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COMPUTING QUATERNIONIC ROOTS BY NEWTON’S METHOD (2006/12/23)

DRAHOSLAVA JANOVSKÁ∗ AND GERHARD OPFER†

Abstract. Newton’s method for finding zeros is formally adapted to finding roots of Hamilton’s quaternions. Since a
derivative in the sense of complex analysis does not exist for quaternion valued functions we compare the resulting formulas
with the more classical formulas obtained by using the Jacobian matrix and the Gâteaux derivative. The latter case includes
also the so-called damped Newton form. We investigate the convergence behavior and show that under one simple condition
all cases introduced, produce the same iteration sequence and have thus the same convergence behavior, namely that of
locally quadratic convergence. By introducing an analogue of Taylor’s formula for x

n
, n ∈ Z, we can show the local,

quadratic convergence independently of the general theory. It will also be shown that the application of damping proves to
be very useful. By applying Newton iterations backwards we detect all points for which the iteration (after a finite number
of steps) must terminate. These points form a nice pattern. There are explicit formulas for roots of quaternions and also
numerical examples.

Key words. Roots of quaternions, Newton’s method applied to finding roots of quaternions.

AMS subject classifications. 11R52, 12E15, 30G35, 65D15

1. Introduction. The newer literature on quaternions is in many cases concerned with algebraic
problems. Let us mention in this context the survey paper by [15, Zhang, 1997]. Here, for the first time
we try to apply an analytic tool, namely Newton’s method, to finding roots of quaternions, numerically.
Let g : R

n → R
n be a given mapping with continuous partial derivatives. Then, the classical Newton

form for finding solutions of g(x) = 0 is given by

g(x) + g′(x)η = 0, xnew := x + η,(1.1)

where g′ stands for the matrix of partial derivatives of g, which is also called Jacobian matrix . The
equation (1.1) has to be regarded as a linear system for η with known x. The further steps consist of
iteratively solving this system with xnew.

In this paper we want to treat a special problem g(x) = 0 with g : H → H, where H denotes the
(skew) field of quaternions. We use the letter H in honor of William Rowan Hamilton (1805 – 1865), the
inventor of quaternions. In this setting we will try also other forms of derivatives of g than the matrix of
partial derivatives.

For illustration in this introduction, we use the simple equation g(x) := x2 − a with a, x ∈ H. If
we follow the real or complex case for defining derivatives, we have two possibilities because of the non
commutativity of the multiplication in H, namely

g′(x) := lim
h→0

{(g(x + h) − g(x))h−1} = lim
h→0

((x + h)2 − x2)h−1 = x + lim
h→0

hxh−1,

g′(x) := lim
h→0

{h−1(g(x + h) − g(x))} = lim
h→0

h−1((x + h)2 − x2) = x + lim
h→0

h−1xh.

If we put yh := hxh−1 for any h 6= 0 then from later considerations we know that |yh| = |x| and (yh)1 = x1.
Thus, yh fills the surface of a three dimensional ball and there is no unique limit. In other words, the
above requirement for differentiability is too strong. One can even show that only the quaternion valued
functions g(z) := az + b, g(z) := za + b, a, b ∈ H, respectively, are differentiable with respect to the two
given definitions, [13, Sudbery, 1979, Theorem 1].

In approximation theory and optimization a much weaker form of derivative is employed very suc-
cessfully. It is the one sided directional derivative of g : H → H in direction h or one sided Gâteaux 1

derivative of g in direction h (for short only Gâteaux derivative) which for x, h ∈ H is defined as follows:

g′(x, h) := lim
α→0

α>0

g(x + αh) − g(x)

α
= lim

α→0

α>0

(x + αh)2 − x2

α
= xh + hx.(1.2)
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Let h ∈ R\{0}, then g′(x, h) = 2hx and from (1.1) replacing g′(x) with g′(x, h) we obtain the damped
Newton form

xnew := N(x) := x +
1

2h

(
x−1a − x

)

if h > 1. For h = 1 we obtain the common Newton form for square roots.
If we work with partial derivatives, the equation g(x) := x2 − a implies

g′(x) := 2






x1 −x2 −x3 −x4

x2 x1 0 0
x3 0 x1 0
x4 0 0 x1




 .(1.3)

Matrices of this form are known as arrow matrices . They belong to a class of sparse matrices for which
many interesting quantities can be computed explicitly, [11, Reid, 1977], [14, Walter, Lederbaum,
and Schirmer, 1984], and [1, Arbenz, Golub 1992] for eigenvalue computations. The special cases
a, x ∈ R and a, x ∈ C reduce immediately to the common Newton form

xnew := N(x) :=
1

2

(
x +

a

x

)
.

The treatment of analytic problems in H goes back to [5, Fueter, 1935]. A more recent overview
including new results is given by [13, Sudbery, 1979]. However, Gâteaux derivatives do not occur in this
article.

We start with some information on explicit formulas for roots of quaternions. Then we adjust
the common Newton formula for the n-th root of a real (positive) or complex number to the case of
quaternions. Because of the non commutativity of the multiplication we obtain two slightly different
formulas. We will see that under a simple condition both formulas produce the same sequence. We see
by examples that in this case the convergence is fast and we also see from various examples that in case
the formulas produce different sequences, the convergence is slow or even not existing. Later we apply
the Gâteaux derivative and the Jacobian matrix of the partial derivatives to formula (1.1) and show that
under the same condition the same formulas can be derived which proves that the convergence is locally
quadratic. The Gâteaux derivative gives also rise to the damped Newton form which turns out to be very
successful and superior to the ordinary Newton technique.

2. Roots of quaternions. We start by describing a method for finding the solutions of

g(x) := xn − a = 0, a ∈ H\R, n ∈ N, n ≥ 2,(2.1)

explicitly. The solutions of g(x) = 0 will be called roots of a. We need some preparations. If a =
(a1, a2, a3, a4) ∈ H we will also use the notation

a = a1 + a2 i + a3 j + a4 k,

where i, j,k stand for the units (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), respectively.

Definition 2.1. Two quaternions a, b are called equivalent, denoted by a ∼ b, if there is h ∈ H\{0}
such that a = h−1bh (or ha = bh). The set of all quaternions equivalent to a is denoted by [a]. Let
a := (a1, a2, a3, a4) ∈ H\R. We call av := (0, a2, a3, a4) the vector part of a. By assumption av 6= 0. The
complex number

ã := (a1,
√

a2
2 + a2

3 + a2
4, 0, 0) =: a1 + |av | i(2.2)

has the property that it is equivalent to a (cf. (2.3)) and it is the only equivalent complex number with
positive imaginary part. We shall call this number ã the complex equivalent of a.

