear part of the right hand side of (1.2) for i = 2n−1 may be written as

(2.1)
∑

j≥1

k(i, j)fifj ≈ g0n
∑

l≥1

k(i, l)LΩ0
(l)

One should notice that the summation on the right hand side of (2.1) still runs over
the whole set of integers N, i.e. one further needs to simplify the right hand side in
order to reduce it to a sum over the binary grid points i = 2m−1. The most simple
reconstruction is a piecewise constant recovery, e.g. one defines

LΩ0
(l) = g0m, l = 2m−1 + 1, 2m − 1, m ≥ 2
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i.e. the values g0m are extended to binary sections to the right. Using the same
approximation for the kernel k(i, l), i.e.

k(i, l) = k(i, 2m−1), l = 2m−1 + 1, 2m − 1, m ≥ 2

the right hand side of (2.1) may be approximated by

g0n
∑

l≥1

k(i, l)LΩ0
(l) ≈ g0n

∑

m≥1

2m−1k(2n−1, 2m−1)g0m

where the summation on the right hand side now runs only over the grid points of
Ω0.
The piecewise constant reconstruction LΩ0

(l) = g0m+1, l = 2m−1 + 1, 2m − 1, m ≥
2 as well as a similar expression for the approximation of the kernel yields the
corresponding approximation

g0n
∑

l≥1

k(i, l)LΩ0
(l) ≈ g0n

∑

m≥1

max{1, 2m−2}k(2n−1, 2m−1)g0m

i.e. the values g0m as well as the kernel are extended to binary sections to the left.
One may even consider a convex combination of both approximations, i.e. we intro-
duce a modified kernel of the form

(2.2) K0(n,m) =
(

ω0 · 2
m−1 + (1− ω0) ·max{1, 2m−2}

)

k(2n−1, 2m−1)

with ωl ∈ (0, 1) in order to improve the crude approximation by piecewise constant
functions.
To obtain an equivalent approximation for the nonlinear term on the right hand
side of (1.2) we make use of the physically motivated concept of detailled–balance,
which relates the gain and loss terms of kinetic models, like in the original Smolu-
chowski’s equation. Hence, given for a binary grid point i = 2n−1, n = 1, 2, . . . , the
approximation reads

∑

1≤j<i

k(i− j, j)fi−j(t)fj(t) ≈
∑

1≤m<n

K0(n−m,m)g0n−m(t)g0m(t)

with kernel K0(n−m,m) given by (2.2).
In summary, on the binary grid Ω0 we consider Smoluchoski’s equation given by the
infinite system of ordinary differential equations in the form

(2.3)
dg0i
dt

(t) =
∑

0≤j<i

K0(i− j, j)g0i−j(t)g
0
j (t)−

∑

j≥0

K0(i, j)g
0
i (t)g

0
j (t), (i = 0, 1, . . . )

where the modified kernel K0(i, j) is given by (2.2).
A nice feature of this approach is that the dynamic equation itself remains invariant
when going from full integer grid N downto to the binary grid Ω0 = {1, 2, 4, 8, . . . }
and only the kernel of Smoluchowski’s equation need to be modified. As a direct
consequence the ode–system (2.3) satisfies the same conservation principle, namely
mass conservation, as the original model:
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Lemma 2 Assume that an interchange of the summation order on the right hand
side of (2.3) is valid, then (2.3) satisfies the conservation principle

d

dt

∑

i≥1

g0i (t) = 0

Using the same piecewise constant approximation on the higher grids Ωl, l ≥ 1,
yields at each level the infinite systems of ordinary differential equations

(2.4)
dgl

i

dt
(t) =

∑

1≤j<i

Kl(i− j, j)gl
i−j(t)g

l
j(t)−

∑

j≥1

Kl(i, j)g
l
i(t)g

l
j(t), (i = 1, 2, . . . )

where the index i at level l stands for the i–th grid point xi of Ωl. The kernel
Kl(n,m) now reads Kl(n,m) = Il(m)k(xn, xm) with

(2.5) Il(m) =







1 : xm < 2l+1

2p−l : xm > 2l+1, xm /∈ Ω0
ωl · 2

p−l + (1− ωl) · 2
p−l−1 : xm ≥ 2l+1, xm ∈ Ω0

with p = [lnxm/ ln 2] and ωl ∈ (0, 1).

