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Abstract Representing a set by its boundary means a considerable losslesss data
reduction by decrease of dimensionality. The price for this reduction is
that usually boundaries are topologically much more complex than the
sets described by them.

The aim of this paper is to present an approach for handling the
boundary of a set. This approach does not make use of differential
geometry. It is shown that it is indeed possible to derive important
structural properties of a set by inspecting only its boundary.
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Introduction

A set in the plane (or in higher dimensional space) can be described
efficiently by means of its boundary (or surface) whenever the boundary
has the Jordan property which means that it separates the plane into
two connected components, the interior and the exterior. In this paper
the following question is investigated: What can be said about a set if
its boundary is probed in a finite number of points?

When investigating the boundary of a set, it is appropriate to im-
pose ‘tameness’ assumptions on it. In the context of image processing,
polygonal or even discrete sets are considered, so the usual tools of dif-
ferential geometry are not adequate. Consequently, a ‘differentialless’
geometry in the sense defined by Latecki und Rosenfeld [16] should be
adapted. A very efficient description of a set can be found by attribut-
ing its boundary with predicates as convex or concave parts [15]. This
representation is closely related to the ‘Curvature Scale Space’ (see e.g.
[19]). In the latter approach the curvature zero crossing points were used
as signatures in scale space. These curvature crossing points correspond
to points where convex and concave parts of the boundary curve over-
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lap. This means that the description by means of convex and concave
parts is more general than the curvature zero crossings since the former
does not make use of any concept from differential geometry. Moreover,
by labeling parts of the boundary between curvature crossing points as
convex or concave parts, ambiguities can be avoided. This is of major
importance for shape coding algorithms [11].

The mapping associating to each linear functional the set of its local
maximizers on a nonempty compact convex set is upper semi–continuous
(this concept will be defined later, see Definition 5.1). Moreover, an
upper semi–continuous inverse for this map can be found. The study of
this map yields insights into the structure of the boundary of a given
set. The mapping can be deformed to yield a homeomorphism from the
unit sphere onto the boundary of the set. Moreover, by a finite number
of boundary points and tangent directions one can find a directionally
convex set containing the given set.

In the general case, things become very complicated. It becomes
necessary to rule out ‘wild’ boundary parts. A minimal requirement is
that the boundary of the set under consideration should have the Jordan
property. However, some more structure has to be imposed in order to
get practical results. A certain regularity condition is stated which is
theoretically tractable and practically acceptable.

In 1987 Scherl ([22], see also [7]) constructed a document processing
system. In this system, a set (e.g. a letter, a word, a text line . . . ) is
represented by a rather small subset of boundary points together with
tangent information. By means of this representation the amount of data
can be reduced very efficiently while retaining sufficient information to
perform typical pattern recognition tasks like segmentation of letters,
words, text lines, or a classification of different document components
(text, structuring elements, pictures), or classification of specific letter
styles in the text (serifs, slanted letters).

The aim of this paper is to give a theoretical framework for the con-
cepts mentioned above which is able to cover also the discrete case.
First, some known theoretical results about properties of boundaries of
sets are given. Under a certain regularity condition the boundary con-
sists of finitely many convex and concave parts which can be used for
describing the boundary. In the second part it is shown that the bound-
ary of a convex set in R

d can be mapped “almost homeomorphic” onto
the sphere Sd−1. The generalization to the nonconvex case is indicated.
It was not intended here to provide algorithmic details, this is partially
done in Helene Dörksen’s Thesis [4].
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1. Sets and Surfaces in Rd

We consider sets in R
d. Denote by 〈·, ·〉 the ordinary scalar product

and by ‖ · ‖ the Euclidean norm in R
d. The natural topology of R

d is
generated by declaring the sets (open balls)

Bε(x) =
{

y ∈ R
d | ‖y − x‖ < ε

}

(for ε > 0) to be open sets. If the specific value of ε > 0 does not matter
we write B(x) instead of Bε(x).

