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Abstract. We investigate a nonsmooth Newton’s method for the numerical solution of
discretized optimal control problems subject to pure state constraints and mixed control-
state constraints. The infinite dimensional problem is discretized by application of a general
one-step method to the differential equation. By use of the Fischer-Burmeister function
the first order necessary conditions for the discretized problem are transformed into an
equivalent nonlinear and nonsmooth equation. This nonlinear and nonsmooth equation is
solved by a globally convergent nonsmooth Newton’s method. Numerical examples for the
optimal control of a robot conclude the article.

1. Introduction. We consider the following optimal control problem subject to pure state
constraints s(x(t)) ≤ 0 and mixed control-state constraints c(x(t), u(t)) ≤ 0:

Problem (Optimal Control Problem (OCP)). Minimize

J(x(0), x(1))

w.r.t. x ∈ W 1,∞([0, 1],Rnx) and u ∈ L∞([0, 1],Rnu) subject to the constraints

x′(t) = f(x(t), u(t)) a.e. in [0, 1],

ψ(x(0), x(1)) = 0,

c(x(t), u(t)) ≤ 0 a.e. in [0, 1],

s(x(t)) ≤ 0 in [0, 1].

Without loss of generality the discussion is restricted to autonomous problems on the
fixed time interval [0, 1]. The functions J : Rnx × Rnx → R, f : Rnx × Rnu → Rnx ,
ψ : Rnx × Rnx → Rnψ , c : Rnx × Rnu → Rnc , and s : Rnx → Rns , are supposed to be at
least twice continuously differentiable w.r.t. to all arguments. Furthermore, we assume that
the mixed control-state constraint c satisfies the rank condition rank(c′u(t)) = nc for a.e.
t ∈ [0, 1]. As usual, the Banach space L∞([0, 1],Rn) consists of all measurable functions
h : [0, 1] → Rn with

‖h‖∞ := ess sup
0≤t≤1

‖h(t)‖ <∞,

where ‖ · ‖ denotes the Euclidean norm on Rn. The Banach space W 1,∞([0, 1],Rn) consists
of all absolutely continuous functions h : [0, 1] → Rn with

‖h‖1,∞ := max{‖h‖∞, ‖h′‖∞} <∞.
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Several approaches towards the numerical solution of OCP have been investigated in the
literature. The so-called indirect method for optimal control problems attempts to satisfy
the first order necessary conditions that are provided by the well-known minimum principle
numerically, cf., e.g. Oberle and Grimm [OG01]. The exploitation of the minimum principle
leads to a nonlinear multi-point boundary value problem that has to be solved. Although the
indirect method usually leads to the most accurate solutions, it suffers from the drawback
that it requires a good initial guess in order to converge. One crucial task is to estimate the
sequence of active and inactive intervals of the control-state constraints and the pure state
constraints.

A related approach was analyzed in Gerdts [Ger06] for optimal control problems subject
to mixed control-state constraints. Herein, the minimum principle was transformed into a
nonlinear and nonsmooth equation in appropriate Banach spaces by use of a so-called NCP
function, i.e. the Fischer-Burmeister function. A nonsmooth version of Newton’s method
was applied to this nonsmooth equation and global and locally superlinear convergence of
the method was established under suitable regularity assumptions. This methodology was
used successfully earlier in the context of optimal control problems governed by partial dif-
ferential equations, cf. Ulbrich [Ulb02, Ulb03, HU04]. However, problems with pure state
constraints have not been investigated rigorously by now. The presence of pure state con-
straints complicates the structure of the minimum principle considerably since the multiplier
for the pure state constraint is a measure and the adjoint equation is an integral equation
with a Riemann-Stieltjes integral, cf. Girsanov [Gir72]. Though it is possible to reformulate
at least a weakened version of the minimum principle as a nonsmooth equation, the analysis
of the resulting equation is very difficult and actually we did not succeed by now.

In this paper we leave the infinite setting and favor the so-called direct discretization
method, which is based on a discretization of the infinite dimensional optimal control prob-
lem and leads to a finite dimensional nonlinear program, cf., e.g., Gerdts [Ger03]. The direct
discretization method turns out to be very robust in practice. Nevertheless, the computa-
tional effort grows at a nonlinear rate with the number of grid points used for discretization.

One approach to solve the discretized problem numerically is to use a suitable optimization
routine like sequential quadratic programming.

Another approach, which will be discussed in this article and which is very close to the
methodology in the infinite setting, leads to a nonsmooth Newton’s method for discretized
optimal control problems. Our intention is to analyze the local and global convergence
properties of the method and to discuss implementational details. Like in the infinite setting,
the method is based on a nonsmooth reformulation of the first order necessary optimality
conditions for the discretized problem. A brief outline of the essential ideas of the algorithm
is as follows. The reformulation of the necessary conditions leads to the nonsmooth equation

F (z) = 0, F : Rn → Rn. (1)

Application of the globalized nonsmooth Newton’s method generates sequences {zk}, {dk}
and {αk} related by the iteration

zk+1 = zk + αkd
k, k = 0, 1, 2, . . . .

Herein, the search direction dk is the solution of the linear equation Vkd
k = −F (zk) and the

step length αk > 0 is determined by a line-search procedure of Armijo’s type for a suitably
defined merit function. The matrix Vk is chosen from Clarke’s generalized Jacobian ∂F (zk).

The nonsmooth Newton’s method was investigated in finite dimensions amongst others
by Qi [Qi93], Qi and Sun [QS93], Xu and Glover [XG97], Xu and Chang [XC97], Han et
al. [HPR92], Ralph [Ral94], and Dingguo and Weiwen [DW02]. Similar ideas were also used to
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solve nonlinear complementarity problems, cf. Fischer [Fis97], Facchinei and Kanzow [FK97],
Yamashita and Fukushima [YF97], Billups and Ferris [BF97], and Jiang [Jia99]. Extensions
to infinite spaces can be found in Kummer [Kum88, Kum91], Chen et al. [CNQ00], and
Ulbrich [Ulb02, Ulb03]. Fischer [Fis92] applies the nonsmooth Newton’s method to the
first order necessary optimality conditions of general nonlinear programs and analyzes the
convergence behavior of the approach.