Because of

a = h−1bh =
( h

|h|
)−1

b
h

|h|

there is no loss of generality if we assume that |h|2 = 1. Since a ∈ R commutes with all elements in
H we have [a] = {a}. In other words, for real numbers a the equivalence class [a] consists only of the
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single element a. Let c ∈ C, then c and the complex conjugate c belong to the same class [c] because of
c = (j)−1c j.

Lemma 2.2. The above notion of equivalence defines an equivalence relation. And we have a ∼ b if
and only if

<a = <b, |a| = |b|.(2.3)

Proof. Let ha = bh for some h 6= 0. Then, the general rule |xy| = |x||y| yields |a| = |b|. Let us
put a = h−1bh and apply another general rule <(xy) = <(yx). Then <a = <(h−1bh) = <((h−1b)h) =
<(hh−1b) = <b. It remains to show that (2.3) implies the existence of an h 6= 0 such that ha = bh.
Let a ∈ R. Then (2.3) implies a = b and hence, h = 1. Otherwise, (2.3) is equivalent to a real, linear,
homogeneous 4 × 4 system. It can be shown, that the rank of the corresponding matrix is two.

There are situations where there are infinitely many roots.

Theorem 2.3. Let g be defined as in (2.1) but with real a. If there exists a complex root x of a
which is not real, then there will be infinitely many quaternionic roots of a.

Proof. Let x := x1 + x2i be a root of a with x2 6= 0. We have g(x) := xn − a = 0. Let h ∈ H\{0}.
We multiply the last equation from the left by h−1 and from the right by h and obtain

h−1g(x)h = h−1xnh − h−1ah = (h−1xh)n − a = 0(2.4)

since real numbers commute with quaternions. Therefore, g(h−1xh) = 0 or, in other words, the whole
equivalence class [x] of x consists of roots.

Corollary 2.4. Let a 6= 0 be real. For n ≥ 3 there are always infinitely many roots of a. For n = 2
there are infinitely many roots if a < 0.

The finding of roots of quaternions is based on the following lemma.

Lemma 2.5. Let a ∈ H\R and let ã be the corresponding complex equivalent of a where ã = h−1ah
for some h 6= 0 such that =ã > 0. Then, x will be a root of a if and only if x̂ := h−1xh is a root of ã.

Proof. (i) Let x be a root of a. By applying (2.4) we obtain x̂n − ã = 0. (ii) Let x̂ be a root of ã. I.e.
we have x̂n − ã = 0. Multiplying from the left by h and from the right by h−1 gives the desired result.

This lemma yields the following steps for solving (2.1) for a := (a1, a2, a3, a4) 6∈ R.

(i) Compute ã := (a1,
√

a2
2 + a2

3 + a2
4, 0, 0) = a1 + |av |i ∈ C.

(ii) Let x̂k ∈ C be the roots of ã ∈ C: x̂k = |a|1/n exp(i α+2kπ
n ), k = 0, 1, . . . , n − 1,

cosα = a1

|a| , α ∈ [0, π[.

(iii) Find h ∈ H such that ã := h−1ah ∈ C.
(iv) Then, the sought after roots are xk = hx̂kh−1.

The equivalence a ∼ ã, expressed in (iii) may be regarded as a linear mapping

H a = ã, where H =

(
1 0
0 H̃

)

∈ R
4×4(2.5)

and H̃ is a (3 × 3) Householder matrix

H̃ := I − 2

vTv
vvT, v :=





a2 − |av|
a3

a4



 with

H̃





a2

a3

a4



 =





|av |
0
0



 .

Now, in (iv) we need the inverse mapping H−1 = H, thus, the roots are

xk := H






<x̂k

=x̂k

0
0




 = |a|1/n








cos α+2kπ
n

a2

|av | sin α+2kπ
n

a3

|av | sin α+2kπ
n

a4

|av | sin α+2kπ
n








, k = 0, 1, . . . , n − 1.(2.6)
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The right hand side of (2.6) was already given by [10, Kuba, 2004]. However, the above derivation using
Householder transformations is new. It allows a very easy proof of the following lemma.

Lemma 2.6. Let n ≥ 2 and a ∈ H\R be given and let xk , k = 0, 1, 2, . . . , n − 1, be the roots of a
according to (2.6). Then (i) |xk| = |a|1/n for all k = 0, 1, 2, . . . , n − 1, and (ii) the real (4 × n) matrix
X := ( x0 x1 · · · xn−1 ) of all roots has rank two.

Proof. (i) The matrix H is orthogonal and thus, does not change norms: |xk| = |<x̂k + =x̂ki| =
| x̂k | = |a|1/n. (ii) The matrix H is non singular and thus, does not change the dimension of the image
space.

Corollary 2.7. Under the same assumptions as in the previous lemma all roots xk of a are located
on a (two dimensional) circle on the surface of the four dimensional ball with radius |a|1/n.

Let x ∈ H be a root of a ∈ H\R and let x̃, ã be the complex equivalents of x, a, respectively. The
Lemma 2.5 does not state that x̃ is a root of ã. Nevertheless, it is half way true. For any real number y
we define byc as the largest integer not exceeding y. For a complex number z, the quantity z is defined
as the complex conjugate of z.

Lemma 2.8. Let a ∈ H\R be given and let xk be the roots of a in the ordering k = 0, 1, . . . , n−1 given
in (2.6). Let ã be the complex equivalent of a and x̃k be the complex equivalents of xk, k = 0, 1, . . . , n−1.
Then, x̃k is a root of ã for k = 0, 1, . . . , b(n − 1)/2c and x̃k is a root of ã for the remaining k.

Proof. We only show the essential part: If x is a root of a, then either x̃ or x̃ is a root of ã. Let
ã = h−1ah and x̃ = h̃−1xh̃. By applying (2.4) we have (h−1xh)n − ã = 0. Since h−1xh and h̃−1xh̃ are
both complex, they differ by Lemma 2.2 at most in the sign of the imaginary part and the statement is
proved.

Let us illustrate this lemma by a little example.

Example 2.9. Let n = 2. The two roots of a := (−4, 40, 30,−20) are x0 := (5,−4, 3,−2), x1 = −x0,
and ã = −4 + 10

√
29 i, x̃0 = 5 +

√
29 i, x̃1 = −5 +

√
29 i. We have x̃2

0 = ã and (x̃1)
2 = ã.

If we use numerical methods for finding roots of a ∈ H we will find only one of the quaternionic roots,
say r. Let ã, r̃ be the complex equivalents of a, r, respectively. Then, according to Lemma 2.8, r̃ or r̃ is
a complex root of ã. We define

r̂ :=
{

r̃ if r̃n = ã,
r̃ otherwise.