Let S ⊆ R
d be a bounded set. Denote by cl S its topological closure,

by int S its interior and by Γ = bd S the boundary of S.
In R

d the sphere Sd−1 is defined by

Sd−1 =
{

x∗ ∈ R
d | ‖x∗‖ = 1

}

.

The elements x∗ in Sd−1 are also termed directions.

Definition 1.1 A (closed) surface in R
d is a set Γ which is homeo-

morphic to the sphere Sd−1. A surface in R
2 is also termed a (closed)

curve.

One important tool of our investigations will be convexity theory (see
the books of Eggleston [8], Valentine [29] or Rockafellar [21]).

Definition 1.2 A set S ⊆ R
d is said to be convex if x, y ∈ S and

0 ≤ λ ≤ 1 together imply (1 − λ)x + λy ∈ S.

Definition 1.3 Given any set S ⊆ R
d. The convex hull of S is the

smallest convex set which contains S. It is denoted by conv S.

Since the intersection of any system of convex sets is always convex,
the concept of the convex hull is well defined.

Definition 1.4 Let D ⊆ Sd−1 be a set of directions.
The set S is D–convex if for all x∗ ∈ D and for all x ∈ R

d the set
S ∩ {x + tx∗ | t ∈ R} is convex (i.e. an interval).

By this Definition, a D–convex set needs not be connected, in contrast
to convex sets. The intersection of any system of D–convex sets is always
D–convex. However, the intersection of connected D–convex sets is not
necessarily connected (see Example 1.1). By taking the intersection of
all D–convex sets containing a given set S, we obtain the D–convex hull
of S which is the smallest D–convex set containig S. For properties of
D–convex sets see the book of Fink and Wood [9].

Example 1.1 In Figure 1 an example of two sets is given which are
convex with respect to two directions in the plane and connected whose
intersection, however, is D–convex but not connected.



4

S1

S2
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S2

Figure 1. Intersection of two D–convex sets.

The sets S1 and S2 are both connected and D–convex with respect to
D = {(0, 1), (1, 0)}. Their intersection (shaded area) is D–convex but
not connected.

2. Convex and Concave Points

Given a set S ⊆ R
d with boundary Γ. Generally we assume that S is

a compact set.

Definition 2.1 x ∈ Γ is a convex point of S if there is a neighborhood
B(x) such that B(x) ∩ S is convex. Denote by T0 ⊆ Γ the set of all
convex points of S.

x ∈ Γ is a concave point of S if there is a neighborhood B(x) such
that B(x)∩CS is convex (CS = Rd \S is the complement of S). Denote
by S0 ⊆ Γ the set of all concave points of S.

In Figure 3 below one can find examples for convex (pictures T, L)
and concave points (S, L) as well as a point which is neither convex nor
concave (picture I). Generally it is possible that a dense subset of the
boundary consists of points of the latter type (see the discussion at the
begin of Section 4 below). We have to impose regularity conditions in
order to rule out such situations.

From the Separation Theorem for Convex Sets [29, Part II] we con-
clude:

If x is a convex point of S then
C1 there exists a neighborhood B(x) and a direction x∗ ∈ Sd−1

such that z ∈ B(x) and 〈z, x∗〉 > 〈x, x∗〉 imply z /∈ S.

If x is a concave point of S then
C2 there exists a neighborhood B(x) and a direction x∗ ∈ Sd−1

such that z ∈ B(x) and 〈z, x∗〉 < 〈x, x∗〉 imply z ∈ S.
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This observation leads to the Definition

Definition 2.2 x ∈ Γ is a T–point (‘Top point’) of S if there is a
neighborhood B(x) and a direction x∗ ∈ Sd−1 such that z ∈ B(x) and
〈z, x∗〉 > 〈x, x∗〉 imply z /∈ S. Denote by T ⊆ Γ the set of all T–points
of S.

x ∈ Γ is an S–point (’Saddle point’) of S if there is a neighborhood
B(x) and a direction x∗ ∈ Sd−1 such that z ∈ B(x) and 〈z, x∗〉 < 〈x, x∗〉
imply z ∈ S. Denote by S ⊆ Γ the set of all S–points of S.