The paper is organized as follows. Section 2 introduces the nonsmooth Newton’s method
for nonlinear programs and summarizes convergence properties. Section 3 addresses the
discretization of the optimal control problem, the evaluation of necessary conditions, and
the application of the nonsmooth Newton’s method. The special structure of the discretized
optimal control problem is exploited. Implementational details are discussed in Section 4.
Finally, numerical illustrations are presented in Section 5.

2. Nonsmooth Newton Methods for Nonlinear Programs. We consider a nonlinear
program of type

Problem (Nonlinear Program (NLP)). Minimize f̃(y) subject to the constraints

hj(y) = 0, j = 1, . . . , p,

gi(y) ≤ 0, i = 1, . . . ,m.

Herein, f̃ : Rn → R, g = (g1, . . . , gm)> : Rn → Rm, and h = (h1, . . . , hp)
> : Rn →

Rp are assumed to be at least twice continuously differentiable functions. Furthermore,
we assume that NLP satisfies some constraint qualification, e.g. the linear independence
constraint qualification or the Mangasarian-Fromowitz constraint qualification. Then, given
a local minimum y∗ of NLP, there exist multipliers v∗ = (v∗1, . . . , v

∗
p)
> ∈ Rp and w∗ =

(w∗1, . . . , w
∗
m)> ∈ Rm satisfying the first order necessary KKT conditions

∇yL(y∗, v∗, w∗) = 0, (2)

h(y∗) = 0, (3)

w∗i ≥ 0, gi(y
∗) ≤ 0, w∗i gi(y

∗) = 0, i = 1, . . . ,m, (4)

where L(y, v, w) = f̃(y) + v>h(y) + w>g(y) denotes the Lagrange function of NLP. If the
inequality constraints g(y) ≤ 0 were not present in NLP, the classical Newton’s method
could be applied to the remaining nonlinear equations (2) and (3) in order to solve them
numerically. This approach is just the well-known Lagrange-Newton method. In the presence
of the inequality constraints we are focused with a coupled system of equalities (2)-(3) and
complementarity conditions (4) and the numerical solution becomes more intricate. The
sequential quadratic programming (SQP) method and the trust region method are based
on quadratic approximations of NLP and they require to solve a quadratic program within
each iteration. Other approaches work more or less directly with the optimality conditions
(2)-(4). For example, the most basic interior point method applies Newton’s method to a
perturbed KKT system with an additional strategy for letting the perturbation tend to zero.
We will concentrate on a closely related method which was suggested by Fischer [Fis92]. The
idea is to apply a so-called NCP function to the complementarity system (4) and transform
the KKT system into an equivalent system of equations. This can be achieved by application
of the Fischer-Burmeister function ϕ : R2 → R defined by

ϕ(a, b) :=
√
a2 + b2 − a− b.

The Fischer-Burmeister function has the nice property that

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. (5)
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Notice, that there exist other NCP functions with this property, e.g. min{a, b}. However, we
prefer the Fischer-Burmeister function as it has additional properties which are particularly
useful in view of the globalization strategy below. More precisely, we will exploit the fact
that the squared function ϕ(a, b)2 is continuously differentiable. Notice, that other NCP
functions may not have this property, e.g. min{a, b}2 is not differentiable.

Exploitation of (5) immediately allows us to restate the KKT conditions equivalently as
the nonlinear equation

F (z∗) = 0, z∗ = (y∗, v∗, w∗)>,

where F : Rn+p+m → Rn+p+m is given by

F (z) =


∇yL(y, v, w)

h(y)
ϕ(−g1(y), w1)

...
ϕ(−gm(y), wm)

 , z = (y, v, w)>. (6)

Unfortunately, this nonlinear equation can not be solved numerically by classical Newton’s
method as the Fischer-Burmeister function ϕ is not differentiable at the origin and thus
F is not differentiable, whenever (gi(y), wi) = (0, 0) holds for some index i ∈ {1, . . . ,m}.
In particular, F is not differentiable in a zero z∗ if the strict complementarity condition
w∗i −gi(y∗) > 0 is not satisfied for some i. However, F is continuously differentiable for every

z ∈ DF := {z = (y, v, w)> ∈ Rn+p+m | |gi(y)|+ |wi| > 0, i = 1, . . . ,m},
since f̃ , g, h are assumed to be twice continuously differentiable. Furthermore, the Fischer-
Burmeister function ϕ is convex and thus locally Lipschitz continuous. This in turn implies
that F is locally Lipschitz continuous as well since the composition of a locally Lipschitz
continuous function and a continuously differentiable function is again locally Lipschitz con-
tinuous.

Hence, according to Rademacher’s theorem, F is differentiable almost everywhere and the
B(ouligand)-differential

∂BF (z) :=

{
V
∣∣∣ V = lim

zi∈DF
zi→z

F ′(zi)

}
is well-defined. Taking the convex hull of the B-differential leads immediately to Clarke’s
[Cla83] generalized Jacobian

∂F (z) := co(∂BF (z)),

which is a non-empty, convex, and compact set, cf. Proposition 2.6.2 on page 70 in Clarke
[Cla83].

The existence of the generalized Jacobian gives rise to the following nonsmooth Newton’s
method. The nonsmooth Newton’s method is identical to the classical Newton’s method
for smooth equations except that the possibly non-existing Jacobian is replaced by some
element of the B-differential.

Algorithm 1 (Local Nonsmooth Newton’s Method).

(0) Choose z0 and set k = 0.
(1) If some stopping criterion is satisfied, stop.
(2) Choose Vk ∈ ∂BF (zk) and compute the search direction dk as the solution of the linear

equation
Vkd = −F (zk).

(3) Set zk+1 = zk + dk, k = k + 1, and goto (1).
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The locally superlinear convergence of the sequence {zk} to z∗ with F (z∗) = 0 was es-
tablished for more general functions F by Qi [Qi93] in Theorem 3.1 under the following
assumptions:

(i) ∂BF (z∗) is non-singular, i.e. every V ∈ ∂BF (z∗) is non-singular.
(ii) F is locally Lipschitz continuous and semismooth at z∗.

