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COUNTING CLOSED GEODESICS ON RANK ONE
MANIFOLDS

ROLAND GUNESCH

Abstract. We establish a precise asymptotic formula for the num-
ber of homotopy classes of periodic orbits for the geodesic �ow on
rank one manifolds of nonpositive curvature. This extends a cel-
ebrated result of G. A. Margulis to the nonuniformly hyperbolic
case and strengthens previous results by G. Knieper.

We also establish some useful properties of the measure of max-
imal entropy.

1. Introduction

1.1. Manifolds of rank one. Let M be a compact Riemannian man-
ifold with all sectional curvatures nonpositive. For a vector v ∈ TM,
the rank of v is the dimension of the vector space of parallel Jacobi
�elds along the geodesic tangent to v. The rank of M is the minimal
rank of all tangent vectors. Obvious consequences of this de�nition are
that

1 ≤ rank(M) ≤ dim(M),

that the rank of Rk with the �at metric is k and that

rank(M ×N) = rank(M) + rank(N).

Every manifold whose sectional curvature is never zero is automatically
of rank one. Products with Euclidean n-space clearly have rank at least
n + 1. However, it is possible for a manifold to be everywhere locally
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a product with Euclidean space and still have rank one. It turns out
that the rank of a manifold of nonpositive curvature is the algebraic
rank of its fundamental group ([BaEb]).
Apart from manifolds of negative curvature, examples are nonposi-

tively curved surfaces containing �at cylinders or an in�nitesimal ana-
logue of a �at cylinder, as illustrated in the following diagram.

Figure 1.1. A surface of rank one with a �at strip and
a parallel family of geodesics.

In higher dimensions, examples include M. Gromov's (3-dimensional)
graph manifolds ([Gro]). There is an interesting rigidity phenomenon:
Every compact 3-manifold of nonpositive curvature whose fundamental
group is isomorphic to that of a graph manifold is actually di�eomor-
phic to that graph manifold ([Sch]).
We will study properties of manifolds of rank one in this article.

1.2. Reasons to study these spaces.

1.2.1. Rank rigidity. W. Ballmann ([Bal1]) and independently K. Burns
and R. Spatzier ([BuSp]) showed that the universal cover of a non-
positively curved manifold can be written uniquely as a product of
Euclidean, symmetric and rank one spaces. The �rst two types are
understood, due to P. Eberlein and others. (A general introduction
to higher rank symmetric spaces is e.g. [Ebe5]; see also [BGS]. For a
complete treatment of rank rigidity, see [Bal2].)
Thus, in order to understand nonpositively curved manifolds, the

most relevant objects to examine are manifolds of dimension at least
two with rank one. This becomes even more obvious if one considers the
fact that rank one is generic in nonpositive curvature ([BBE]). Thus, in
a certain sense, �almost all� nonpositively curved manifolds have rank
one.

1.2.2. Limits of hyperbolic systems. Another reason to study nonpos-
itively curved manifolds is the following. On one hand, strongly hy-
perbolic systems, particularly geodesic �ows on compact manifolds of
negative curvature, are well understood since D. V. Anosov ([Ano],
[Mar2], [Mar3]). Later, P. Eberlein established a condition weaker than
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negative curvature which still ensures the Anosov property of the geo-
desic �ow ([Ebe3], [Ebe4]). Also, Ya. Pesin and M. Brin extended the
notion of hyperbolicity to that of partial hyperbolicity ([Pes], [BrPe1],
[BrPe2]). On the other hand, much less is known about the dynamics
of systems lacking strong hyperbolicity. The open set of geodesic �ows
on manifolds with negative curvature is �essentially� understood (hy-
perbolicity is an open property), and hence the edge of our knowledge
about such �ows is mainly marked by the boundary of this set, which is
a set of geodesic �ows on manifolds of nonpositive curvature. Therefore
it is important to study the dynamics of these.
However, the set of nonpositively curved manifolds is larger than

just the closure of the set of negatively curved manifolds. This can
be seen e.g. as follows: Some nonpositively curved manifolds, such as
Gromov's graph manifolds, contain an embedded 2-torus. Thus their
fundamental group contains a copy of Z2. Hence, by Preissmann's the-
orem, they do not admit any metric of negative curvature. Therefore,
the investigation in this article actually deals with even more than the
limits of our current knowledge of strongly hyperbolic systems.