Remark 2.1 The notations ‘T–point’ and ‘S–point’ are due to Scherl
[22] who introduced these concepts in the context of document analysis.

For deciding whether a given boundary point is a T– or S–point only
information from the boundary is needed together with an indication on
which side of the boundary the set is situated. In contrast, for deciding
whether a boundary point is convex or not, information has to be gath-
ered from its neighborhood which contains points not on the boundary.
Therefore, the concept of T– or S–points is more well–suited for practical
applications than the concept of convex and concave points.

Remark 2.2 There exist examples of nonconvex sets whose boundaries
consist only of T–points. Tietze [25] gave a condition guaranteeing that
this situation cannot happen (see condition A in Section 3 below and
[29, Theorem 4.4]).

We can associate to each T– or S–point of Γ a direction x∗ ∈ Sd−1

such that C1 or C2, respectively, holds for this point. This lead Scherl
[22] to the following Definition:

Definition 2.3 The pair (x, x∗) is a T or a x∗–T (S or x∗–S) descrip-
tor of S if x ∈ Γ is a T– ( S–) point and if C1 (C2) with direction x∗

holds in x.

There are points on the boundary which are T–points as well as S–
points. For convenience we give them an extra name:

Definition 2.4 x ∈ Γ is an L–point (‘Line point’) of S if x is as well
a T– as an S–point. Denote by L ⊆ Γ the set of all L–points of S.

We define further:

Definition 2.5 A point x ∈ Γ is an extreme T–point if there exists a
direction x∗ ∈ Sd−1 such that 〈z, x∗〉 > 〈x, x∗〉 implies z /∈ S. Denote
by ET ⊆ Γ the set of all extreme T–points of S.
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A point x ∈ Γ is an extreme S–point if there exists a direction x∗ ∈
Sd−1 such that 〈z, x∗〉 > 〈x, x∗〉 implies z /∈ S. Denote by ES ⊆ Γ the
set of all extreme S–points of S.

We state some rather simple topological properties which follow di-
rectly from the definitions.

Lemma 2.1 The sets T0 and S0 are open subsets of Γ.
L = T0 ∩ S0 = T ∩ S is open.
The sets ET and ES are closed subsets of Γ.

Definition 2.6 Given a set S ⊆ R
d with boundary Γ. The subset Γ0

of Γ is termed a convex patch of the boundary if conv Γ0 ⊆ S ∪ Γ.
Γ0 is termed a concave patch of the boundary if conv Γ0 ⊆ CS ∪ Γ,

where CS = R
d \ S is the complement of S.

Clearly, Γ0 is a concave patch of the boundary of S if and only if it is
a convex patch of the (dlosure of) boundary of CS.

In the following we will investigate questions like these:

Are boundary patches consisting entirely of convex (concave) points
convex (concave) patches?

If Γ = bd S is the union of finitely many convex patches, does this
imply that S is convex?

What can be said about points of Γ which are neither convex nor
concave points?

How many convex or concave points do exist on the boundary of a
— say closed, connected, bounded — set? More mathematically:
is the set T ∪ S dense on Γ?

The first two questions were answered by a couple of Theorems due to
Heinrich Tietze (see [25–28] and [29, Part IV]). The last two questions
are not easy to answer. We need very deep results from topology or else
very strong assumptions (e.g. the requirement that all boundary points
are ‘tame’ [16]).

3. S–Points and D–Convexity

We now are going to answer the first two questions above concern-
ing convex and concave points or patches, respectively. It should be
remarked here, however, that all results proved in this section hold only
in the plane R

2.
We introduce the following assumption:
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A The interior int S of the set S is connected and S is regular closed,
i.e. S = cl int S.

Lemma 3.1 Let S ⊆ R
2 be a set fulfilling condition A.