Example 3 As an example, let us look at the grid Ω4 given by

Ω4 = {1, . . . , 32, 34, 36, . . . , 62, 64, 68, 72, . . . , 124, 128, . . . }

The grid contains the first 32 integers, such that

I4(m) = 1, m ∈ {1, 2, . . . , 31}

The binary points xm = 2k with k ≥ 5 are extended exactly 2k−4–times to the left
and 2k−5–times to the right. Using a convex combination this exactly yields the
expression

I4(m) = ωl · 2
p−l + (1− ωl) · 2

p−l−1

if xm ∈ Ω0. The other points in a binary section are extended by the same amount
to the left and the right, namely 2p−l–times, where p = [ln xm/ ln 2]. This gives the
remaining expression in (2.5).

2.3 Polynomial reconstruction on grid level Ωl

In order to reconstruct the values of the density function for integers j /∈ Ωl, one
should use a higher order approximation than the piecewise constant approximation
used in the previous section.
A classical approach is to use a cubic spline interpolation based on the grid Ωl,
i.e. on the interval [1,∞) (or the truncated interval [1, xl

Nl
], where xl

Nl
denotes the

largest grid point) one constructs the piecewise cubic polynomial, which solves the
interpolation problem

Sl
3(x

l
m) = gl

m, m = 1, 2, . . .

8



In order to obtain an unique piecewise cubic spline one should specify additional
boundary conditions at both sides of the interpolation interval. Without additional
knowlegde on the behaviour of the solution of Smoluchowski’s equation at the bound-
aries x = 1 and x → ∞ (or xl

N) this might be a drawback when using cubic spline
interpolation.
Another possible approach from approximation theory are the so–called linear (or
non–linear) l–point subdivision schemes. In these methods one starts from the given
data on the grid Ωl and sucessively refines the grid by introducing new data points
using a linear combination of the previous data taking from a stencil of length l, see
[3]. In [4] this approach was recently extended to ENO– or WENO–reconstruction
techniques introduced by Harten et al. in [10] for higher order finite–difference meth-
ods applied to hyperbolic conservation laws. We do not go in more detail and leave
the question about an appropriate (polynomial) recovery for integer j /∈ Ωl for
further invetigations.

2.4 Adaptive time step method

As mentioned in the introduction it is shown in [15, 13] that if the density values
fi are non–negative at time t = 0, then the same holds for larger times. This
is an important feature of the continuous model which should be taken over to the
discretized levels, i.e. when numerically integration Smoluchowski’s equation. Hence
we require that during the integration all approximate values remain non–negative,
if this is satisfied at initial time.
Numerical simulations with a standard fourth–order Runge–Kutta scheme (see 3.2)
on a finite grid (either complete or refined) show that for the unbounded kernel
k̃(i, j) = i + j the non–negativity of the numerical approximates is violated at the
tails of the density function at a certain simulation time t = t∗.
At what time t = t∗ these phenomena occur depend on

• the underlying grid (complete or refinement level),

• the truncation to a finite grid

• as well as on the size of the time step.