Moreover, Qi [Qi93] showed that the order of convergence is two if in addition F is 1-order
semismooth in a neighborhood of z∗.

Herein, F is called semismooth at z, if the limit

lim
V ∈∂F (z+th′)
h′→h,t↓0

V h′

exists for every h. F is called semismooth, if F is semismooth at all z. Another char-
acterization of semismoothness for locally Lipschitz continuous functions was given by Ul-
brich [Ulb02]. He showed in Proposition 2.7 on page 19 that a locally Lipschitz continuous
function F is semismooth at z if and only if F is directionally differentiable at z and satisfies

sup
V ∈∂F (z+h)

‖F (z + h)− F (z)− V h‖ = o(‖h‖) as ‖h‖ → 0. (7)

F is called 1-order semismooth at z, if F is directionally differentiable at z and

sup
V ∈∂F (z+h)

‖V h− F ′(z;h)‖ = O(‖h‖2) as ‖h‖ → 0,

where F ′(z;h) denotes the directional derivative of F at z in direction h. For a locally
Lipschitz continuous function F it was shown in Ulbrich [Ulb02], Proposition 2.14, page 22,
that F is 1-order semismooth at z if and only if F is 1-order B-differentiable, i.e.

‖F (z + h)− F (z)− F ′(z;h)‖ = O(‖h‖2) as ‖h‖ → 0,

and

sup
V ∈∂F (z+h)

‖F (z + h)− F (z)− V h‖ = O(‖h‖2) as ‖h‖ → 0. (8)

It remains to establish the semismoothness and the 1-order semismoothness for our par-
ticular function F in (6). Therefore, let us summarize some well-known results. The
Fischer-Burmeister function ϕ is 1-order semismooth (and thus semismooth) according to
Fischer [Fis97], Lemma 20, and particularly satisfies conditions (10) and (7). Furthermore,
due to a result of Mifflin, the composition g = g1 ◦ g2 of semismooth functions g1, g2 is again
semismooth, cf. Fischer [Fis97], page 527. Similarly, the composition of 1-order semismooth
functions is again 1-order semismooth, cf. Fischer [Fis97], Theorem 19. In particular, con-
tinuously differentiable functions are semismooth and functions having a locally Lipschitz
continuous first derivative are 1-order semismooth. By exploitation of these results we find
the following convergence result. The proof is identical to the proof of Theorem 3.1 in
Qi [Qi93].

Theorem 1 (Local Convergence).

Let z∗ satisfy F (z∗) = 0. Let f̃ , g, and h be twice continuously differentiable. Let ∂BF (z∗)
be nonsingular. Then, F is semismooth and there exists some r > 0 such that for any z0,
‖z0 − z∗‖ < r, Algorithm 1 is well-defined and the sequence {zk} converges superlinearly to
z∗. If F (zk) 6= 0 for all k, then

lim
k→∞

‖F (zk+1)‖
‖F (zk)‖

= 0.
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If in addition the second derivatives of f̃ , g, and h are locally Lipschitz continuous in a
neighborhood of z∗, then F is 1-order semismooth and the order of convergence is 2.

Qi and Sun [QS93], Theorem 3.2 proved a similar result, if Vk is chosen from ∂F (zk) in
step (2) of Algorithm 1.

2.1. Global Convergence. In practice, the local nonsmooth Newton’s method has to be
globalized in order to obtain global convergence for arbitrary starting points z0. This is
achieved by introducing the merit function

Θ(z) :=
1

2
‖F (z)‖2 =

1

2

(
‖∇yL(y, v, w)‖2 + ‖h(y)‖2 +

m∑
i=1

ϕ(−gi(y), wi)2

)
.

It is easy to check that the squared Fischer-Burmeister function ϕ2 is continuously differen-
tiable and thus Θ is continuously differentiable and it holds

∇Θ(z) = V >F (z),

where V is an arbitrary element of ∂F (z). Then, any search direction with V d = −F (z)
with V being non-singular yields the directional derivative

∇Θ(z)>d = −F (z)>F (z) = −‖F (z)‖2 = −2Θ(z). (9)

Hence, d is a direction of descent unless F (z) = 0 and Armijo’s line search is well-defined.
A globalized version of Algorithm 1 reads as follows:

Algorithm 2 (Globalized Nonsmooth Newton’s Method).

(0) Choose z0, β ∈ (0, 1), σ ∈ (0, 1/2) and set k = 0.
(1) If some stopping criterion is satisfied, stop.
(2) Compute the search direction dk as the solution of the linear equation

Vkd = −F (zk), Vk ∈ ∂BF (zk).

(3) Find the smallest ik ∈ N0 with

Θ(zk + βikdk) ≤ Θ(zk) + σβik∇Θ(zk)>dk

and set αk = βik .
(4) Set zk+1 = zk + αkd

k, k = k + 1, and goto (1).

The following global convergence result can be found to some extend in Theorem 4.1 in
Jiang [JQ97].

Theorem 2. Let f̃ , g, and h be twice continuously differentiable. Let the inverse operators
V −1
k exist for all k and let C > 0 be a constant such that ‖V −1

k ‖ ≤ C holds for all k. Let z∗

be an accumulation point of the sequence {zk} generated by Algorithm 2.
Then, z∗ is a zero of F .
Furthermore, the step size αk = 1 is accepted for all k sufficiently large and the globalized

method eventually turns into the local method.

Proof. Let {zk} be a (sub)sequence with zk → z∗ and F (zk) 6= 0. According to (9) it holds
∇Θ(zk)>dk = −2Θ(zk) < 0. We have to investigate two cases.

(i) Assume α := lim infk→∞ αk > 0. Then

0 ≤ Θ(zk+1) ≤ Θ(zk) + σαk∇Θ(zk)>dk = Θ(zk) (1− 2σαk) .

With σ ∈ (0, 1/2) and α ≤ αk ≤ 1 it follows inductively

0 ≤ Θ(zk) ≤ Θ(z0) (1− 2σα)k → 0.
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(ii) Assume that there is a subsequence with αk → 0, k ∈ J ⊂ N. The sequence {dk} is
bounded since {V −1

k } is bounded and

0 ≤ ‖dk‖ = ‖V −1
k F (zk)‖ ≤ C‖F (zk)‖ ≤ C‖F (z0)‖.