Assume that there exists a direction x∗ ∈ S1 and a number α such
that the set {x ∈ S | 〈x, x∗〉 = α} is not connected.

Then there exists an S–point x ∈ Γ. More precisely, either the pair
(x, x∗) or the pair (x,−x∗) is an S–descriptor pair of S.

The assertion of the Lemma is essentially the assertion of the Theo-
rem of Léja and Wilkosz [18] (see [29, Theorem 4.8]). The assumption
involving direction x∗ ∈ S1 is equivalent to the assumption that S is
not convex.

Lemma 3.1 may be sharpened as follows:

Corollary 3.1 Let D ⊆ S1.
If a set S ⊆ R2 fulfilling condition A does not contain any ±x∗–S–

descriptor points with x∗ ∈ D then it is D–convex.

The contrary of the Corollary is not necessarily true as it is illustrated
in Figure 2. In order to prove the converse of the Corollary we need a
nondegeneracy assumption.

r

Figure 2. Example of a D–convex set.

The set S in the picture is D–convex with respect to the set D containing
the horizontal and the vertical directions. However, there is a vertex
point (marked •) which is an S–point of S.

Definition 3.1 Let (x, x∗) be an S–descriptor of a set S ⊆ R
d. x is

termed a strict S–point with respect to x∗ ∈ Sd−1 if for any line ℓ through
x perpendicular to x∗, the component of ℓ ∩ S containing x is closed.

Remark 3.1 The requirement that a point is a strict S–point is not a
‘local’ one since one has to check in each case when an S–point is en-
countered which is adjacent to a component of L, whether the point on
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the other end of the component is also an S–point. This is the reason
why the concept of D–convexity, which is a very natural concept in the
framework of digital geometry (see [9]), is ‘harder’ to handle than ordi-
nary convexity (see [2, 3, 5, 6]).

Lemma 3.2 Given a set S ⊆ R
2 fulfilling condition A. Let D ⊆ S1.

If Γ contains a strict S–descriptor (x, x∗) with x∗ ∈ D then S is not
D–convex.

The proof of this Lemma is an extension of the proof of Léja and
Wilkosz’ Theorem [29, Theorem 4.8].

We now are able to state a Characterization Theorem for D–convexity.

Theorem 3.1 Given a set S ⊆ R
2 with property A. Let D ⊆ S1.

S is D–convex if and only if its boundary Γ contains no strict S–
descriptors (x, x∗) with x∗ ∈ D.

The proof of this Theorem follows immediately from Lemma 3.2 and
Lemma 3.1.

For a subset D of directions we define D–convex and D–concave
patches of the boundary as in Definition 2.6 by replacing the convex
hull by the D–convex hull.

We define a strict T–descriptor of the set S to be a strict S–descriptor
of the (closure of the) +complement of S.

With these definitions we state:

Theorem 3.2 Let S ⊆ R
2 be a set with boundary Γ fulfilling condition

A.

1 A connected subset Γ0 of Γ is a convex (concave) patch of Γ if and
only if it consists entirely of T– (S–) points.

2 A connected subset Γ0 of Γ is a D–convex (D–concave) patch of
Γ if and only if does not contain any strict S–descriptors (strict
T–descriptors) (x, x∗) with x ∈ Γ0 and x∗ ∈ D.

4. Regular Boundaries

In order to answer the questions concerning T and S from the end
of Section 2 we need concepts from topology. The last one of these
questions is indeed very deep and it cannot be treated here. There are
indeed sets having nontrivial parts of the boundary consisting entirely of
points which are neither T– nor S–points. An example of such a set (the
‘Warsaw circle’) is given in [10]. In this example, however, the boundary
is not a Jordan curve. Based on a characterization of Jordan curves
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in the plane by Schönflies ([23, 24], see [20, §40]), Kaufmann [12] was
able to prove that for a Jordan boundary the set T ∪ S is dense on the
boundary. The famous von Koch curve [14] is an example of a Jordan
curve with the property that all three sets T , S and also the complement
of these both sets are dense on the curve. We need a strong regularity
condition to rule out such situations. Generally we assume that the
boundary Γ of a set S ⊆ R

d is a surface, i.e. that it is a homeomorphic
image of Sd−1.