1.3. Statement of the result. We count homotopy classes of closed
geodesics ordered by length in the following sense: The number Pt of
homotopy classes of periodic orbits of length at most t is �nite for all
t. (For a periodic geodesic there may be uncountably many periodic
geodesics homotopic to it, but in nonpositive curvature they all have
the same length.)
Trying to �nd a concrete and explicit formula for Pt which is accurate

for all values of t is completely hopeless, even on very simple manifolds.
Nonetheless, in this article we manage to derive an asymptotic formula
for Pt, i.e. a formula which tells us the behavior of Pt when t is large.
We will show (Theorem 5.36):

Pt ∼
1

ht
eht

where the notation f(t) ∼ g(t) means f(t)
g(t)

→ 1 as t → ∞. This ex-

tends a celebrated result of G. A. Margulis to the case of nonpositive
curvature. It also strengthens results by G. Knieper, which were the
sharpest estimates known to this date in the setup of nonpositive cur-
vature. This is explained in more detail in the following section.

2. History

2.1. Margulis' asymptotics. The study of the functions P. and b.,
where bt(x) is the volume of the geodesic ball of radius t centered at
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x, was originated by G. A. Margulis in his dissertation [Mar1]. He
covers the case where the curvature is strictly negative. His in�uential
results were published in [Mar2] and the proofs were published eventu-
ally in [Mar4]. He established that, on a compact manifold of negative
curvature,

(2.1) bt(x) ∼ c(x)eht

for some continuous function c on M. He also showed that

(2.2) Pt ∼ c′
eht

t

for some constant c′. In modern notation, the exponent h is the topo-
logical entropy of the geodesic �ow. See [KaHa] for a modern reference
on the topic of entropy.
Margulis pointed out that if the curvature is constant with value K

then the exponential growth rate equals (n− 1)
√
−K and that in this

case the function c is constant. In fact, c ≡ 1/h. Moreover, c′ = 1/h
for variable negative curvature.

2.2. Beyond negative curvature; Katok's entropy conjecture.
The vast majority of the studies that have since been done are restricted
to negative curvature; see e.g. [PaPo], [BaLe], [PoSh1]. The reason is
that in that case techniques from uniformly hyperbolic dynamics can be
applied. From the point of view of analysis, this case is much easier to
treat. However, from a geometrical viewpoint, manifolds of nonpositive
curvature are a natural object to study. Already in the seventies the
investigation of manifolds of nonpositive curvature became the focus
of interest of geometers. (Also more general classes have been studied
since, such as manifolds without focal points, i.e. where every parallel
Jacobi �eld with one zero has the property that its length increases
monotonically when going away from the zero, or manifolds without
conjugate points, i.e. such that any Jacobi �eld with two zeroes is triv-
ial.) In 1984 at a MSRI problem session a major list of problems which
were open at the time was compiled ([BuKa]), including A. Katok's
entropy conjecture: The measure of maximal entropy is unique.
One of the �rst result in the direction of asymptotics of closed geodesics

in nonpositive curvature is the fact that the growth rate of closed
geodesics equals the topological entropy h , even if the curvature is
just nonpositive (instead of strictly negative). G. Knieper calculated
the growth rate of closed geodesics in [Kni3]. This result can also be
deduced from A. Manning's result [Man] that the growth rate of volume
equals h in nonpositive curvature.
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This shows in particular that the exponent in Margulis' asymptotics
must equal h (we have already written Margulis' equations that way).
A method for showing that in the case of strictly negative curvature
the constant c′ in equation (2.2) equals 1/h is outlined in C. Toll's
dissertation [Tol] and published in [KaHa]. This method was developed
by Margulis in his thesis [Mar1] and published in [Mar4]. The behavior
of the function c in the asymptotic formula (2.1) was investigated by
C. Yue in [Yue1] and [Yue2]. For recent developments concerning the
asymptotics of the number of homology classes see e.g. the works of
N. Anantharaman ([Ana1], [Ana2]), M. Babillot and F. Ledrappier
([BaLe]), M. Pollicott and R. Sharp ([PoSh2]), and S. P. Lalley ([Lal]).
It took almost two decades after Knieper's and Manning's results,

which in turn were published about one decade after Margulis' results,
until the next step in the analysis of asymptotics of periodic orbits on
manifolds of nonpositive curvature was completed, again by Knieper.