Hence, there exists a convergent subsequence {dk}k∈Ĵ , Ĵ ⊆ J , with dk → d∗.
The line search in step (3) of the algorithm yields

Θ(zk + αkd
k)−Θ(zk)

αk
≤ σ∇Θ(zk)>dk, k ∈ Ĵ ,

Θ(zk + αk
β
dk)−Θ(zk)
αk
β

> σ∇Θ(zk)>dk, k ∈ Ĵ .

Passing to the limits yields

∇Θ(z∗)>d∗ = σ∇Θ(z∗)>d∗.

Since σ ∈ (0, 1/2) this implies that ∇Θ(z∗)>d∗ = 0. Multiplication by F (zk)> of the
linear equation in step (2) yields

0 = ‖F (zk)‖2 +∇Θ(zk)>dk → ‖F (z∗)‖2.

(i) and (ii) showed that z∗ is a zero of F . Now, we will show that αk = 1 satisfies Armijo’s
rule for k sufficiently large. As in Corollary 3.2 in Qi [Qi93] we can show that for any ε > 0
there is a δ > 0 such that for all ‖zk − z∗‖ < δ it holds

‖zk + dk − z∗‖ ≤ ε‖zk − z∗‖, ‖F (zk + dk)‖ ≤ ε‖F (zk)‖,
where dk = −V −1

k F (zk). Hence, for ε =
√

1− 2σ < 1 there exists δ > 0 such that for all
‖zk − z∗‖ ≤ δ it holds

‖zk + dk − z∗‖ ≤
√

1− 2σ‖zk − z∗‖, ‖F (zk + dk)‖ ≤
√

1− 2σ‖F (zk)‖.
Then,

Θ(zk + dk) =
1

2
‖F (zk + dk)‖2 ≤ 1− 2σ

2
‖F (zk)‖2 = (1− 2σ)Θ(zk)

resp.
Θ(zk + dk) ≤ Θ(zk)− 2σΘ(zk) = Θ(zk) + σ∇Θ(zk)>dk.

Hence, Armijo’s rule is satisfied for αk = 1 and zk+1 = zk + dk. Furthermore, ‖zk+1 − z∗‖ ≤√
1− 2σ‖zk − z∗‖ ≤ δ and we are in the same situation as above and the argument can be

repeated.

2.2. Computing one Element from the B-Differential. It remains to compute at least
one element of the B-differential of F in (6). For every z ∈ DF , F is continuously differen-
tiable in a neighborhood of z and it holds ∂BF (z) = {F ′(z)} with

F ′(z) =

 ∇2
yyL(y, v, w) h′(y)> g′(y)>

h′(y) 0 0
−R(z)g′(y) 0 T (z)

 ,

where R := diag(R1, . . . , Rm), T := diag(T1, . . . , Tm), and

(Ri(z), Ti(z)) =

(
−gi(y)√
gi(y)2 + w2

i

− 1,
wi√

gi(y)2 + w2
i

− 1

)
= ϕ′(−gi(y), wi).

For z 6∈ DF we define the non-empty index set

I(y, w) = {i ∈ {1, . . . ,m} | (gi(y), wi) = (0, 0)}
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and the sequence z` = (y, v, w`)> with w`i = wi for i 6∈ I(y, w) and w`i = 1/` > 0 for
i ∈ I(y, w). Then, z` → z, z` ∈ DF , and

lim
`→∞

F ′(z`) =

 ∇2
yyL(y, v, w) h′(y)> g′(y)>

h′(y) 0 0

−R̂(z)g′(y) 0 T̂ (z)

 =: V̂ (z) (10)

with R̂ := diag(R̂1, . . . , R̂m), T̂ := diag(T̂1, . . . , T̂m), and

(R̂i(z), T̂i(z)) = lim
`→∞

(
Ri(z

`), Ti(z
`)
)

=


(

−gi(y)√
gi(y)2+w2

i

− 1, wi√
gi(y)2+w2

i

− 1

)
, if i 6∈ I(y, w),

(−1, 0) , if i ∈ I(y, w).

Hence, we have constructed one particular element V̂ (z) ∈ ∂BF (z) for any z 6∈ DF . We
proved

Lemma 1. The matrix

V =

{
F ′(z), if z ∈ DF ,

V̂ (z), otherwise

with V̂ from (10) is an element of ∂BF (z) and may be chosen in step (2) of Algorithms 1
and 2.

2.3. A More General Generalized Jacobian. While it is comparatively simple to com-
pute just one element of the B-differential of F , in general it is not possible to compute the
B-differential in total. But, the following considerations will provide a superset ∂∗F (z) of
the generalized Jacobian ∂F (z) whose elements can be used in Algorithms 1 and 2 instead of
∂BF (z) resp. ∂F (z). First, we compute the generalized Jacobian of the Fischer-Burmeister
function.

Lemma 2. The generalized Jacobian of ϕ is given by

∂ϕ(a, b) =


{(

a√
a2 + b2

− 1,
b√

a2 + b2
− 1

)}
, if (a, b) 6= (0, 0),{

(r, t)
∣∣ (r + 1)2 + (t+ 1)2 ≤ 1

}
, if (a, b) = (0, 0).

Proof. The B-differential contains all limits of ϕ′(a, b) for (a, b) → (0, 0), (a, b) 6= (0, 0).
Obviously, it holds

ϕ′(a, b) ∈M := {(r, t) | (r + 1)2 + (t+ 1)2 ≤ 1} ∀(a, b) 6= (0, 0).

Consequently, ∂Bϕ(0, 0) ⊆ ∂ϕ(0, 0) ⊆ M . On the other hand, using the sequences (ai, bi) =
1
i
(cosα, sinα) with arbitrary α ∈ [0, 2π) it follows

lim
i→∞

ϕ′(ai, bi) = (cosα− 1, sinα− 1)

and hence ∂ϕ(0, 0) = M .