Definition 4.1 x ∈ Γ is a regular point of S if there is a neighborhood
B(x) such that both B(x) ∩ T and B(x) ∩ S consist of at most finitely
many connected components.

The boundary of a set is called a regular boundary if it consists only
of regular boundary points.

Remark 4.1 In R
2 a point x is regular if and only if there is a neigh-

borhood B(x) such that either

1 B(x) ∩ (T ∪ S) consists of exactly one connected component, or
else

2 (B(x)∩Γ) \ {x} consists of two connected components. Each such
component is completely contained in T or S.

There remains one class of boundary points on regular boundaries:

Definition 4.2 x ∈ Γ is an I–point (‘Indifferent point’) of S if x is
regular and neither a T–point nor an S–point. Denote by I ⊆ Γ the set
of all I–points of S.

By definition, I–points are always isolated points on the (regular)
boundary. They separate components of T and S. In Figure 3 examples
for all types of regular points in the plane R

2 are shown.

5. Upper Semi–Continuous Mappings

For analyzing the boundary of a set wee need some results from the
theory of set–valued mappings (see [1]).

Definition 5.1 Let E and F be two topological spaces and denote by
P(F ) the collection of all non–empty subsets of F . A point–to–set map-
ping f : E −→ P(F ) is said to be upper semi–continuous if, for any
point x0 ∈ E and any open set U ⊆ F with f(x0) ⊆ U , there exists a
neighborhood V of x0 such that f(x) ⊆ U for all x ∈ V .
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q T q S

q L q I

Figure 3. Types of regular points in the plane.

The set S is shaded, the boundary point x under consideration is marked
•. The line through the point indicates the line perpendicular to x∗.

Consequences

Every continuous function is upper semi–continuous.

Every upper semi–continuous point–to point mapping is continu-
ous

The composition of upper semi–continuous mappings is upper semi–
continuous.

Definition 5.2 For a set–valued mapping f : E −→ P(F ) we define a
set–valued inverse mapping. For y ∈ F let

f−1(y) = {x ∈ E | y ∈ f(x)}.

The assertions of the following two Theorems follow directly from the
definition of upper semi–continuity:

Theorem 5.1 Assume that the set–valued mapping f : E −→ P(F ) is
upper semi–continuous and in addition assume that f(x) is connected
for all x ∈ E.

Then for each connected subset S ⊆ E the image f(S) is also con-
nected.

Theorem 5.2 The set–valued mapping f : E −→ P(F ) is upper semi–
continuous if and only if for each closed set S ⊆ F the set f−1(S) is
closed.
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Remark 5.1 As a consequence of the Theorem, if f maps E into the
system of all closed subsets of F then f−1 maps F into the system of all
closed subsets of E.

6. Tangent Mappings

Definition 6.1 Let S be a nonempty compact subset of R
d. The func-

tion µ : Sd−1 −→ R which is defined by

µ(x∗) = max
x∈S

〈x, x∗〉

is called the support functional of S (see [13, Section 2.3.]).
The set–valued mapping Ψ : Sd−1 −→ P(S) with

Ψ(x∗) = arg max
x∈S

〈x, x∗〉

is called the tangent mapping of S.

It is well–known (see e.g. [1]) that µ is continuous and that Ψ is upper
semi–continuous whenever S is a nonempty compact subset of R

d.

Remark 6.1 For nonempty compact S ⊆ R
d all sets Ψ(x∗) are closed

since

Ψ(x∗) = S ∩ {x ∈ R
d | 〈x, x∗〉 = µ(x∗)}.

Theorem 6.1 Let S be a nonempty closed convex subset of R
d.