2.3. Knieper's multiplicative bounds. In 1996 G. Knieper proved
asymptotic multiplicative bounds for volume and periodic orbits ([Kni2])
which, in the case of nonpositive curvature and rank one, were the
sharpest results known until now: There exists a constant C such that
for su�ciently large t,

1

C
≤ st(x)

eht
≤ C,

where st(x) is the volume of the sphere of radius t centered at x, and

1

Ct
≤ Pt

eht
≤ C.

The main step in the proof of these asymptotics is the proof of Ka-
tok's entropy conjecture. Knieper also demonstrated in [Kni1] that
the measure of maximal entropy can be obtained via the Patterson-
Sullivan construction ([Pat], [Sul]; see also [Kai1], [Kai2]). Moreover,
for the case of higher rank Knieper obtained asymptotic information
using rigidity. Namely,

1

C
≤ st

t(rank(M)−1)/2eht
≤ C.

He also estimates the number of closed geodesics in higher rank.
Knieper subsequently sharpened his results. With the same method

he is able to prove that in the rank one case actually

1

C
≤ Pt

eht/t
≤ C

holds (see [Kni4]). Still, the quotient of the upper and lower bounds is
a constant which cannot be made close to 1.
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The question whether in this setup of nonpositive curvature and rank
one one can prove more precise multiplicative asymptotics�namely
without such multiplicative constants�has remained open so far. In
this article we establish this result.

Remark 2.1. For non-geodesic dynamical systems no statements pro-
viding asymptotics similar the ones mentioned here are known. One of
the best known results is that for some prevalent set of di�eomorphisms
the number of periodic orbits of period n is bounded by exp(C · n1+δ)
for some δ > 0 ([KaHu]).
But even for geodesic �ows in the absence of nonpositive curvature

it is di�cult to count�or even �nd�closed geodesics. The fact that
every compact manifold has even one closed geodesic was established
only in 1951 by Lyusternik and Fet ([LuFe]). In the setup of positively
curved manifolds and their kin, one of the strongest known results is
H.-B. Rademacher's Theorem from 1990 ([Rad1], [Rad2]) stating that
every connected and simply connected compact manifold has in�nitely
many (geometrically distinct) closed geodesics for a Cr-generic metric
for all r ∈ [2,∞]. See also [Rad3] for this.
For Riemannian metrics on the 2-sphere, existence of many closed

geodesics took considerable e�ort to prove. The famous Lyusternik-
Shnirelman Theorem asserts the existence of three (geometrically dis-
tinct) closed geodesics. The original proof in [LuSch] is considered
to have gaps. Complete proofs were given by W. Ballmann ([Bal3]),
W. Klingenberg (with W. Ballmann's help) ([Kli]) and also J. Jost
([Jos1], [Jos2]). See also [BTZ1], [BTZ2].
J. Franks ([Fra]) established that every metric of positive curvature

on S2 has in�nitely many (geometrically distinct) geodesics. This is
a consequence of his results about area-preserving annulus homeomor-
phisms. V. Bangert managed to show existence of in�nitely many
(geometrically distinct) geodesics on S2 without requiring positive cur-
vature by means of variational methods ([Ban]).
For the case of Finsler manifolds, there actually exist examples of

simply connected manifolds that possess only �nitely many geometri-
cally distinct closed geodesics. On S2 such examples were constructed
by A. B. Katok in [Kat1] as a by-product of a more general construc-
tion. Explaining this particular aspect of Katok's construction is also
the topic of [Mat]. [Zil] also studies the Katok examples.