In the sequel of the simulation the integration becomes unstable and yields arbitrary
large oscillations. These phenomena even occur using a fourth–order TVD–Runge–
Kutta scheme as given by Shu and Osher in [17].
To overcome these instabilities we force the non–negativity of the numerical ap-
proximates by continuing the time integration wtih a half step size. This heuristic
approach yields for each test problem considere non–negative numerical approxi-
mates and in all problems it turned out to be sufficient to halfen the step size 2 or 3
times during the whole simulation time. More details and numerical results on this
problem are given in Section 3.2.
One should notice that the problem of negative values did not occur when using the
constant kernel k̃(i, j) = 1 and this indicates that negative values at the tails occur
due to some round–off errors close to zero.
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3 Numerical Examples

In the following we give some numerical results based on the method proposed in
the previous section, namely the simulation of Smoluchowski’s equation formulated
on a reduced number of grid points:

a) in Section 3.1 we compare the exact solution with numerical approximates
obtained from a first order explicit time integration on a finite (truncated)
integer grid Ω∗ = {1, 2, . . . , xmax} as well as the grid levels Ωl constructed
by the grid refinement technique given in 2.1 and the approximate dynamics
from 2.2. The validity of a truncation to a finite grid is controlled by looking
at the discrete mass conservation of the resulting systems. The main empha-
sis is to show that the method presented in Section 2 works quite well and
that the computational costs using a restricted number of grid points can be
significantly reduced,

b) in Section 3.2 we apply a higher–order time integration scheme, namely a clas-
sical fourth–order Runge–Kutta method, using the same grids Ω∗ and Ωl like
discussed in 3.1. The time step is enlarged by a factor of 10 compared to the
previous simulations and an adaptive time step method, like discussed in 2.4 in
this case is necessary to ensure non–negativity of the numerical approximates.

3.1 Explicit first order time integration

In order to integrate Smoluchowski’s equation either on N or the grids Ωl introduced
above, it is necessary to truncate the infinite grids to finite ones. How many grid
points are necessary mainly depends on the behaviour of the tail of the distribu-
tion function {f1, f2, . . . }. Here, the mass conservation of Smoluchowski’s equation
written in the form (1.2) may be used to check the validity of the truncation: if
the discrete mass conservation is not satisfied satisfactorily accurate, the number of
grid points in the truncated grid is obviously too small. On the other hand, if the
number of grid points is too large, because the tail starts at sufficiently small cluster
masses, the computational effort may be drastically reduced using a smaller number
of grid points.
If a finite integer grid {1, 2, . . . , N} is fixed, an explicit first order time integration
of (1.2) is given by
(3.6)

fn+1
i = fn

i +∆t ·

(

∑

1≤j<i

k(i− j, j)fn
i−jf

n
j −

∑

1≤j≤N

k(i, j)fn
i fn

j

)

, (i = 1, 2, . . . , N)

where ∆t is the time step and the fn
i ’s, i = 1, 2, . . . , N denote the numerical ap-

proximates at time level tn = n ·∆t, n ≥ 0.
The corresponding time integration scheme on a finite grid Ωl = {xl

1, . . . , x
l
Nl
} of

level l reads

(3.7) gl,n+1
i = gl,n

i +∆t ·

(

∑

1≤j<i

Kl(i− j, j)gl,n
i−jg

l,n
j −

∑

1≤j≤N

Kl(i, j)g
l,n
i gl,n

j

)
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for i = 1, . . . , Nl and kernels K0 and Kl, l ≥ 1 are given by (2.2) and (2.5), respec-
tively.

3.1.1 The constant kernel k̃(i, j) = 1

In the first numerical experiment we use monodisperse initial data, i.e. f1 = 1,
fj = 0, j ≥ 2, together with the constant kernel k̃(i, j) = 1, which yields the exact
solution given by (1.4).
We denote by Ω∗ the finite integer grid given by

Ω∗ = {1, 2, . . . , 1024}

and by Ω5, . . . ,Ω8 the finite refined grids of levels 5, . . . , 8, respectively, e.g. the grid
Ω6 consists of the 320 points

Ω6 = {1, 2, . . . , 128, 130, . . . , 254, 256, 260, . . . , 508, 512, 520, . . . , 1016, 1024},

i.e. on Ω6 we use approximately one third of the grid points of Ω∗.
The solution is computed up to time t = 10 using 104 explicit time steps with step
size ∆t = 10−3.
The exact solution at various times on the continuous interval [0 : 32] is shown in
Figure 1, which shows the decay to the tails of the density function in dependence
of the time.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20  25  30

t = 2
t = 5

t = 10

Figure 1: Exact solution at various times for monodisperse initial data and the
constant kernel k̃(i, j) = 1.