The generalized chain rule in Theorem 2.6.6 and Proposition 2.6.2 in Clarke [Cla83] and
the fact that a convex set times a matrix is again convex yield the relation

∂BF (z) ⊆ ∂F (z) ⊆

 ∇2
yyL(y, v, w) h′(y)> g′(y)>

h′(y) 0 0
−R(z)g′(y) 0 T (z)

 =: ∂∗F (z), (11)

where R = diag(R1, . . . , Rm), T = diag(T1, . . . , Tm), and

(Ri(z), Ti(z)) ∈ ∂ϕ(−gi(y), wi).
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In the sequel we will show that the convergence results in Theorems 1 and 2 still hold, if
the B-differential ∂BF in Algorithms 1 and 2 is replaced by the larger set ∂∗F . We need an
auxiliary result.

Lemma 3. Let η : Rm → Rn be twice continuously differentiable. Let γ : Rn → R be locally
Lipschitz continuous and let for all z ∈ Rn,

sup
V ∈∂γ(z+h)

‖γ(z + h)− γ(z)− V h‖ = O(‖h‖2), as ‖h‖ → 0.

Then the composite function ζ = γ ◦ η satisfies

sup
V ∈∂γ|η(x+h)

‖ζ(x+ h)− ζ(x)− V · η′(x+ h)h‖ = O(‖h‖2) as ‖h‖ → 0

for all x ∈ Rm.

Proof. The differentiability assumption for η yields

η(x)− η(x+ h) = −η′(x+ h)h+O(‖h‖2).

By the upper semicontinuity of ∂γ(·), cf. Proposotion 2.6.2 in Clarke [Cla83], and the
boundedness of ∂γ(z) for every z it holds

sup
V ∈∂γ|η(x+h)

‖ζ(x+ h)− ζ(x)− V · η′(x+ h)h‖

= sup
V ∈∂γ|η(x+h)

‖γ(η(x+ h))− γ(η(x))− V ·
(
η(x+ h)− η(x) +O(‖h‖2)

)
‖

≤ sup
V ∈∂γ|η(x+h)

‖γ(η(x+ h))− γ(η(x))− V · (η(x+ h)− η(x)) ‖

+ sup
V ∈∂γ|η(x+h)

‖V ‖ ·O(‖h‖2)

= O(‖h‖2).

The following lemma states that the semismoothness condition (7) and the 1-order semis-
moothness condition (8) even hold w.r.t. the set ∂∗F .

Lemma 4. Let f̃ , g, and h be twice continuously differentiable. Then,

sup
V ∈∂∗F (z+h)

‖F (z + h)− F (z)− V h‖ = o(‖h‖) as ‖h‖ → 0. (12)

If in addition the second derivatives of f̃ , g, and h are locally Lipschitz continuous, then

sup
V ∈∂∗F (z+h)

‖F (z + h)− F (z)− V h‖ = O(‖h‖2), as ‖h‖ → 0. (13)

Proof. If f̃ , g, h are twice continuously differentiable, the first n + p components of F are
continuously differentiable and thus satisfy the corresponding condition (12). Moreover, if

f̃ , g, h possess Lipschitz continuous second derivatives, it is straightforward to verify (13) for
these components. It remains to analyze the components Fn+p+i(z) = ϕ(−gi(y), wi), 1 ≤
i ≤ m. The mapping (y, v, w) 7→ (−gi(y), wi) is twice continuously differentiable according
to our assumptions. The function ϕ is locally Lipschitz continuous, 1-order semismooth, cf.
Fischer [Fis97], Lemma 20, and satisfies (8). Hence, we may apply Lemma 3 and immediately
obtain (13) (and particularly (12)) for the components Fn+p+i, i = 1, . . . ,m.
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Lemma 4 provides the tool needed for a local convergence analysis of Algorithm 1 if ∂∗F (z)
is used instead of ∂BF (z). So, let Vkd

k = −F (zk) hold with Vk ∈ ∂∗F (zk) and let V −1
k exist.

We derive

‖zk + dk − z∗‖ = ‖zk − V −1
k F (zk)− z∗‖

= ‖V −1
k

(
F (zk)− F (z∗)− Vk(z

k − z∗)
)
‖

≤ ‖V −1
k ‖ · sup

Vk∈∂∗F (zk)

‖F (zk)− F (z∗)− Vk(z
k − z∗)‖.

Application of Lemma 4 yields superlinear resp. quadratic convergence of {zk} for the local
nonsmooth Newton’s method under the assumptions of Theorem 1 (with ∂BF replaced by
∂∗F ). Similarly, the proof of Theorem 2 can be repeated for ∂∗F as well, as it can be verified
that ∇Θ(z) = V >F (z) even holds for every V ∈ ∂∗F (z).

Summarizing, Theorems 1 and 2 remain valid, if ∂BF is replaced by ∂∗F .

3. Discretization of the Optimal Control Problem. Direct discretization methods for
the optimal control problem OCP are based on a discretization of the infinite dimensional
optimal control problem. The resulting discretized problem will be a finite dimensional
nonlinear program as in NLP but with a special structure of the objective function and the
constraints. The subsequently discussed method works on the grid

GN := {0 = t0 < t1 < . . . < tN = 1}
with step sizes hj = tj+1 − tj, j = 0, . . . , N − 1 and mesh-size h := maxj=0,...,N−1 hj. Often,
GN will be an equidistant partition of the interval [0, 1] with constant step size h = 1/N and
grid points ti = ih, i = 0, . . . , N .

In the sequel we illustrate the direct discretization method for a generic one-step method
with increment function Φ which is supposed to be appropriate for the ODE
x′(t) = f(x(t), u(t)). We replace the control u : [0, 1] → Rnu by a grid function uh : GN →
Rnu with values ui := uh(ti), i = 0, . . . , N . Usually, we associate with uh a piecewise constant
approximation of u on the interval [0, 1]. Notice, that uh(·) is completely determined by the
vector (u0, . . . , uN)> ∈ Rnu(N+1).

For a given initial value x0 and a given control approximation uh the one-step method
generates a grid function xh : GN → Rnx with values xi := xh(ti), i = 0, . . . , N , by the
recursion

xi+1 = xi + hiΦ(xi, ui, hi), i = 0, 1, . . . , N − 1.