All further roots r̂k of ã follow the equation

r̂k = r̂ exp
2kπ

n
i, k = 1, 2, . . . , n − 1.(2.7)

It should be observed that the factor exp 2kπ
n i apart from n does not contain any information about the

root r̂. In order to find all quaternionic roots we only need to apply (2.6) again. We put r̂ := u + vi and
σk := 2kπ

n and obtain the other roots by

rk := H






<r̂k

=r̂k

0
0




 = H






u cosσk − v sin σk

v cosσk + u sinσk

0
0




 =






sk

ρ2 tk
ρ3 tk
ρ4 tk




 ,(2.8)

where r =: (ρ1, ρ2, ρ3, ρ4), |rv | :=
√

(ρ2)2 + (ρ3)2 + (ρ4)2, and where

sk := u cosσk − v sin σk, tk :=
sign v

|rv |
(v cosσk + u sinσk), k = 1, 2, . . . , n − 1.

Example 2.10. Let n = 3 and a = (−86, 52,−78, 104). Then, r = (1,−2, 3,−4) is one of the quater-
nionic roots and the corresponding complex equivalents areã = −86 + 26

√
29i, r̃ = 1 +

√
29i. We have

r̂ = 1 −
√

29i, |rv | =
√

29, u = 1, v = −
√

29, σ1 = 2π/3, σ2 = 4π/3, s1 = −0.5(1 +
√

87) = −5.1637, s2 =

0.5(
√

87− 1) = 4.1637, t1 = −0.5(1 +
√

87
29 ) = −0.6608, t2 = 0.5(

√
87

29 − 1) = −0.3392. Then the two other
quaternionic roots are r1 := (−5.1637, 0.6784,−1.0175, 1.3567), r2 := (4.1637, 1.3216,−1.9825, 2.6433).
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3. Newton iterations for roots of quaternions. Newton iterations for finding the n-th root of
a positive number a is commonly defined by the repeated application of

xnew := N(x) :=
1

n

(

(n − 1)x +
a

xn−1

)

.(3.1)

What happens if a is a quaternion? There are the two following analogues of Newton’s formula (3.1):

xnew := N1(x) :=
1

n

(
(n − 1)x + x1−na

)
,(3.2)

ynew := N2(y) :=
1

n

(
(n − 1)y + ay1−n

)
.(3.3)

Both formulas have to be started with some value x0 6= 0, y0 6= 0, respectively. The quantities x0, y0 will
be called initial guesses for N1, N2, respectively. In the first place we do not know what formula to use.
But there is the following important information.

Lemma 3.1. Let the initial guess x0 ∈ H\{0} be the same for both formulas (3.2), (3.3). (i) The
formulas N1 and N2 generate the same sequences x0, x1, x2 . . . if x0 and a commute and in this case xj

and a commute for all j ≥ 0. (ii) Let n = 2. Then xj = yj for all j ≥ 0 implies that xj and a commute
for all j ≥ 0.

Proof. Let N1 produce the sequence x0, x1, x2 . . . and N2 the sequence x0, y1, y2 . . .
(i) Assume that x0 and a commute. Using formulas (3.2), (3.3) we obtain

xj+1 − yj+1 =
1

n

(
x1−n

j a − ay1−n
j + (n − 1)(xj − yj)

)
,(3.4)

xj+1a − ayj+1 =
1

n

(
(n − 1)(xja − ayj) + |a|2(x1−n

j − y1−n
j )

)
.(3.5)

We first show the following implication:

(a) xa − ax = 0 ⇒ (b) x1−na − ax1−n = 0 for any x ∈ H\{0}.(3.6)

For a = 0 this implication is true. Let a 6= 0. Then (a) implies xka = axk for all k ∈ N and hence,
a−1x−k = x−ka−1. Since a−1 = a

|a|2 (b) follows. We shall prove by induction that

xj − yj = 0, xja − ayj = 0 for all j ≥ 0.(3.7)

By assumption, (3.7) is valid for j = 0. Assume that it is valid for any positive j. Then by (3.4) and by
(3.6), we have xj+1 − yj+1 = 0. And (3.5) implies xj+1a − ayj+1 = 0. Thus, (3.7) is valid for all j ∈ N.

(ii) Let xj = yj for all j ≥ 0. Then, (3.4), (3.5) reduce to

x1−n
j a − ax1−n

j = 0,(3.8)

xj+1a − axj+1 =
n − 1

n
(xja − axj) .(3.9)

For n = 2 equation (3.8) reads x−1
j a = ax−1

j which implies a−1xj = xja
−1. Since a−1 = a

|a|2 it follows

that axj = xja and hence by (3.9), we have axj+1 = xj+1a.

It should be noted that part (i) is already mentioned by [12, Smith, 2003, Theorem 3.1], though in
a matrix setting. In the above lemma it was assumed that x0 and a commute. However, it is an easy
exercise to see that this is equivalent to the commutation of x0 and a. Only in our context it was a little
more convenient to assume that x0 and a commute.

Let n ∈ N be arbitrary. Then xj = yj for all j ≥ 0 implies (3.8). However, for n ≥ 3 the implication
(3.6) is not an equivalence. Take n = 3 and x := i, then (b) of (3.6) is valid, but not necessarily (a)
of (3.6).

In the next example we show, that for n ≥ 3 the necessary condition (3.8) for x1 = y1 does not imply
x2 = y2.
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Example 3.2. Let n = 3 and x0 = i. Then (3.8) is valid for j = 0 and all a ∈ H and as a consequence
x1 = y1 = 1

3 (2i− a). However, x0a − ax0 6= 0 and x2 6= y2 for some a.

In Lemma 3.1 we have shown that the commutation of a and x0 implies the commutation of a and
xj for all j ≥ 0. If xj , j ≥ 0, are the members of any sequence of approximation for an n-th root of
a ∈ H, then the property that a and xj commute is intrinsic to the problem.

Lemma 3.3. For a given a ∈ H let x be a solution of g(x) := xn − a = 0, n ∈ N. Then a and x
commute.

Proof. Multiply g(x) := xn − a = 0 from either side by x and subtract the resulting equations. Then
ax = xa.

Lemma 3.1 does not exclude the case that xj = 0 for some j > 0. This means that both sequences
stop at the same stage. However, we will show that this cannot happen if xj−1 is already close to or far
away from one of the roots of a. We introduce the residual rj of xj by

rj := a − xn
j .

It is a computable quantity.

Lemma 3.4. Let us consider the two values xj−1, xj , j ≥ 1, generated by N1 defined in (3.2) under
the only assumption that xj−1 6= 0. Let the residual rj−1 have the property that

|rj−1| ≤ |a| or |rj−1| > 2|a|.(3.10)

Then xj 6= 0 and consequently, xj+1 is well defined.

Proof. It is clear from (3.2) that xj := N1(xj−1) = 0 can happen if and only if (n − 1)xn
j−1 + a = 0

or xn
j−1 = − 1

n−1 a. Then, in this case rj−1 := a − xn
j−1 = a + 1

n−1 a = n
n−1 a, which contradicts our

assumption.