The set–valued mapping Ψ−1 : S −→ P(Sd−1) with

Ψ−1(x) = {x∗ ∈ Sd−1 | x ∈ Ψ(x∗)}

is upper semi–continuous.

Lemma 6.1 Assume that the conditions of Theorem 6.1 hold. Let y ∈
bd S and x∗

1
, x∗

2
be two directions in Ψ−1(y).

Then all directions from the set
{

x ∈ R
d | x = λ1x

∗

1 + λ2x
∗

2, λ1, λ2 ≥ 0
}

∩ Sd−1

belong to Ψ−1(y).

Remark 6.2 Lemma 6.1 states that all directions in Ψ−1(y) can be ob-
tained as the intersection of a convex cone with vertex Θd (= origin of
R

d) and Sd−1. This implies that Ψ−1(y) is always a connected subset of
Sd−1.
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7. Structure of Regular Boundaries — The
Convex Case

Ψ−1, the inverse of the tangent mapping Ψ, is only a well–defined
mapping on Γ if S is a convex set. Whenever S is convex, Ψ−1 is even
an upper semi–continuous mapping. Hence, the pair (Ψ,Ψ−1) is in the
convex case ‘nearly’ a homeomorphism. We sketch here, how this can
be shown rigourosly. First we need a concept from convexity theory:

Definition 7.1 Let S be a closed convex set and x ∈ bd S. The direc-
tion x∗ ∈ Sd−1 is termed the normal vector of a supporting hyperplane
at S in x whenever 〈z, x∗〉 > 〈x, x∗〉 implies z /∈ S (see C1).

The Separation Theorem for Convex Sets [29, Part II] guarantees
that a convex set has at least one supporting hyperplane in each of its
boundary points.

Definition 7.2 Let S be a nonempty bounded closed convex set in R
d.

S is smooth if for each boundary point of S the supporting hyperplane
is uniquely determined.

S is strictly convex if all supporting hyperplanes meet the boundary
of S in exactly one point.

If a set S is strictly convex then the mapping Ψ is a point–to–point
map from Sd−1 to the boundary Γ of S. If S is smooth then the inverse
map Ψ−1 is a point–to–point map. Hence, if S is smooth and strictly
convex, then both Ψ and Ψ−1 are continuous and inverse to each other,
consequently, Ψ : Sd−1 −→ Γ is a homeomorphism.

Theorem 7.1 Given a closed bounded convex set S with nonempty in-
terior and a real number ε > 0.

Then there exists a closed bounded convex set Sε which is smooth and
strictly convex such that S ⊆ Sε and dH(S, Sε) < ε.

Here, dH denotes the Hausdorff distance for sets, this means in this
context (S ⊆ Sε) that for each xε ∈ Sε there is an x ∈ S such that
‖x − xε‖ < ε.

For a proof of this Theorem see [8, Theorem 34].
For any closed bounded convex set S with boundary Γ which has

nonempty interior we can construct an ε–homeomorphism in the follow-
ing way:

Construct Sε as in Theorem 7.1.

The mapping Ψε : Sd−1 −→ bd Sε is a homeomorphism.
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Select any point x0 ∈ int S. The central projection Πx0
: bd Sε −→

Γ with center x0 is

Πx0
(x) = {x0 + λ(x − x0) | λ > 0 maximal such that

x0 + λ(x − x0) ∈ S}.

Πx0
(x) exists for any x 6= x0 by compactness of S and is a home-

omorphism.

Let Ψ : Sd−1 −→ P(Γ) be the — generally set–valued — map as
defined above. The composite mapping Πx0

◦ Ψε : Sd−1 −→ Γ
is a homeomorphism with the property that for given ε > 0 there
exists a number C such that for each x∗ ∈ Sd−1 and each x ∈ Ψ(x∗)
there exists an xε = Πx0

Ψε(x
∗) such that ‖x − xε‖ < C · ε and

for each each xε = Πx0
Ψε(x

∗) there exists an x ∈ Ψ(x∗) such that
‖x − xε‖ < C · ε.