In this article we derive asymptotics like the ones Margulis obtained.
We prove them for nonpositive curvature and rank one using non-
uniform hyperbolicity. Hence the same strong statement is true in
considerably greater generality.
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3. Geometry and dynamics in nonpositive curvature

Let M be a compact rank one Riemannian manifold of nonpositive
curvature. As is usual, we assume it to be connected and geodesically
complete. Let SM̃ be the unit sphere bundle of the universal covering
of M . For v ∈ SM̃ let cv be the geodesic satisfying c′(0) = v (which
is hence automatically parameterized by arclength). Here c′ of course
denotes the covariant derivative of c. Let g = (gt)t∈R be the geodesic
�ow on SM̃, which is de�ned by gt(v) := c′v(t) =: vt.

3.1. Review of asymptotic geometry.

De�nition 3.1. Let π : TM → M be the canonical projection. We
say that v, w ∈ SM̃ are positively asymptotic (written v ∼ w) if
there exists a constant C such that d(πgtv, πgtw) < C for all t > 0.
This is evidently an equivalence relation. Similarly, v, w ∈ SM̃ are
negatively asymptotic if −v ∼ −w.

Recall that rank(v) := dim{parallel Jacobi �elds along cv}. Clearly
the rank is constant along geodesics, i.e. rank(c′v(t)) = rank(c′v(0)) for
all t ∈ R.

De�nition 3.2. We call a vector v ∈ SM̃ , as well as the geodesic cv,
regular if rank(v) = 1 and singular if rank(v) > 1. Let Reg and
Sing be the sets of regular and singular vectors, respectively.

Remark 3.3. The set Reg is open since rank is semicontinuous in the
sense that rank(limn vn) ≥ limn rank(vn).

Remark 3.4. For every v ∈ SM̃ and every p ∈ M̃ there exists some
w+ ∈ SpM̃ which is positively asymptotic to v and some w− ∈ SpM̃
which is negatively asymptotic to v. In contrast, the existence of w+− ∈
TpM̃ which is simultaneously positively and negatively asymptotic to v
is rare. Moreover, if v ∼ w and −v ∼ −w then v, w bound a �at strip,
i.e. a totally geodesic embedded copy of [−a, a] × R with Euclidean
metric. Here the number a is positive if v, w do not lie on the same
geodesic trajectory. In particular, if rank(v) = 1 (hence cv is a regular
geodesic) then there does not exist such w with w ∼ v and −v ∼ −w
through any base point in the manifold outside cv. In other words, if
w ∼ v and −w ∼ −v on a rank 1 manifold then w = gtv for some t.
On the other hand, if rank(v) > 1 (and thus cv is a singular geodesic)
then v and hence cv may lie in a �at strip of positive width, and in
that case there are vectors w with w ∼ v and −w ∼ −v at base points
outside cv, namely at all base points in that �at strip.
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Since M̃ is of nonpositive curvature, it is di�eomorphic to Rn by
the Hadamard-Cartan theorem, hence to an open Euclidean n-ball. It
admits the compacti�cation M = M̃ ∪ M̃(∞) where M̃(∞), the
boundary at in�nity of M̃, is the set of equivalence classes of posi-
tively asymptotic vectors, i.e., M̃(∞) = SM̃/ ∼ .
A detailed description of spaces of nonpositive curvature, even with-

out a manifold structure, can be found in [Bal2].

3.2. Stable and unstable spaces.

De�nition 3.5. Let K : TSM̃ → SM̃ be the connection map, i.e.
Kξ := ∇dπξZ where ∇ is the Riemannian connection and Z(0) = dπξ,
d
dt

Z(t)
∣∣
t=0

= ξ. We obtain a Riemannian metric on SM , the Sasaki
metric, by setting 〈ξ, η〉 := 〈dπξ, dπη〉 + 〈Kξ,Kη〉 for ξ, η ∈ TvSM
where v ∈ SM . Hence we can talk about length of vectors in TSM̃ .