Let N1 be given by (3.2). It is easy and also interesting to find all exceptional points

En(a) := {x : N1(x) = 0, x 6= 0} ∪ {0}

for which the Newton iteration will terminate. For this purpose we write the Newton iteration backwards,
i. e. we switch xj+1, xj and obtain the equation

p(xj+1) := (n − 1)xn
j+1 − nxn−1

j+1 xj + a = 0, j = 0, 1, . . . , x0 = 0.(3.11)

In a first step, starting with x0 = 0 we obtain n solutions x1 of p(x1) = 0, repeat with all n solutions
x1, obtain n2 solutions x2 etc. In this way, we generate ed := 1 + n + n2 + · · ·+ nd = (nd+1 − 1)/(n− 1)
points of En(a) if we stop after d cycles. Since x0 = 0 we can apply the techniques from Section 2
reducing equation (3.11) for all j ≥ 0 to an equation with complex coefficients with the consequence
that all solutions are complex as well and En(a) ⊂ C. For n = 2 the set En(a) is located on a straight
line passing through the origin and having slope α = arctan(=x1/<x1) where x1 := (−a)1/2. For n > 2
the set En(a) is rotational invariant under rotations of 2π/n and shows typical self-similarity. The sets
En(a) and En(b) differ only by scaling and rotation. Or in other words, the qualitative look of En(a) is
independent of a. Since the exceptional points are apart from rotation the same in each of the n sectors
there are (ed − 1)/n = ed−1 = (nd − 1)/(n − 1) points in each sector. An example with d = 7 cycles,
n = 6, and a := i is shown in Figure 3.5. It contains 335 923 points. We have also included the three
level curves

lc := {z ∈ C : |zn − a| = c|a|} for c = 0.9, 1, 2.
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Figure 3.5. Exceptional points En(a) for n = 6 and roots of a = i marked ⊗.

4. Inclusion properties. Newton iterations can be written in the form

N1(x) :=
n − 1

n
x +

1

n
x1−na.(4.1)

Thus, N1(x) is a convex combination of x and x1−na. Let a := (a1, a2, a3, a4), b := (b1, b2, b3, b4) be two
arbitrary quaternions. With the help of the (closed, non empty) intervals

Ij := [min(aj , bj), max(aj , bj)], j = 1, 2, 3, 4,

we define the segment 

a, b


 := (I1, I2, I3, I4).

Lemma 4.1. Let x0, x1, . . . be the sequence generated by N1 for a given a ∈ H. Then, for all j ≥ 0
we have (componentwise)

xj+1 ∈


xj , x
1−n
j a



.(4.2)
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Proof. Follows immediately from (4.1).

Example 4.2. Use Example 2.10 again: n = 3, a := (−86, 52,−78, 104) with x0 := a/8. We
obtain (monotonicity is missing) the following numbers (in Table 4.4) and a graphical representation in
Figure 4.3. We also see that the inclusion is very quickly so precise that the three curves cannot be
distinguished by inspection of the graph.

4 4.5 5 5.5 6 6.5 7 7.5 8
−8

−6

−4

−2

0

2

4

6
a = (−86   52  −78  104)

n−
ro

ot
(a

) 
=

 (
1 

   
   

   
−

2 
   

   
   

 3
   

   
   

 −
4)

Component 1
Component 2
Component 3
Component 4

Figure 4.3. Inclusion property of Newton iterations from step 4 to step 8.

Table 4.4. Inclusion property for some selected values xj , x
−2
j a

3
√

a = 1 −2 3 −4
x3 = −2.2416 −1.9163 2.8744 −3.8326
x4 = 0.2017 −1.4054 2.1081 −2.8108
x−2

3 a = 5.0882 −0.3837 0.5755 −0.7673

x4 = 0.2017 −1.4054 2.1081 −2.8108
x5 = 1.7739 −2.2159 3.3238 −4.4318
x−2

4 a = 4.9184 −3.8368 5.7552 −7.6737

As we see from the table the inclusion n
√

a ∈


xj , x
1−n
j a



 which is valid for real roots is not true in

general.

5. Numerical behavior of Newton iterations. There are three cases:

(i) The iterates converge quickly (quadratically).
(ii) The iterates converge slowly (linearly).
(iii) The iterates do not converge.

Case i.) We choose an arbitrary a and select the initial guess x0 so that a and x0 commute
(⇒ N1 = N2). We observe fast (quadratic) convergence. In the Figures 7.1, 7.2, left side, pp. 12–13, we
see 16 examples for n = 3 and for n = 7. In all examples the convergence is eventually quadratic.
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Case ii.) We choose a and x0 randomly and independently. Ten examples are exhibited in Figure 5.1
where the horizontal axis represents the number of iterations and where the vertical axis represents the
exponent of the residual with respect to base ten. In all cases the convergence is slow (linear).

0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2

0

2

Figure 5.1. Fourth root of quaternion a, a and initial guess x0 random.

Case iii.) We look at the following special example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0275

0.028

0.0285

0.029

0.0295

0.03

0.0305

0.031

Figure 5.2. Fourth root of quaternion a = (0, 0, 1, 0), with initial guess x0 = (0, 0, 0, 1).

Example 5.3. Let a := (0, 0, 1, 0), h :=
√

3 + 2
√

2, β4 := (5
√

2 − 7)h
8 , α := hβ and n = 4. Then,

(α ≈ 0.9239, β ≈ 0.3827)

4
√

a ∈ {(α, 0, β, 0), (−α, 0,−β, 0), (−β, 0, α, 0), (β, 0,−α, 0)}.

If we start both iterations for this case with x0 = (0, 0, 0, 1), we have x0a 6= ax0 and we obtain
different iterates. And even worse, if we continue the computation (see Figure 5.2), we observe that the
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first and third component of all iterates will remain zero. Thus, convergence is impossible. Observe, that
those elements which commute with a have the form x = (x1, 0, x3, 0).

6. Convergence of Newton iterations. According to our previous investigations, the two Newton
iterations defined in (3.2), (3.3) may converge slowly or may not converge in case the initial guess x0 and
the given a do not commute. Therefore, we assume throughout this section that a and x0 commute. We
already mentioned that equivalently, x0 and a commute. Then, according to Lemma 3.1 the two formulas
produce the same sequence. Therefore, we only use formula (3.2). We want to show that in this case the
convergence is fast. The details will be specified later.