8. General Plane Sets with Regular Boundaries

If a set S ⊆ R
2 has a regular boundary then its boundary consists of

a finite number of components of T (convex parts of the boundary) and
S (concave parts).

Generally, for the convex hull conv S of a (compact) set, we can apply
the results derived above. Specifically, for each ε > 0 there exists an ε–
homeomeorphism bd conv S −→ S1 as shown above.

The convex defect S \ conv S consists by regularity of the boundary
of a finite number of components. Each of these components consists
of finitely many convex or concave parts. We can construct for each
of these parts an ε–homeomeorphism on a new copy of S1 so that we
finally get an ε–homeomeorphism mapping the boundary of S onto a
finite number of S1’s. Instead of elaborating this procedure formally,
we illustrate it by means of a simple example (see Figure 8).

Along convex or concave parts of a set in R
2 the succession of de-

scriptors is not arbitrary. Since S1 is oriented and since there is an
ε–homeomeorphism mapping each convex or concave part of the bound-
ary onto S1, also the boundary is oriented. Note, however, that the
succession of descriptors is reverted by transition from a convex to a
concave part and vice versa. Scherl illustrated this effect by means of
so–called legal descriptor cycles [22, Figure 5.2.4.], see Figure 4.

9. Applications

It has been shown by Scherl [22] by means of numerous examples
and also by a prototype implementation that it is possible to describe
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Figure 4. Scheme of descriptor cycles and legal transitions.

Descriptor directions corresponding to multiples of π

4
are indicated.

These directions are the main directions in the digital plane Z
2.

shape by a relatively small number of descriptor points. As in Scherl’s
experiments we consider the case of plane sets and the set of descriptors
belonging to directions k · π

4
which are well adapted to the digital plane

Z
2 which is the set of all points of the plane having integer coordinates.
The extraction of the descriptors can be done very efficiently as a

by–product of boundary extraction at virtually no additional cost. The
oriented set of all descriptors (points with a label indicating the corre-
sponding tangent direction and also pointers indicating the succession
relation of the descriptor points on the oriented boundary) yields a data
reduction while retaining the rough shape of the set under consideration.

The boundary and the descriptors may be viewed as a pyramid struc-
ture:

The bottom of the pyramid is the ordered sequence of boundary
points of the set which is coded in some appropriate manner (e.g.
by means of a chain code).

Digital sets are subsets of Z
d. Under certain known conditions

(which means that some discrete Jordan Theorem holds, i.e. a set
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is uniquely determined by its discrete boundary) a digital set can
be represented by means of its boundary. Specifically for plane
digital sets it is possible to select a subset of the boundary points
which can be joined according to the orientation of the boundary
as to to yield a faithful representation of the set, i.e. the reduced
boundary is a polygonal Jordan curve which contains exactly all
points of the given set in its interior [5].

A subset of the boundary of a set – or else of any faithful represen-
tation of the boundary of a digital set – is given by the oriented set
of all descriptors. The tangents corresponding to the T–descriptors
belonging to a set D of directions yield the D–convex hull of the
set. By joining any two descriptor points which are immediate
successors on the oriented boundary, a closed polygonal curve is
obtained which, however, in general needs not to be a simple curve.
Nevertheless, these curves can be efficiently used for a rough re-
presentation of shape.

The set of all extreme T–descriptors belonging to a set D of direc-
tions (here all directions k· π

4
) provide the smallest convex polytope

whose sides have directions from D (a so–called D–polytope) which
contains the set under investigation.

The data structure provided by this pyramid can be used for different
pattern recognition tasks. For example, the linear time convexity detec-
tion algorithm of I. Debled–Renesson et al. [2] starts at the top of the
pyramid with direction set D = {k · π

2
}. First, the authors verify D–

convexity of the given set. Then the boundary of this set is segmented
by means of all descriptor points and descriptor tangents having direc-
tions from D. This results in boundary parts having a very favourable
structure considering convexity detection.