Table 1 gives a comparison between the exact solution and the numerical approx-
imates obtained from the grids Ω∗, Ω5, . . . ,Ω8. The (absolute) error between the
exact solution and the numerical approximates obtained on Ω∗ are due to first order
time integration by an explicit Euler method. On all grids considered the discrete
mass conservation is fulfilled exactly, which indicates that the truncation at x = 1024
is reasonable.
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The results show that the numerical values obtained at the grid Ω6 already coincide
with the values of the full integer grid Ω∗ for fi with i ≤ 128. For the numerical
approximation of fi with i ≥ 256 the derivation in the tail becomes obvious on the
coarse grid Ω6, but the exact solution is less then 10−20 and therefore neglibable.
Because the computational effort is of the order O(n2), where n denotes the total
number of grid points, one expects that the computational costs are drastically de-
creased when going from Ω∗ to Ω6. This is validated by the results shown in Table
2: the computational costs between Ω∗ and Ω6 differ by a factor of more than 17.

point exact error(Ω∗) error(Ω5) error(Ω6) error(Ω7) error(Ω8)

1 0.02778 1.99 · 10−5 1.99 · 10−5 1.99 · 10−5 1.99 · 10−5 1.99 · 10−5

2 0.04630 1.44 · 10−5 1.44 · 10−5 1.44 · 10−5 1.44 · 10−5 1.44 · 10−5

4 0.06430 3.17 · 10−6 3.23 · 10−6 3.17 · 10−6 3.17 · 10−6 3.17 · 10−6

8 0.06202 6.49 · 10−6 6.43 · 10−6 6.49 · 10−6 6.49 · 10−6 6.49 · 10−6

16 0.02885 2.79 · 10−6 2.76 · 10−6 2.79 · 10−6 2.79 · 10−6 2.79 · 10−6

32 0.00312 8.70 · 10−7 8.74 · 10−7 8.70 · 10−7 8.70 · 10−7 8.70 · 10−7

64 1.83 · 10−5 2.83 · 10−8 2.83 · 10−8 2.83 · 10−8 2.83 · 10−8 2.83 · 10−8

128 3.13 · 10−10 1.55 · 10−12 8.81 · 10−8 1.55 · 10−12 1.55 · 10−12 1.55 · 10−12

256 4.58 · 10−20 6.11 · 10−22 4.27 · 10−10 4.43 · 10−15 6.11 · 10−22 6.11 · 10−22

Table 1: Error between the exact solution and the numerical approximations obtained
from the grids Ω∗, Ω5, . . . ,Ω8 at the binary grid points 20, . . . , 28 at time t = 10.

Ω∗ Ω5 Ω6 Ω7 Ω8
CPU[sec] 79.89 1.52 4.54 13.85 38.34

nr. pts 1024 192 320 512 768

Table 2: CPU–time in seconds used for the simulation on the grids Ω∗, Ω5, . . . ,Ω8 and
corresponding number of grid points.

Even the results obtained on the coarse grid Ω5 containing 192 points, which de-
creases the numerical effort compared to Ω∗ by the significant factor of about 50,
are nearly as accurate as on the full grid Ω∗ up to i = 128.
This first example indicates that the (crude) piecewise constant approximation of
the right hand side of Smoluchowski’s equation (1.2) is – at least in this case –
sufficiently accurate.

3.1.2 The unbounded kernel k̃(i, j) = i + j

In a second example we apply a first order explicit time integration with the un-
bounded kernel k̃(i, j) = i+ j such that the exact solution with monodisperse initial
data is given by (1.5), see Figure 2 for the exact solution at t = 1, 2 and 5, respec-
tively.
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Figure 2: Exact solution at various times for monodisperse initial data and the
constant kernel k̃(i, j) = i+ j.