Let g be defined by g(x) := xn−a where a, x ∈ H and a 6= 0. We will compare the iteration generated
by formula (3.2) with the classical Newton iteration which is defined by the linear (4 × 4) system

g(xj) + g′(xj)ηj = 0, xj+1 := xj + ηj , j = 0, 1, . . . ,(6.1)

where g′ is the already mentioned (4 × 4) Jacobian matrix whose columns are the partial derivatives of
g with respect to the four components of x = (x1, x2, x3, x4)

T. The equation (6.1) is a linear system for
the unknown ηj where xj is known. Here and in the sequel of this section, it is reasonable to assume
that xj , ηj have the form of column vectors. An explicit formula for g′ for n = 2 was already given in
the Introduction, formula (1.3). For the general case, we will develop a recursive and an explicit formula
for g′. Let us denote by g(j) the column vector of the partial derivative of g with respect to the variable
xj , j = 1, 2, 3, 4. Then g′ = (g(1), g(2), g(3), g(4)). We will use the formulas

(x2)(j) = (xx)(j) = xx(j) + x(j)x, j = 1, 2, 3, 4,(6.2)

(xn)(j) = (xxn−1)(j) = x(xn−1)(j) + x(j)xn−1, j = 1, 2, 3, 4, n ≥ 3.(6.3)

Since x = x1 + x2i + x3j + x4k we have x(1) = 1, x(2) = i, x(3) = j, x(4) = k. For n = 2 we have therefore

g′(x) = (x + x, xi + ix, xj + jx, xk + kx) = xE + Ex,

where

E := ( 1, i, j, k ) ,

and the multiplications xE,Ex are not matrix multiplications but simply componentwise multiplications
with the (quaternionic) constant x. If E is considered a matrix, then it is the identity matrix. For a
general n ≥ 3 we obtain from (6.3)

g′(x) = x
(

(xn−1)(1), (xn−1)(2), (xn−1)(3), (xn−1)(4)
)

+ Exn−1.

In order for the multiplication with x to be correct, each column (xn−1)(j), j = 1, 2, 3, 4, has to be
understood as a quaternion.

Let us write instead of g′ a little more accurately g′
n if the Jacobian matrix is derived from gn(x) :=

xn − a. Then the formulas (6.2), (6.3) read

g′2(x) = xE + Ex, g′
n(x) = xg′n−1 + Exn−1, n ≥ 3.(6.4)

From these formulas it is easy to derive the following explicit formula

g′n+1(x) =

n∑

j=0

xn−jExj , n ≥ 0,(6.5)

where we also allow g′
1 := E. In particular, we have g′

n(0) = 0 for n ≥ 2. Since we have already computed
g′2 in (1.3) we can compute g′

3 quite easily by using (6.4):

g′3(x) = xg′2(x) + Ex2 =(6.6)






3(x2
1 − x2

2 − x2
3 − x2

4) −6x1x2 −6x1x3 −6x1x4

6x1x2 3x2
1 − 3x2

2 − x2
3 − x2

4 −2x2x3 −2x2x4

6x1x3 −2x2x3 3x2
1 − x2

2 − 3x2
3 − x2

4 −2x3x4

6x1x4 −2x2x4 −2x3x4 3x2
1 − x2

2 − x2
3 − 3x2

4




 .
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This expression is quite complicated. However, we do not need any explicit formula like (6.6) for
numerical purposes, because we can create the needed values by evaluating (6.4), or (6.5) directly.

We shall show below that, roughly, the classical Newton iterates governed by (6.1) are identical with
the iterates produced by (3.2) or (3.3). However, there is a difference in the break down behavior. We
have already seen (proof of Lemma 3.4) that the iteration defined by (3.2) can break down if and only
if N1(x) = 0, which would imply that the Jacobian matrix g′

n(x) is the zero matrix. Thus, the classical
Newton iteration will also break down. However, there is the possibility that g′

n is not the zero matrix
but nevertheless singular, implying that the classical Newton iteration breaks down, whereas the other
iteration still works. It is best to present an example for this case.

Example 6.1. Let n = 4, a = x0 = (0, 0, 1, 0). Then (cf. (6.5))

g′4(x0) =






0 0 4 0
0 0 0 0

−4 0 0 0
0 0 0 0






and the classical Newton iteration cannot be continued. However, x1 := N1(x0) = (−1/4, 0, 3/4, 0) and
the following values converge quickly to (−β, 0, α, 0). Compare to Example 5.3. A remedy would be to
start the classical Newton iteration with x1.

The connection between the two iterations (3.2) and (6.1) is established in the following theorem.

Theorem 6.2. Let gn be defined by gn(x) := xn − a for x, a ∈ H, a 6= 0 and n ≥ 2. Let the initial
guess x0 6= 0 commute with a and let x0 be the same for both iterations (3.2), (6.1). Then, both iterations
produce the same sequences, provided the Jacobian matrix g′

n is not singular.

Proof. We prove that

η0 :=
1

n

(

x1−n
0 a − x0

)

(6.7)

solves (6.1) for j = 0. This is sufficient because of x1 = x0 + η0 = x0 + 1
n

(

x1−n
0 a− x0

)

= 1
n

(

(n− 1)x0 +

x1−n
0 a

)

=: N1(x0). If we use formula (6.5) we have to show that

xn
0 − a +

1

n

[ n−1∑

j=0

xn−1−j
0 Exj

0

](

x1−n
0 a − x0

)

= 0.

Inside the square brackets are matrices. Vectors are in round or in no parentheses. The former equation
is equivalent to

n(xn
0 − a) +

[ n−1∑

j=0

xn−1−j
0 Exj

0

]

x1−n
0 a −

[ n−1∑

j=0

xn−1−j
0 Exj

0

]

x0 = 0.

Thus, it suffices to show that

[ n−1∑

j=0

xn−1−j
0 Exj

0

]

x0 = nxn
0 ,

[ n−1∑

j=0

xn−1−j
0 Exj

0

]

x1−n
0 a = na.

The first equation is a special case of the second equation, put a = xn
0 . It is therefore sufficient to show

the validity of the second equation. We prove the second equation by induction. We shall use that a and
x0 commute with the consequence that a and xk

0 also commute for all k ∈ Z. See (3.6). For n = 1 the
equation is true. Suppose it is true as it stands. Then

[ n∑

j=0

xn−j
0 Exj

0

]

x−n
0 a =

[ n−1∑

j=0

xn−j
0 Exj

0 + Exn
0

]

x−n
0 a

= x0

[ n−1∑

j=0

xn−1−j
0 Exj

0

]

x1−n
0 a

︸ ︷︷ ︸

=na

x−1
0

︸ ︷︷ ︸

=na

+
[

Exn
0

]

x−n
0 a

︸ ︷︷ ︸

=a

= (n + 1)a.
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Thus, we have shown, that η0 solves (6.1) for j = 0. This will even be true, if g′
n is singular.

By this theorem we have shown, that the iteration defined by (3.2) coincides with the classical Newton
iteration via the Jacobian matrix g′ of the partial derivatives. Therefore, all known features are valid:
The iteration converges locally and quadratically to one of the roots. The iteration generated by (3.2) has
the advantage that, numerically, the case N1(x) = 0 is practically impossible (cf. Proof of Lemma 3.4)
since this requires, that the components of x are irrational numbers which, however, have in general no
representation in a computer.