An interesting subject is the investigation of this ‘Scherl–pyramid’
under discrete boundary evolution [15]. Specifically, the information
obtained from a faithful representation of a digital set can be used to
control the evolution process. This, however, is far beyond the topic of
this paper (see [5]).

If only information from a finite number of ‘probes’ of boundary points
is available (together with tangent directions) then the observation that
the sequence of descriptors along the boundary is oriented can be used
to find inclusions for the missing parts of the boundary if it is assumed
that the directions between two successive probes lie within a certain
interval. Such ‘interpolation’ assertions can be easily derived. We give
one simple example:
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Theorem 9.1 Given in the plane a set S with oriented boundary Γ.
Let (x1, x

∗

1
) and (x2, x

∗

2
) be two T–descriptors of S. Assume that on the

boundary part Γ12 which is between (in the sense of the orientation of
Γ) x1 and x2 there are only descriptors (x, x∗) which are between (in the
sense of orientation of S1) x∗

1
and x∗

2
. Then Γ12 is completely contained

in the parallelogram of all x ∈ R
2 satisfying the inequalities

〈x2, x
∗

1
〉 ≤ 〈x, x∗

1
〉 ≤ 〈x1, x

∗

1
〉 ,

〈x1, x
∗

2
〉 ≤ 〈x, x∗

2
〉 ≤ 〈x2, x

∗

2
〉 .

The proof of this assertion follows from investigating the convex hull
of Γ12. In Figure 5 an illustrative example is shown. It is possible to
derive inclusions for other situations where also S–descriptors are taken
into account.

6

���

x
∗

2

x
∗

1

XXXy

6

�
�

�	

@
@

@
@ @

@
@

@

S

Figure 5. Example for Theorem 9.1.

Long arrows indicate the orientation of the boundary.

We conclude this discussion with a simple example. In Figure 6 a
digital set and its boundary is given. The process of finding a stack of
S1’s such that the convex and concave parts of the (outer) boundary
can be homeomorphically mapped on this stack is illustrated in Figure
8. In Figure 7 the smallest convex D–polygon containing the set as ob-
tained from the extreme T–descriptors is shown as well as the polygonal
approximation which is found by joining the descriptor points by line
segments.

10. Conclusions

Under suitable conditions it is possible to derive properties of bound-
aries of sets using only tools from convexity theory without making any
differentiability assumptions. It was shown that the boundary of a set
can be mapped ‘almost’ homeomorphically to a stack of spheres.
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Figure 6. Digitization of letter ‘A’.

In the left picture a digital set is given. The right picture shows the
boundary of the set. The boundary can be understood to consist of two
closed polygonal curves in R
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Figure 7. D–convex hull (left) and descriptor approximation (right).

The set D consists of all directions k · π

4
.

By gathering informations from a finite number of points along the
boundary one can extract properties which are relevant for the shape
of a set. These properties can be arranged in a hierarchical manner
as a pyramid structure. The informations obtained in this way can be
used for defining convex and concave parts of the boundary and for
investigating and controlling discrete evolution of boundary curves.
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Figure 8. Mapping of the outer boundary of a set on a stack of descriptor cycles.

Descriptor tangents with angles k · π

4
are indicated by Tk or Sk, respec-

tively.
The descriptor tangent T6 at the bottom of the set meets the set in two
disjoint components. Therefore the two upper copies of S1 are cut up
and the points corresponding to T6 on the upper and the middle copy
are identified as indicated to make the mapping of the boundary to the
stack of circles biunique.

There are two important topics which are not treated here. One of
them is the extension to higher dimensions. It is possible to derive
properties of higher dimensional sets by investigating two–dimensional
sections of them. The second problem not treated here is much more
difficult. Usually in applications sets are given in a discrete manner
as ‘digital sets’. Therefore it is desirable to have a completely discrete
theory. However, it turns out that the discrete case is much more com-
plicated than the continuous one [2–6].
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