The unbounded kernel is more difficult to simulate because clusters with higher
masses are generated more quickly than in the previous example. Hence we even
use larger grids for this test problem: we denote by Ω∗ the full integer grid consisting
of 2048 points and the corresponding finite refined grids of levels 6, 7 and 8, denoted
by Ω6,Ω7 and Ω8, respectively.
The numerical solutions are computed up to the time t = 1 again using a time
step ∆t = 0.001. Table 3 gives a comparison between the exact solution and the
numerical approximates computed on the grids Ω∗, Ω6, . . . ,Ω8, respectively. The
corresponding CPU–times in seconds together with the total number of grid points
are shown in Table 4.
The numerical approximations on the various grids behave qualitatively like in the
previous example, although the tail of the cluster distribution is shifted by about
one order of magnitude to the right. The deviation between the exact solutions and
the results obtained on grid Ω∗ are again due to the first order time integration
scheme. The numerical approximates obtained on the different grids Ω∗, Ω6, . . . ,Ω8
coincide up to the point i = 128. Differences are observed again in the tail of the
density function starting at i = 256. Concerning the computational effort Table
4 shows that the CPU–times used on Ω∗ and Ω6 differ by a factor of about 145,
whereas on Ω8, where the numerical approximates coincide with the one on Ω∗ even
at the points i = 256 and i = 512, the computational effort is reduced still by a
factor of about 16.
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point exact error(Ω∗) error(Ω6) error(Ω7) error(Ω8)

1 0.19551 3.00 · 10−4 3.00 · 10−4 3.00 · 10−4 3.00 · 10−4

2 0.13137 1.17 · 10−5 1.18 · 10−5 1.17 · 10−5 1.17 · 10−5

4 0.07907 1.01 · 10−4 1.01 · 10−4 1.01 · 10−4 1.01 · 10−4

8 0.03929 7.99 · 10−5 7.99 · 10−5 7.99 · 10−5 7.99 · 10−5

16 0.01351 7.64 · 10−6 7.64 · 10−6 7.64 · 10−6 7.64 · 10−6

32 0.00224 1.69 · 10−5 1.69 · 10−5 1.69 · 10−5 1.69 · 10−5

64 8.68 · 10−5 2.92 · 10−6 2.92 · 10−6 2.92 · 10−6 2.92 · 10−6

128 1.84 · 10−7 1.92 · 10−8 1.92 · 10−8 1.92 · 10−8 1.92 · 10−8

256 1.17 · 10−10 3.18 · 10−13 6.00 · 10−10 3.18 · 10−13 3.18 · 10−13

512 6.64 · 10−23 3.86 · 10−23 5.67 · 10−12 1.03 · 10−17 3.86 · 10−23

Table 3: Error between the exact solution and the numerical approximations obtained
from the grids Ω∗, Ω6, . . . ,Ω8 at the binary grid points 20, . . . , 29 at time t = 1.

Ω∗ Ω6 Ω7 Ω8 Ω9 Ω10
CPU[sec] 609.57 4.20 12.91 37.54 135.75 629.09

nr. pts 2048 384 640 1024 1536 2048

Table 4: CPU–time in seconds used for the simulation on the grids Ω∗, Ω6, . . . ,Ω10 and
corresponding number of grid points.

In summary, the results of the numerical simulations using a simple and straightfor-
ward explicit first order time integration given above demonstrate that the compu-
tational effort may be drastically reduced when using a hierarchic grid refinement
and corresponding Smoluchowski–type equation like formulated in Section 2.