In the last section (no. 9) we shall give an independent proof for the local, quadratic convergence of
Newton’s method for finding roots by showing that an analogue of Taylor’s theorem can be applied to
N1 or N2.

7. The Gâteaux derivative and the damped Newton iteration. The Gâteaux derivative of
a mapping g : H → H was already defined in (1.2). Let gn(x) := xn − a for x, a ∈ H, then

g′n(x, h) =

n−1∑

j=0

xn−1−jhxj .

For real h this specializes to g′
n(x, h) = nhxn−1 and if we introduce this expression into the classical

Newton form (1.1) (replacing g′(x) with g′n(x, h)) we obtain

xnew := N(x) := x +
1

nh

(
x1−na − x

)

which coincides with N1 defined in (3.2) if h = 1, otherwise it can be regarded as a damped Newton form
with damping factor λ := 1/h. Damping is normally used in the beginning of the iteration. It enlarges
(sometimes) the basin of attraction. In order to apply damping we write

xnew(λ) := N(x, λ) := x + λ
1

n

(
x1−na − x

)
(7.1)

and carry out the following test

|g(xnew(λ))| < |g(x)|, λ := 1,
1

2
,
1

4
, . . .

The first (largest) λ which passes this test will be used to define xnew(λ) for the next step. This strategy
proved to be very useful in all examples we used.
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Figure 7.1. Newton without and with damping, applied to the computation of third roots.
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Figure 7.2. Newton without and with damping, applied to the computation of seventh roots.

As expected, the damping is used only in the beginning of the iteration, with the consequence that
the convergence order is not changed, and, in addition, only few damping steps were applied. We show
the effect in Figures 7.1 and 7.2, where 16 cases are exhibited each for n = 3 and n = 7. The initial data
are identical for the undamped and damped case. In the case of n = 2 the undamped and damped case
look alike.

We also compared the number of calls of N (defined in 7.1) for the damped Newton iteration and for
N1 (defined in 3.2) for the undamped Newton iteration. For n = 2 and n = 3 these numbers are similar,
but from n = 5 on there is a clear difference. We made 1000 tests for n = 3, 5, and for n = 7. For n = 5
the number of calls with damping is about 22% smaller than that without damping. For n = 7 those
figure is 25%.

8. The Schur decomposition of quaternions. We start with a definition.

Definition 8.1. Let a1, a2, a3, a4 be any four real numbers. We form the two complex numbers
α := a1 + a2i, β := a3 + a4i and the following two matrices:

A :=

(
α β

−β α

)

, B :=






a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1




 .(8.1)

The matrix A will be called complex q-matrix , the matrix B will be called real q-matrix .

Both types of matrices are isomorphic to quaternions a := (a1, a2, a3, a4) with respect to matrix
multiplication. We have |a| = ||A|| = ||B|| with the consequence that the conditions of A and B are
equal to one. Further, AA∗ = |a|2 I, BBT = |a|2 I. The eigenvalues of A and B are the same, only in B
all eigenvalues appear twice. The two eigenvalues of A are σ± := a1 ±

√

a2
2 + a2

3 + a2
4 i. They are distinct

if a /∈ R.

In [2, Björck, Hammarling, 1983] the authors develop methods to finding the square root of a
matrix. In more recent papers these methods are extended to the computation of n-th roots of matrices,
[12, Smith, 2003], [6, Higham, 2005], [7, Iannazzo, 2006]. For finding a root of a matrix C the
authors use the Schur decomposition of C. If C is any complex square matrix, then the (complex) Schur
decomposition which always exists has the form

S = U∗CU,

where S is upper triangular, thus, having the eigenvalues of C on its diagonal, and U is unitary (i.e.
U∗U = I). If one knows an n-th root Y of S, then C = USU∗ = UYnU∗ = (UYU∗)n =: Xn. Thus,
X is an n-th root of C.

An application to quaternions results in the question: Can A or B have a Schur decomposition,
in terms of q-matrices? If we pose this problem for complex q-matrices we have to ask whether a
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decomposition of the following form is possible:
(

σ+ 0
0 σ−

)

=:

(
σ 0
0 σ

)

=

(
u −v
v u

) (
α β

−β α

) (
u v

−v u

)

,(8.2)

where α, β are arbitrary, given complex numbers and σ, u, v are wanted complex numbers such that
|u|2 + |v|2 = 1. If we rewrite this equation with quaternions, it reads

σ = uau, |u| = 1,(8.3)

where u is the quaternion defining the q-matrix U, i. e. u := (<(u),=(u),<(v),=(v)). Since |u|2 =
|u|2 + |v|2 = 1 we have u−1 = u. Thus, equation (8.3) defines an equivalence between σ and a. Our
former Lemma 2.2 confirms that σ and a are indeed equivalent. This may be summarized as follows.

Theorem 8.2. Let a be a quaternion and σ the complex representative of a. Then (8.3) is the Schur
decomposition of a.

Proof. Rewrite (8.3) in form of complex q-matrices.

In terms of quaternions, the application of the Schur decomposition leads to the explicit determination
of the roots as already described in Section 2.

Because of the isomorphy between complex and real q-matrices, corresponding results for real q-
matrices can be directly copied from the case of complex q-matrices and are deleted here.

In order to find u, equation (8.3) may be regarded as a linear, homogeneous, real system of four
equations in the four components of u. In a former paper, [8], we have already solved a similar system.
It has the form

Du = 0, D :=






0 −a2 + |av | −a3 −a4

a2 − |av | 0 −a4 a3

a3 a4 0 −a2 − |av|
a4 −a3 a2 + |av | 0




 .

The matrix has rank two for a ∈ H\R. We find two independent solutions as follows:

u1 := (|av | + a2, |av| + a2, a3 − a4, a3 + a4), u2 := (a3 − a4, a3 + a4, |av| − a2, |av| − a2),

provided a3 or a4 is not vanishing. In case a3 = a4 = 0 and a2 > 0, u1 := (1, 0, 0, 0),u2 := (0, 1, 0, 0) are
independent solutions. In case a3 = a4 = 0 and a2 < 0, u1 := (0, 0, 1, 0),u2 := (0, 0, 0, 1) are independent
solutions. The general solution of (8.3) and of (8.2) as well is therefore

u :=
α1u1 + α2u2

|α1u1 + α2u2|
, α1, α2 ∈ R, |α1| + |α2| > 0.(8.4)

We could choose α1, α2 such that one of the four components of u is vanishing, which would simplify the
resulting matrix U slightly. E. g. α1 := −a3 − a4, α2 := |av| + a2 would make the second component of
u vanish and the corresponding complex U would have a real diagonal (provided |a3| + |a4| > 0). But
we would like to point out that the considerations of this section are of theoretical nature and not used
in our numerical computations. The Householder transformation, developed from (2.5) to (2.6) is to our
taste much neater and does not need the explicit knowledge of u.