Most often, the one-step method is given by an s-staged Runge-Kutta method defined by

xi+1 = xi + hi

s∑
j=1

bjkj(xi, ui, hi),

kj(x, u, h) = f

(
x+ h

s∑
`=1

aj`k`(x, u, h), u

)
, j = 1, . . . , s,

where bj and aj` are appropriate coefficients. For brevity we identify x with (x0, . . . , xN)>

and u with (u0, . . . , uN)>. We obtain a discretization of the optimal control problem by
replacing the ODE by the one-step method and discretizing the constraints on the grid GN :

Problem (Discretized Optimal Control Problem (DOCP)). Find vectors

x = (x0, . . . , xN)> ∈ Rnx(N+1) and u = (u0, . . . , uN)> ∈ Rnu(N+1)

such that the objective function
J(x0, xN)
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is minimized subject to

xi+1 − xi − hiΦ(xi, ui, hi) = 0, i = 0, 1, . . . , N − 1,
ψ(x0, xN) = 0,
c(xi, ui) ≤ 0, i = 0, 1, . . . , N,
s(xi) ≤ 0, i = 0, 1, . . . , N.

Remark 1. If the mixed control-state constraint c is not present in OCP and DOCP, re-
spectively, the variable uN is obsolete in DOCP and will be canceled from the formulation.

The discretized optimal control problem is a nonlinear programming problem of type NLP
in Section 2 with the optimization variable

y := (x0, x1, . . . , xN , u0, . . . , uN)> ∈ R(nx+nu)(N+1),

and the functions

f̃(y) := J(x0, xN),

g(y) :=



c(x0, u0)
...

c(xN , uN)
s(x0)

...
s(xN)


∈ R(nc+ns)(N+1),

h(y) :=


x1 − x0 − h0Φ(x0, u0, h0)

...
xN − xN−1 − hN−1Φ(xN−1, uN−1, hN−1)

ψ(x0, xN)

 ∈ RnxN+nψ .

The size of the programming problem can become very large. In practice, dimensions up to
a million of optimization variables or even more are not unrealistic. In order to handle these
dimensions it is essential to exploit the sparse structure of the problem.

We state first order necessary conditions. The Lagrange function is given by

L(x, u, λ, σ, η, µ) := J(x0, xN) +
N∑
i=0

η>i c(xi, ui) +
N∑
i=0

µ>i s(xi)

+
N−1∑
i=0

λ>i (xi+1 − xi − hiΦ(xi, ui, hi)) + σ>ψ(x0, xN)

with multipliers λ = (λ0, . . . , λN−1)
> ∈ RnxN , η = (η0, . . . , ηN)> ∈ Rnc(N+1), σ ∈ Rnψ ,

µ = (µ0, . . . , µN)> ∈ Rns(N+1). Define

H(xi, ui, λi, ηi, µi) := −hiλ>i Φ(xi, ui, hi) + η>i c(xi, ui) + µ>i s(xi),

γ(x0, xN , uN , σ, ηN , µN) := J(x0, xN) + η>Nc(xN , uN) + µ>Ns(xN) + σ>ψ(x0, xN).

Then, using the abbreviation [ti] for H(xi, ui, λi, ηi, µi), we obtain a simpler representation
of the Lagrange function:

L(x, u, λ, σ, η, µ) = γ(x0, xN , uN , σ, ηN , µN) +
N−1∑
i=0

(
H[ti] + λ>i (xi+1 − xi)

)
.
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The first order necessary KKT conditions read as

∇xL(x, u, λ, σ, η, µ) = 0,

∇uL(x, u, λ, σ, η, µ) = 0,

h(x, u) = 0,

c(xi, ui) ≤ 0, ηi ≥ 0, η>i c(xi, ui) = 0, i = 0, . . . , N,

s(xi) ≤ 0, µi ≥ 0, µ>i s(xi) = 0, i = 0, . . . , N.

Application of the Fischer-Burmeister function leads to the nonsmooth equation

F (z) :=



∇xL(x, u, λ, σ, η, µ)
∇uL(x, u, λ, σ, η, µ)

h(x, u)
ϕ(−c(x0, u0), η0)

...
ϕ(−c(xN , uN), ηN)
ϕ(−s(x0), µ0)

...
ϕ(−s(xN), µN)


= 0, z = (x, u, λ, σ, η, µ)>,

cf. (6). For brevity we use the notation

ϕ(−s(xi), µi) :=

 ϕ(−s1(xi), µi,1)
...

ϕ(−sns(xi), µi,ns)

 , i = 0, . . . , N,

and likewise for ϕ(−c(xi, ui), ηi). The relation in (11) reads as

∂BF (z) ⊆ ∂F (z) ⊆ ∂∗F (z) =


L′′xx L′′xu (h′x)

> C>
x S>

L′′ux L′′uu (h′u)
> C>

u 0
h′x h′u 0 0 0

−RcCx −RcCu 0 Tc 0
−RsS 0 0 0 Ts

 (14)

where

Cx = diag(c′x[t0], . . . , c
′
x[tN ]),

Cu = diag(c′u[t0], . . . , c
′
u[tN ]),

S = diag(s′x(x0), . . . , s
′
x(xN)),

Rc = diag(R0
c , . . . , R

N
c ),

Tc = diag(T 0
c , . . . , T

N
c ),

Rs = diag(R0
s, . . . , R

N
s ),

Ts = diag(T 0
s , . . . , T

N
s ).

Herein, Rj
c, T

j
c ∈ Rnc×nc and Rj

s, T
j
s ∈ Rns×ns , j = 0, . . . , N , are diagonal matrices. A specific

element of the B-differential of F can be computed according to Lemma 1 in Section 2:

(
(Rj

c)ii
(T jc )ii

)
=



 −ci[tj ]√
ci[tj ]2+η2

j,i

− 1
ηi,j√

ci[tj ]2+η2
j,i

− 1

 if (ci[tj], ηj,i) 6= (0, 0),(
−1
0

)
, otherwise,
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for i = 1, . . . , nc, j = 0, . . . , N , and

(
(Rj

s)ii
(T js )ii

)
=



 −si(xj)√
si(xj)2+µ2

j,i

− 1
µi,j√

si(xj)2+µ2
j,i

− 1

 if (si(xj), µj,i) 6= (0, 0),(
−1
0

)
, otherwise,

for i = 1, . . . , ns, j = 0, . . . , N . Furthermore, we find

h′x =



−M0 I

. . .