There is a canonical isomorphism (dπ,K) between TvSM and the
set of Jacobi �elds along cv. It is given by ξ 7→ Jξ with Jξ(0) = dπ ·
ξ, J ′ξ(0) = Kξ. This uses the well-known fact that a Jacobi �eld is
determined by its value and derivative at one point.
The space TSM̃ , i.e. the tangent bundle of the unit sphere bundle,

admits a natural splitting

TSM̃ = Es ⊕ Eu ⊕ E0,

i.e. TvSM̃ = Es
v ⊕ Eu

v ⊕ E0
v for all v ∈ SM̃ , where

E0
v := R · d

dt
gtv

∣∣∣∣
t=0

,

Es
v := {ξ ∈ TvSM̃ : ξ ⊥ E0, Jξ is the stable Jacobi �eld along dπξ},

Eu
v := {ξ ∈ TvSM̃ : ξ ⊥ E0, Jξ is the unstable Jac. �eld along dπξ}.

De�nition 3.6. For v ∈ SM̃, de�ne W s(v), the stable horosphere
based at v, to be the integral manifold of the distribution Es passing
through v. Similarly, de�ne W u(v), the unstable horosphere based
at v, via integrating Eu. The projection of W s (resp. W u) to M̃ is again
called the stable horosphere (resp. the unstable horosphere). The �ow
direction of course integrates to a geodesic trajectory, which one might
call W 0(v). The 0- and u-directions are jointly integrable, giving rise
to an integral manifold W 0u, and similarly the 0- and s-directions give

rise to an integral manifold W 0s. We write Bi
δ (resp. Bi

δ) for the open
(resp. closed) δ-neighborhood in W i (i = u, s, 0u, 0s, 0).
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On the other hand, the u- and s-directions are usually not jointly
integrable. Continuity of these foliations has been proven in this form
by P. Eberlein ([Ebe2]) and J.-H. Eschenburg ([Esch]):

Theorem 3.7. Let M be a compact manifold of nonpositive curvature.

Then the foliation {W s(v) : v ∈ SM̃} of SM̃ by stable horospheres is

continuous. The same holds for the foliation {W u(v) : v ∈ SM̃} of

SM̃ by unstable horospheres.

Note that due to compactness of M (hence of SM), the continuity
is automatically uniform.
During the same years, Eberlein considered similar questions on Vis-

ibility manifolds ([Ebe2]). The continuity result was improved by M.
Brin ([BaPe, Appendix A]) to Hölderness on the Pesin sets; see [BaPe]
for the de�nition of these sets. For our discussion, uniform continuity
is su�cient.
The following result is easier to show in the hyperbolic case (i.e.

strictly negative curvature) than for nonpositive curvature, where it is
a major theorem, proven by Eberlein ([Ebe1]):

Theorem 3.8. Let M be a compact rank one manifold of nonposi-

tive curvature. Then stable manifolds are dense. Similarly, unstable

manifolds are dense.

3.3. Important measures. The Riemannian structure gives rise to a
natural measure λ on SM, called the Liouville measure. It is �nite
since M is compact. It is the prototypical smooth measure, i.e., for
any smooth chart ϕ : U → R2n−1, U ⊂ SM open, the measure ϕ∗λ on
a subset of R2n−1 is smoothly equivalent to Lebesgue measure.
The well-known variational principle (see e.g. [KaHa]) asserts that

the supremum of the entropies of invariant probability measures on
SM is the topological entropy h. The variational principle by itself of
course guarantees neither existence nor uniqueness of a measure of
maximal entropy, i.e. one whose entropy actually equals h. These
two facts were established in the setup of nonpositive curvature by
Knieper ([Kni1]):

Theorem 3.9. There is a measure of maximal entropy for the geodesic

�ow on a compact rank one nonpositively curved manifold. Moreover,

it is unique.

The proof uses the Patterson-Sullivan construction ([Pat], [Sul]; see
also [Kai1], [Kai2]). Knieper's construction builds the measure as limit
of measures supported on periodic orbits.
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For the case of strictly negative curvature, the measure of maximal
entropy was previously constructed (in a di�erent way) by Margulis
([Mar3]). He used it to obtain his asymptotic results. His construc-
tion builds the measure as the product of limits of measures supported
on pieces of stable and unstable leaves. The measure thus obtained
is hence called the Margulis measure. It agrees with the Bowen
measure which is obtained as limit of measures concentrated on pe-
riodic orbits. U. Hamenstädt ([Ham]) gave a geometric description of
the Margulis measure by projecting distances on horospheres to the
boundary at in�nity, and this description was immediately generalized
to Anosov �ows by B. Hasselblatt ([Has]).
The measure of maximal entropy is adapted to the dynamical prop-

erties of the �ow. In particular, we will see that the conditionals of this
measure show uniform expansion/contraction with time. In negative
curvature, this can be seen by considering the Margulis measure, where
this property is a natural by-product of the construction. In nonposi-
tive curvature, however, this property is not immediate. We show it in
Theorem 4.6.
The measure of maximal entropy is sometimes simply called max-

imal measure. In the setup of nonpositive curvature, the name
Knieper measure could be appropriate.