In view of the isomorphic representations (8.1) of quaternions in matrix forms, it is of course tempting
to use matrix algorithms for treating quaternions. As far as only elementary arithmetic operations are
used, there will be no problem. But there is already a difference in the amount of arithmetic work. To
invert a quaternion, 11 (real) flops are needed. To invert a corresponding complex (2×2) matrix requires
300 flops and to invert a real (4 × 4) matrix requires 350 flops (matlab counts). Since in general matrix
operations do not know about the underlying quaternionic structure, problems of ignoring the matrix
structure can be avoided by simply using quaternion arithmetic. This is supported in two papers by
Dongarra, Gabriel, Koelling, Wilkinson, [3], [4]. There is a very simple example, see the present
authors [9, 2003], of computing eigenvalues of a quaternion valued (2 × 2) matrix where an application
of an eigenvalue algorithm to the corresponding complex (4 × 4) matrix gives bad results. The matrix
structure is ignored and the precision is reduced significantly. Another example: If one computes the
matlab Schur decomposition of A, B the resulting unitary matrices U do not belong into the class of
q-matrices.
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9. Taylor for xn in the quaternionic case. The question is whether there are some possibilities to
extend Taylor’s theorem also to quaternionic valued functions, though derivatives in the strong (complex)
sense do not exists. We will only treat the question for simple functions f defined by

f(x) := xn, n ∈ Z, x ∈ H,

and we will replace derivatives of f by the derivatives we know from the real and complex case, namely

f ′(x) := nxn−1, f ′′(x) := n(n − 1)xn−2, n ∈ Z, x ∈ H,(9.1)

and we will call these functions, f ′, f ′′ derivatives . We shall show that a Taylor formula of the form

f(x) = f(x0) + f ′(ξ)(x − x0),(9.2)

is possible which reads in our special case

xn = xn
0 + nξn−1(x − x0),(9.3)

which leads for n 6= 0 to

ξn−1 =
1

n
(xn − xn

0 )(x − x0)
−1.(9.4)

That means we can find n − 1 values of ξ such that formula (9.2) is valid. However, this is quite
trivial. What we want to know is some information on the location of ξ in relation to x and x0. If we do
not make special assumptions on x and x0 we are not able to make forecasts about ξ. But if we assume
that x, x0 commute then the situation changes. For commuting x, x0 we have the formula

f ′(ξ) = (xn − xn
0 )(x − x0)

−1 =

n−1∑

j=0

xjxn−j−1
0 , n ≥ 1.(9.5)

The same formula for negative m reads

f ′(ξ) = (xm − xm
0 )(x − x0)

−1 = −
−m−1∑

j=0

x−j−1xj+m
0 , m ≤ −1.(9.6)

These formulas are also valid for m = n = 0, but they are trivial in this case. If we go one step further
with Taylor’s formula we obtain

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(η)

2
(x − x0)

2.(9.7)

If we put f(x) := xn then for η we obtain (for n 6= 0, n− 1 6= 0) the formula

ηn−2 =
2

n(n − 1)

(

(xn − xn
0 )(x − x0)

−2 − nxn−1
0 (x − x0)

−1
)

.(9.8)

With the help of (9.4), (9.5), and (9.6) we obtain

f ′′(η)

2
= (xn − xn

0 )(x − x0)
−2 − nxn−1

0 (x − x0)
−1

=
n−1∑

j=1

(n − j)xj−1xn−j−1
0 , n ≥ 1,(9.9)

f ′′(η)

2
= (xm − xm

0 )(x − x0)
−2 − mxm−1

0 (x − x0)
−1

=
−m−1∑

j=0

(−m − j)x−j−1xm+j−1
0 , m ≤ −1.(9.10)
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If we express ξn−1 defined in (9.4) either by (9.5) or by (9.6) and ηn−2 defined in (9.8) either by (9.9) or
by (9.10), then ξn−1, ηn−2 have one common feature. They all represent convex combinations. Therefore,
we have the following inclusion properties:

ξn−1 ∈
(

min
j=0,1,...,n−1

xjxn−j−1
0 , max

j=0,1,...,n−1
xjxn−j−1

0

)

, n ≥ 1,(9.11)

ξm−1 ∈
(

min
j=0,1,...,−m−1

x−j−1xm+j
0 , max

j=0,1,...,−m−1
x−j−1xm+j

0

)

, m ≤ −1,(9.12)

ηn−2 ∈
(

min
j=1,2,...,n−1

xj−1xn−j−1
0 , max

j=1,2,...,n−1
xj−1xn−j−1

0

)

, n ≥ 2,(9.13)

ηm−2 ∈
(

min
j=0,1,...,−m−1

x−j−1xm+j−1
0 , max

j=0,1,...,−m−1
x−j−1xm+j−1

0

)

, m ≤ −1,(9.14)

where in all cases the minima and maxima have to be applied componentwise. More exactly, one could
also say that these values are all contained in the convex hull of the given points. The situation is
particularly simple in the cases where n is small:

ξ =
1

2
(x + x0), n = 2,

ξ2 =
1

3
(x2 + xx0 + x2

0), n = 3,

ξ3 =
1

4
(x3 + x2x0 + xx2

0 + x3
0), n = 4,

ξ−2 = x−1x−1
0 , m = −1,

ξ−3 =
1

2
(x−2x−1

0 + x−1x−2
0 ), m = −2

ξ−4 =
1

3
(x−3x−1

0 + x−2x−2
0 + x−1x−3

0 ), m = −3

η =
1

3
(2x0 + x), n = 3,

η2 =
1

6
(3x2

0 + 2xx0 + x2), n = 4,

η3 =
1

10
(4x3

0 + 3x2
0x + 2x0x

2 + x3), n = 5,

η−3 = x−1x−2
0 , m = −1,

η−4 =
1

3
(x−2x−2

0 + 2x−1x−3
0 ), m = −2,

η−5 =
1

6
(x−3x−2

0 + 2x−2x−3
0 + 3x−1x−4

0 ), m = −3.

We summarize our results so far.

Theorem 9.1. (Taylor form 1) Let f : H → H be defined by f(x) := xn, n ∈ Z, and define f ′, f ′′

according to (9.1). Assume that x, x0 ∈ H commute. Then there is an element ξ ∈ H and an element
η ∈ H such that

f(x) = f(x0) + f ′(ξ)(x − x0),

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(η)

2
(x − x0)

2,

where for ξ, η we have the inclusions given in (9.11) to (9.14).