−MN−1 I

ψ′x(0) ψ′x(1)

 ,

h′u =



−h0Φ
′
u[t0]

. . .

−hN−1Φ
′
u[tN−1] 0

 ,

where Mj := I + hjΦ
′
x(xj, uj, hj), j = 0, . . . , N − 1, and

L′′xx =


γ′′x0x0

+H ′′
xx[t0] γ′′x0xN

H ′′
xx[t1]

. . .
H ′′
xx[tN−1]

γ′′xNx0
γ′′xNxN

 ,

L′′xu = (L′′ux)
>

=


H ′′
xu[t0]

. . .
H ′′
xu[tN−1]

γ′′xNuN

 ,

L′′uu =


H ′′
uu[t0]

. . .
H ′′
uu[tN−1]

γ′′uNuN

 .

The convergence results of Theorems 1 and 2 hold accordingly for DOCP. It is without
the scope of this paper to provide sufficient conditions that guarantee the non-singularity of
the matrices Vk in (14) resp. (11). Results in this direction can be found in Fischer [Fis92],
Lemma 4.2. These results assume linear independence of the linearized constraints and
strong second order sufficient conditions.

4. Implementation. The globalized nonsmooth Newton’s method was implemented in
C++. The Jacobians and the Hessian of the Lagrange function were computed by the
algorithmic differentiation code ADOL-C by Griewank et al. [GJU96]. In each iteration of
the nonsmooth Newton’s method we have to solve the linear equation Vkd = −F (zk). The
matrix Vk is large scale and sparse and has the same structure as in (14). We used the
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Figure 1. LU-decomposition (e.g. L + U − I) of Vk ∈ ∂BF (zk) before and
after minimum-degree pivoting. Dimensions: nx = 8, nu = 2, nψ = 8, nc = 4,
ns = 3.

software package SuperLU by Demmel et al. [DEG+99] for numerical computations. Su-
perLU in combination with the minimum degree heuristic as a pivoting strategy computes a
sparse LU decomposition of Vk. Figure 1 illustrates LU decompositions of Vk with or without
minimum-degree pivoting. The example shows that the resulting factors L and U without
pivoting are dense even for a sparse matrix Vk. The pivoting strategy produces sparse factors
L and U which allow to solve the linear equation efficiently by forward-backward elimination.

5. Numerical Results. In this section the established globalized nonsmooth Newton’s
method will be used to solve two sample optimal control problems subject to pure state
constraints and control constraints. All computations were performed on a personal com-
puter with 2.26 GHz. For all computations, the initial guess for x was computed by forward
integration of the differential equation for a given initial value and a constant control u. The
initial guess for the multipliers was chosen in such a way that the initial V0 is non-singular.
Moreover, we used the parameters β = 0.9 and σ = 0.1 in Armijo’s rule in step (3) of the
globalized Newton’s method. The algorithm terminates if ‖F (zk)‖ ≤ 10−10.

5.1. Minimum Energy Problem. The following minimum energy problem was investi-
gated earlier in Bryson and Ho [BH75], sec. 3.11, ex. 2.
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Problem (Minimum Energy Problem). Minimize x3(1) subject to the constraints

x′1(t) = x2(t), x1(0) = x1(1) = 0,
x′2(t) = u(t), x2(0) = −x2(1) = 1,
x′3(t) = 1

2
u(t)2, x3(0) = 0,

x1(t) ≤ 1
9
.

The problem is an ideal test problem because an analytical solution to the problem is
known and can be found in Bryson and Ho [BH75], sec. 3.11, ex. 2. Hence, we can calculate
the absolute error of the numerical approximation. The minimum energy problem is solved
on equidistant grids with N ∈ {100, 200, 400, 800, 1600} grid points. For the discretization
of the differential equations the well-known Euler’s method, Heun’s method and the classical
RK method of order 4 are used.

integrator N ‖F (z)‖2 iterations runtime (sec)

Euler 100 9.4e-015 26 0.18

200 1.8e-011 37 0.57

400 5.2e-015 57 1.80

800 3.6e-014 109 7.53

1600 1.0e-011 183 27.84

Heun 100 3.2e-012 33 0.38

200 5.5e-013 84 2.32

400 6.2e-013 76 3.44

800 5.6e-013 164 17.77

1600 1.5e-012 380 78.49

RK4 100 3.2e-012 33 0.63

200 5.5e-013 84 3.95

400 6.2e-013 76 5.82

800 1.0e-012 166 31.75

1600 5.6e-014 226 80.91

Table 1. Numerical results for the minimum energy problem

Table 1 shows for the different discretization methods the value of the residuum ‖F (zk)‖
at last iteration, the number of iterations needed and the overall runtime of the algorithm.
Notice, that the algorithm terminates successfully in all cases. The number of iterations
grows approximately linear in N . The consequence is a quadratically growing runtime. The
calculated solution is plotted in Figure 2. It is important to point out that the multiplier
µ associated with the discretized state constraint perfectly resembles the behavior of the
derivative of the corresponding multiplier function of the pure state constraint of the original
optimal control problem. From optimal control theory it is well-known, that the multiplier for
a pure state constraint is a non-decreasing function of bounded variation. For the minimum
energy problem it can be shown that the multiplier is constant on the intervals [0, t1), (t1, t2),
and (t2, 1], where t1 = 1/3 and t2 = 2/3 denote the switching points, i.e. those points at
which the state constraint becomes active resp. inactive. The multiplier jumps at the points
t1 and t2. The discrete solution shows exactly the same behavior, if the discrete multiplier µ
is interpreted as an approximation of the derivative of the corresponding multiplier function
for OCP.