3.2 Higher–order time integration schemes

Given an ordinary differential equation for u(x) in the form

du(x)

dx
= f(x, u)

a standard fourth–order Runge–Kutta method with step size h is given by

k1 = hf(xn, un)

k2 = hf

(

xn +
h

2
, un +

k1
2

)

k3 = hf

(

xn +
h

2
, un +

k2
2

)

k4 = hf (xn + h, un + k3)

un+1 = un +
1

6
(k1 + 2k2 + 2k2 + k3) + O(h5)
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3.2.1 The constant kernel k̃(i, j) = 1

In the following we apply the fourth–order scheme given above to the numerical
integration of Smoluchowski’s equation for the test problem of Section 3.1.1, i.e. the
constant kernel k̃(i, j) = 1, where we enlarge – due to the higher accuracy – the
time step to ∆t = 0.01.

point exact error(Ω∗) error(Ω5) error(Ω6) error(Ω7) error(Ω8)

1 0.02778 8.03 · 10−13 2.30 · 10−8 6.86 · 10−13 8.03 · 10−13 8.03 · 10−13

2 0.04630 1.81 · 10−12 3.89 · 10−8 2.00 · 10−12 1.81 · 10−12 1.81 · 10−12

4 0.06430 3.58 · 10−15 5.55 · 10−8 2.79 · 10−13 3.58 · 10−15 3.58 · 10−15

8 0.06202 2.20 · 10−15 5.65 · 10−8 2.75 · 10−13 2.20 · 10−15 2.20 · 10−15

16 0.02885 1.01 · 10−15 2.90 · 10−8 1.35 · 10−13 1.01 · 10−15 1.01 · 10−15

32 0.00312 3.56 · 10−17 3.73 · 10−9 1.60 · 10−14 3.56 · 10−17 3.56 · 10−17

64 1.83 · 10−5 1.50 · 10−18 2.87 · 10−11 1.34 · 10−16 1.50 · 10−18 1.50 · 10−18

128 3.13 · 10−10 1.28 · 10−20 8.84 · 10−8 1.53 · 10−20 1.28 · 10−20 1.28 · 10−20

256 4.58 · 10−20 5.47 · 10−29 4.29 · 10−10 4.47 · 10−15 5.47 · 10−29 5.47 · 10−29

Table 5: Error between the exact solution and the numerical approximations obtained
from the grids Ω∗, Ω5, . . . ,Ω8 at the binary grid points 20, . . . , 28 at time t = 10 using a

fourth–order Runge–Kutta scheme.

Ω∗ Ω5 Ω6 Ω7 Ω8
CPU[sec] 32.63 0.62 1.85 5.55 15.43

nr. pts 1024 192 320 512 768

Table 6: CPU–time in seconds used for the simulation on the grids Ω∗, Ω5, . . . ,Ω8 using
a fourth–order Runge–Kutta scheme and corresponding number of grid points.

The results of the simulations are given in the Tables 5 and 6. Although the time
step is enlarged by a factor of 10, the error drops down significantly compared to the
first order scheme, where the gain obtained on the coarse grid Ω5 is less compared
with the other ones.
Even the computational effort drops down by a factor of 2.5 on all grids, the ratio
of the CPU–times between the full integer grid Ω∗ and the refined grids Ω5, ...,Ω8
remains the same like in Section 3.1.1. One should notice that using a fourth–order
Runge–Kutta scheme one needs to evaluate the right hand side of the system four
times in each time step.

3.2.2 The unbounded kernel k̃(i, j) = i + j

In the final test problem we apply the fourth–order Runge–Kutta scheme to the
unbounded kernel of Section 3.1.2 and the numerical results at time t = 1 are given
in the Tables 7 and 8.
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point exact error(Ω∗) error(Ω6) error(Ω7) error(Ω8)