We are mainly interested in the case where

x − x0 =: ε

is small. The commutation of x, x0 implies that also ε commutes with x and with x0 because

εx = (x − x0)x = x2 − x0x = x2 − xx0 = xε,

εx0 = (x − x0)x0 = xx0 − x2
0 = x0x − x2

0 = x0ε.
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Since the commutation of x, x0 also implies the commutation of xj , xk
0 for arbitrary j, k ∈ Z, this applies

also for the two commuting pairs ε, x; ε, x0. Thus, the binomial formula for xj = (x0 + ε)j is valid in the
ordinary sense.

Theorem 9.2. (Taylor form 2) Let f : H → H be defined by f(x) := xn, n ∈ Z, and define f ′, f ′′

according to (9.1). Assume that x, x0 ∈ H commute. Then with ε := x − x0 we have

f(x) = f(x0) + f ′(x0)(x − x0) + O(ε2),(9.15)

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 + O(ε3),(9.16)

where O(h) is an abbreviation for an expression with the property

lim
|h|→0

O(h)h−1 = const .

Proof. (i) Let n ≥ 1. [a] From (9.2) and (9.5) by letting x := x0 + ε we obtain

f(x) = f(x0) +

n−1∑

j=0

(x0 + ε)jxn−j−1
0 ε

= f(x0) +

n−1∑

j=0

( j
∑

k=0

(
j

k

)

xj−k
0 εk

)

xn−j−1
0 ε

= f(x0) +

n−1∑

j=0

j
∑

k=0

(
j

k

)

xn−k−1
0 εk+1

= f(x0) +
n−1∑

j=0

(

xn−1
0 ε + jxn−2

0 ε2 + · · ·
)

= f(x0) + f ′(x0)(x − x0) +

n−1∑

j=1

(

jxn−2
0 ε2 + · · ·

)

= f(x0) + f ′(x0)(x − x0) + O(ε2).

[b] From (9.7) and (9.9) by letting x = x0 + ε we obtain

f(x) = f(x0) + f ′(x0)(x − x0) +

n−1∑

j=1

(n − j)(x0 + ε)j−1xn−j−1
0 ε2

= f(x0) + f ′(x0)(x − x0) +

n−1∑

j=1

(n − j)
( j−1

∑

k=0

(
j − 1

k

)

xj−1−k
0 εk

)

xn−j−1
0 ε2

= f(x0) + f ′(x0)(x − x0) +
n−1∑

j=1

(n − j)

j−1
∑

k=0

(
j − 1

k

)

xn−2−k
0 εk+2

= f(x0) + f ′(x0)(x − x0) +

n−1∑

j=1

(n − j)
(

xn−2
0 ε2 + (j − 1)xn−2

0 ε3 + · · ·
)

= f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 +

n−1∑

j=2

(n − j)
(

(j − 1)xn−2
0 ε3 + · · ·

)

= f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 + O(ε3).

(ii) Now, let m ≤ −1 and define e by x = x0 + ex0. Then, ε := x−x0 = ex0. Assume that e, ε are small.
[a] We use (9.2) and (9.6) and obtain

f(x) = f(x0) −
−m−1∑

j=0

(x0 + ex0)
−j−1xj+m

0 ex0
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= f(x0) −
−m−1∑

j=0

x−j−1
0 (1 + e)−j−1xj+m+1

0 e

= f(x0) − xm
0

−m−1∑

j=0

(1 + e)−j−1e = f(x0) − xm
0

−m−1∑

j=0

(1 − e + e2 − e3 · · ·)j+1e

= f(x0) − xm−1
0 (x − x0)

−m−1∑

j=0

(1 − e + e2 − e3 · · ·)j+1

= f(x0) − xm−1
0 (x − x0)

(

− m − c1e + c2e
2 − c3e

3 · · ·
)

= f(x0) + f ′(x0)(x − x0) + c1x
m
0 e2 + · · · = f(x0) + f ′(x0)(x − x0) + O(ε2),

where c1, c2, c3, . . . are positive constants (e.g. c1 = −m(−m+1)
2 ).

[b] We use (9.7) and (9.10) and obtain

f(x) = f(x0) + f ′(x0)(x − x0) +

−m−1∑

j=0

(−m − j)(x0 + ex0)
−j−1xm+j−1

0 x2
0e

2

= f(x0) + f ′(x0)(x − x0) +

−m−1∑

j=0

(−m − j)x−j−1
0 (1 + e)−j−1xm+j+1

0 e2

= f(x0) + f ′(x0)(x − x0) + xm
0

−m−1∑

j=0

(−m − j)(1 + e)−j−1e2

= f(x0) + f ′(x0)(x − x0) + xm
0

−m−1∑

j=0

(−m − j)(1 − e + e2 − · · ·)j+1e2

= f(x0) + f ′(x0)(x − x0) + xm
0

−m−1∑

j=0

(−m − j)(1 − c
(j)
1 e + c

(j)
2 e2 − · · ·)e2

= f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 + O(ε3),

where the constants c
(j)
1 , c

(j)
2 , . . . could be computed by a recursion formula.

Some generalizations are possible. If we multiply the formulas given in Theorem 9.1, and Theorem 9.2
from the left by any constant a ∈ H and take into account the fact that aO(h) = O(h) then we see that
we can apply these theorems also to f(x) := axn, n ∈ Z, where the derivatives of f are defined as usual.
If f, g are two functions for which the two theorems are valid, then these theorems are also valid for the
sum f + g because of O(h) + O(h) = O(h). Since Newton’s formula for computing the root is a sum of
this type we have the following result.

Corollary 9.3. Let a, x ∈ H and let r be one of the possible solutions of rn = a for n ≥ 2 and
assume that r is commuting with x. Define

N(x) :=
1

n

(

(n − 1)x + ax1−n
)

.

Then a is also commuting with x and

N(x) = r +
n − 1

2
r−1(x − r)2 + O((x − r)3).(9.17)

Proof. Since r and x commute we have xr = rx implying r = x−1rx and rn = (x−1rx)n = x−1rnx.
Since rn = a the elements a and x commute. Formula (9.17) is the second Taylor formula of Theorem 9.2.

This corollary proves the local, quadratic convergence of Newton’s method for computing quaternionic
roots without relying on any global theory.
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Corollary 9.4. Let m ≤ 0 ≤ n and let Πm,n be the set of all polynomials of the form

p(z) :=
n∑

j=m

ajz
j , aj ∈ H.

Define the first derivative p′ and the second derivative p′′ of p as in the complex case. Let x, x0 ∈ H be
commuting elements. Then for p ∈ Πm,n we have

p(x) = p(x0) + p′(x0)(x − x0) + O((x − x0)
2);

p(x) = p(x0) + p′(x0)(x − x0) +
p′′(x0)

2
(x − x0)

2 + O((x − x0)
3).
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