Remark 3.10. It is part of Katok's entropy conjecture and shown in
[Kni1] that m(Sing) = 0 (and in fact even that h(g|Sing) < h(g)). In
contrast, whether λ(Sing) = 0 or not is a major open question; it is
equivalent to the famous problem of ergodicity of the geodesic �ow in
nonpositive curvature with respect to the Liouville measure λ. On the
other hand, ergodicity of the geodesic �ow in nonpositive curvature
with respect to m has been proven by Knieper.

A very useful dynamical property is mixing, which implies ergodic-
ity. For nonpositive curvature mixing has been proven by M. Babillot
([Bab]):

Theorem 3.11. The measure of maximal entropy for the geodesic �ow

on a compact rank one nonpositively curved manifold is mixing.

We use this property in our proof of the asymptotic formula.

3.4. Parallel Jacobi �elds.

Lemma 3.12. The vector v ∈ SM is regular if and only if W u(v),
W s(v) and W 0(v) intersect transversally at v.

Here transversality of the three manifolds means that

TvSM = TvW
u ⊕ TvW

0 ⊕ TvW
s.
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Proof. W u(v) and W s(v) intersect with zero angle at v if and only if
there exist

ξ ∈ TW u(v) ∩ TW s(v) ⊂ TvSM.

But ξ ∈ TW s(v) is true if and only if Jξ is the stable Jacobi �eld along
cv, and ξ ∈ TW u(v) is true if and only if Jξ is the unstable Jacobi �eld
along cv. A Jacobi �eld J is both the stable and the unstable Jacobi
�eld along cv if and only if J is parallel. The nonexistence of such J
perpendicular to cv is just the de�nition of rank one. �

3.5. Coordinate boxes.

De�nition 3.13. We call an open set U ⊂ SM of diameter at most δ
regularly coordinated if for all v, w ∈ U there are unique x, y ∈ U
such that

x ∈ Bu
δ (v), y ∈ B0

δ (x), w ∈ Bs
δ(y).

In other words, v can be joined to w by means of a unique short three-
segment path whose �rst segment is contained in W u(v), whose second
segment is a piece of a �ow line and whose third segment is contained
in W s(w).

Proposition 3.14. If v is regular then it has a regularly coordinated

neighborhood.

Proof. Some 4δ-neighborhood V of v is of rank one. Let

U = Bs
δ(g

(−δ,δ)Bu
δ (v)).

This is contained in V and hence of rank one. It is open since W 0, W u

and W s are transversal by Lemma 3.12.
By construction, for any w ∈ V, there exists a pair (x, y) such that

Bu
δ (v) 3 x ∈ B0

δ (y), y ∈ Bs
δ(w).

Assume there is another pair (x′, y′) with this property. From

Bu
δ (x) 3 v ∈ Bu

δ (x′)

we deduce x ∈ Bu
2δ(x

′), and from

B0
δ (x) 3 y ∈ Bs

δ(w), w ∈ Bs
δ(y

′), y′ ∈ B0
δ (x

′)

we deduce x ∈ B0s
4δ(x

′). Hence x and x′ are simultaneously positively
and negatively asymptotic; therefore, they bound a �at strip. Since V
is of rank one, there is no such strip of nonzero width in U ⊂ V . Hence
x and x′ lie on the same geodesic. Since x ∈ W u(x′), these two points
are identical.
The same argument with u and s exchanged shows that y = y′.

Hence the pair (x, y) is unique. �
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3.6. The Busemann function and conformal densities.