1 0.19551 2.04 · 10−10 1.15 · 10−8 1.53 · 10−10 1.81 · 10−10

2 0.13137 8.87 · 10−10 8.65 · 10−9 8.04 · 10−10 8.55 · 10−10

4 0.07907 4.54 · 10−10 4.46 · 10−9 4.77 · 10−10 4.74 · 10−10

8 0.03929 1.16 · 10−10 2.78 · 10−9 1.95 · 10−10 1.46 · 10−10

16 0.01351 7.54 · 10−11 9.45 · 10−10 3.17 · 10−11 7.44 · 10−11

32 0.00224 4.99 · 10−11 1.55 · 10−10 5.74 · 10−11 7.08 · 10−11

64 8.68 · 10−5 2.03 · 10−13 1.85 · 10−11 1.35 · 10−11 1.37 · 10−11

128 1.84 · 10−7 3.12 · 10−12 1.50 · 10−13 3.01 · 10−13 9.55 · 10−13

256 1.17 · 10−10 7.27 · 10−15 7.40 · 10−10 8.26 · 10−18 5.35 · 10−17

512 6.64 · 10−23 9.12 · 10−25 7.90 · 10−12 1.89 · 10−17 1.92 · 10−26

Table 7: Error between the exact solution and the numerical approximations obtained
from the grids Ω∗, Ω6, . . . ,Ω8 at the binary grid points 20, . . . , 29 at time t = 1.

Ω∗ Ω6 Ω7 Ω8
CPU[sec] 232.78 9.50 24.80 34.87

nr. pts 2048 384 640 1024

Table 8: CPU–time in seconds used for the simulation on the grids Ω∗, Ω6, . . . ,Ω8 and
corresponding number of grid points.

On the refined grids Ω6, Ω7 and Ω8 it appears that the strict positivity of the
numerical approximates starting with a time step ∆t = 0.01 is violated after a
certain simulation time t < 1. Hence we apply the heuristic algorithm of Section
2.4. In particular, on the coarse grid Ω6 the time step need to decreased by the factor
2 at times t = 0.38 (two times) and t = 0.39, on Ω7 at times t = 0.54, t = 0.55 and
t = 0.585 and on Ω8 at times t = 0.75 and t = 0.76. For the remaining simulation
the time steps stay constant at ∆t = 0.00125 on Ω6, Ω7 and ∆t = 0.0025 on the fine
grid Ω8. On the full grid Ω∗ the same occurs but at a later time t > 1, such that
the adaptive time step method is not applied during the simulation.
Let us first discuss the results on the full grid Ω∗: like in the previous case the errors
drop down significantly by several orders of magnitude compared to the first order
time integration. Because the time step is enlarged by a factor of 10, besides the
higher accuracy, even the computational effort is reduced by a factor of 2.5, like in
the previous section.
The effect of the adaptive time step method can be observed in the results of Tables
7 and 8 for the reduced grids Ω6, Ω7 and Ω8. First of all one should notice that
the CPU–times on Ω6 and Ω7 increase by a factor of 2 compared to the first order
scheme. As a consequence the gain compared to the full grid simulation is reduced
by a factor of 5, but still remains at least one order of magnitude, namely about
25 and 10 on Ω6 and Ω7, respectively. On the fine grid Ω8 the CPU–time remains
naerly constant, such that the gain compared to Ω∗ is reduced by a factor of only
2.5 and the CPU–time is still reduced by a factor of 7.
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4 Conclusion

In the present paper we proposed a deterministic scheme for Smoluchowski’s equa-
tion in discrete form based on reduced grids obtained from a binary grid refinement
technique. The differential equations on the reduced grid exactly coincide with the
one of the full integer grid except that the kernel of Smoluchowski’s equation is
modified using a piecewise–constant approximation.
The numerical results given in the paper indicate that the computational effort may
be drastically decreased without a significant loss in the accuracy of the numeri-
cal approximates, where the gain turns out to be more significant using a bounded
kernel. The numerical instabilities, which may appear at the tails of the density
function due to round–off errors, are compensated using a heuristic adaptive time
step control.
The results even indicate that it is worthwhile to implement an adaptive grid refine-
ment technqiue starting from the coarse complete binary grid consisting only of the
binary points i = 2j, j = 1, . . . ,m. Such an adaptive grid refinement technique is
currently under investigation [21]. A further important task will be to compare the
computational effort of the deterministic scheme given here with stochastic methods
proposed in the literature.
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