The errors of the numerical solution w.r.t. the exact solution are given in Table 2. The
errors in state and control, measured in the norm ‖ · ‖∞, as well as the error in the switching
points t1, t2 show a linear rate of convergence.
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Figure 2. Numerical solution of the minimum energy problem with Heun’s
method and N = 400 grid points: converged solution (bold curves), initial
guess (solid curve), and intermediate iterates (dashed curves)

There is no need to calculate the errors for the RK4 method, due to the fact that the
differential equation of the minimum energy problem is already integrated exactly by Heun’s
method. There would be no further improvement if we would use a 4th-order integration
method.
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max. error max. error max. error
state x = (x1, x2) control u switching points

N Euler Heun Euler Heun Euler Heun
100 2.3e-02 2.0e-04 3.6e-01 9.3e-02 1.0e-02 0.0e-00

200 1.1e-02 6.5e-05 1.8e-01 4.6e-02 5.1e-03 3.4e-05

400 5.7e-03 1.3e-05 9.0e-02 2.3e-02 2.5e-03 0.0e-00

800 2.8e-03 3.7e-06 4.5e-02 1.1e-02 1.3e-03 2.1e-06

1600 1.4e-03 7.8e-07 2.3e-02 5.6e-03 6.3e-04 0.0e-00

Table 2. Comparison between exact and numerical solution: errors ‖xh −
x∗‖∞, ‖uh − u∗‖∞, and error in switching points where the state constraint
becomes active and inactive.

The iterations of the globalized nonsmooth Newton’s method are summarized in Table 3
and indicate the fast quadratic convergence for the last three iterations. Notice, that the
step size αk = 1 finally is accepted as it was predicted by Theorem 2.

iteration k ‖F (zk+1)‖2 ‖zk+1 − zk‖2 αk
1 1.5e+001 3.0e+001 6.4e-003

2 1.5e+001 2.1e+001 3.0e-003

3 1.5e+001 3.1e+001 1.6e-002

4 1.4e+001 4.4e+001 8.0e-002

5 1.4e+001 1.0e+001 6.4e-003

... ... ... ...

28 5.7e-004 2.4e+000 1.0e+000

29 1.3e-005 2.3e-002 1.0e+000

30 1.3e-008 4.7e-004 1.0e+000

31 2.7e-014 3.8e-007 1.0e+000

Table 3. Output of program for the minimum energy problem with N = 150
grid points and Heun’s discretization method.
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5.2. Optimal Control of a Robot. We investigate an optimal control problem for a planar
two-linked robot which is depicted in Figure 3. The robot can be controlled by two torques
u1 and u2 which apply at the joints M1 and M2, respectively.

x

y

q1

q2

P

M1

M2

l1

l 2
Figure 3. 2D industrial robot

The task is to determine an optimal control u = (u1, u2)
> for the transport of a payload

(mounted in P ) from a specified starting position to the prescribed position (xf , yf ). The
objective function consists of the free final time tf and a regularization term for minimal
control effort. The equations of motion of the robot are given by the Lagrangian equations
for mechanical multibody systems. In addition, box-constraints for the angles q1 and q2,
the controls u1 and u2, and the accelerations w1 and w2 are imposed. This leads to the
following optimal control problem, which can be transformed by standard techniques to a
Mayer-problem on the fixed time interval [0, 1] as in OCP.

Problem (Robot Problem). Minimize

tf +
δ

2

∫ tf

0

u(t)>u(t) dt

subject to the differential equations

q̇1 = w1,

q̇2 = w1 + w2,

ẇ1 =
J22(u1 − u2 + J12 sin q2w

2
2)− J12 cos q2(u2 − J12 sin q2w

2
1)

J11J22 − J2
12 cos2 q2

,

ẇ2 =
J11(u2 − J12 sin q2w

2
1)− J12 cos q2(u1 − u2 + J12 sin q2w

2
2)

J11J22 − J2
12 cos2 q2

,

the boundary conditions q1(0) = q2(0) = w1(0) = w2(0) = w1(tf ) = w2(tf ) = 0 and

xf = l1 cos(q1(tf )) + l2 cos(q1(tf ) + q2(tf )),

yf = l1 sin(q1(tf )) + l2 sin(q1(tf ) + q2(tf )),

and the control and state constraints

|ui(t)| ≤ 25, |qi(t)| ≤ 3, |wi(t)| ≤ 5, i = 1, 2.
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The following parameters represent the IBM 7535 B 04 industrial robot and were used for
numerical computations:

m1 = 24 [kg], m2 = 15 [kg], m = 6 [kg],
J1 = 1.6 [kgm2], J2 = 0.43 [kgm2], J3 = 0.01 [kgm2],
l1 = 0.4 [m], l2 = 0.25 [m], a1 = 0.2 [m],
a2 = 0.125 [m],

and

J11 = J1 + (m2 +m)l21, J12 = m2a2l1 +ml1l2, J22 = J2 + J3 +ml22.

Our first attempts towards the numerical solution of the robot problem were not success-
ful. We encountered problems due to bad scaling which resulted in breakdowns of the line
search procedure in the globalized nonsmooth Newton’s method. To avoid these breakdowns
we experimented with a modification of Armijo’s line search in step (3) of the globalized
nonsmooth Newton’s method. It is based on the so-called Armijo rule with expansion and
works as follows. If the step-width α = 1 fulfills the Armijo condition we increase α in dis-
crete steps until the Armijo-condition is violated. Then, we choose that α ≥ 1 as step length
which returned the smallest value of the merit function Θ. A drawback of this method is the
loss of the superlinear convergence as we can not guarantee that the step length αk = 1 is ac-
cepted for sufficiently large k. In our numerical tests we observed only a linear convergence
rate. Figure 4 shows the converged solution and intermediate iterates of the nonsmooth
Newton’s method for N = 150 and Euler’s method. Notice, that the state constraint for the
angular velocity w2 and the control constraints for u1 and u2 become active. More intuitive
snapshots of the motion of the optimally controlled robot are depicted in Figure 5. It is
interesting to mention, that the iterates for the control functions behave much ‘wilder’ than
the iterates for the state functions.
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Figure 4. Numerical solution of the robot problem with Euler’s method and
N = 150 grid points: converged solution (bold curves), initial guess (solid
curve), and intermediate iterates (dashed curves)
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Figure 5. Snapshots of the robot’s motion at different time points.
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