De�nition 3.15. Let b(., q, ξ) be the Busemann function centered
at ξ ∈ M̃(∞) and based at q ∈ M̃. It is given by

b(p, q, ξ) := lim
pn→ξ

(d(q, pn)− d(p, pn))

for p, q ∈ M̃ and is independent of the sequence pn → ξ.

Remark 3.16. The function b satis�es b(p, q, ξ) = −b(q, p, ξ). Moreover,

b(p, q, ξ) = lim
t→∞

(d(cp,ξ(t), q)− t)

where cp,ξ is the geodesic parameterized by arclength with cp,ξ(0) = p
and cp,ξ(t) → ξ as t →∞.
For ξ and p �xed, we have

b(p, pn, ξ) → −∞ for pn → ξ

b(p, pn, ξ) → +∞ for lim
n

pn ∈ M̃(∞) \ {ξ}.

We use the sign convention where b(p, q, ξ) is negative whenever p, q, ξ
lie on a geodesic in this particular order.

De�nition 3.17. (µp)p∈M̃ is a h-dimensional Busemann density
(also called conformal density) if the following are true:

• For all p ∈ M̃, µp is a �nite nonzero Borel measure on M̃(∞).
• µp is equivariant under deck transformations, i.e., for all γ ∈

π1(M) and all measurable S ⊂ M̃(∞) we have

µγp(γS) = µp(S).

• When changing the base point of µp, the density transforms as
follows:

dµp

dµq

(ξ) = e−hb(q,p,ξ).

In the case of nonpositive curvature, Knieper has shown in [Kni1]
that µp is unique up to a multiplicative factor and that it can be ob-
tained by the Patterson-Sullivan construction.

4. The measure of maximal entropy

In section 5 we will use the fact that if m is the measure of maximal
entropy then it gives rise to conditional measures mu, m0u, ms and m0s

on unstable, weakly unstable, stable and weakly stable leaves which
have the property that the measures m0u and mu expand uniformly
with t and that ms and m0s contract uniformly with t.
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Remark 4.1. In [Gun] we present an alternative and more general con-
struction of the measure of maximal entropy in nonpositive curvature
and rank one which follows the principle of Margulis' construction.
Using that construction, the uniform expansion/contraction properties
shown here are already a straightforward consequence of the construc-
tion. Also, that construction works for non-geodesic �ows satisfying
suitable cone conditions (see [Kat2] for these). On the other hand,
Knieper's approach, which substantially requires properties of rank one
nonpositively curved manifolds, is shorter and therefore is the one we
use in this article.

First we give Knieper's de�nition of the measure of maximal entropy
([Kni1]):

De�nition 4.2. Let (µp)p∈M̃ be a Busemann density. Let

Π : SM̃ → M̃(∞)× M̃(∞), Π(v) := (v∞, v−∞)

be the projection of a vector to both endpoints v±∞ = limt→±∞ πgtv
of the corresponding geodesic. Then the measure of maximal entropy
of a set A ⊂ SM̃ (we can without loss of generality assume A to be
regular) is given by

m(A) :=

∫
ξ,η∈M̃(∞), ξ 6=η

len(A ∩ Π−1(ξ, η))e−h(b(p,q,ξ)+b(p,q,η))dµp(ξ)dµp(η),

where q ∈ πΠ−1(ξ, η) and p ∈ M̃ is arbitrary.

Here len is the length of the geodesic segment. Saying that Π−1(ξ, η)
is a geodesic already is a slight simpli�cation, but a fully justi�ed one
since we need to deal only with the regular set.

4.1. Discussion of the conditionals. Given a vector v ∈ SM̃ with
base point p, we want to put a conditional measure mu on the stable
horosphere b(p, ., ξ)−1(0) given by v and centered at ξ := v∞ (or on
W s(v), which is the unit normal bundle of b(p, ., ξ)−1(0)). This condi-
tional is determined by a multiplier with respect to some given measure
on this horosphere. Note that the set of points q on the horosphere is
parameterized by the set M̃(∞) \ {ξ} via projection from ξ into the
boundary at in�nity, hence the multiplier depends on η := projξ(q),
i.e. is proportional to dµx(η) for some x. The canonical choice for x
is p. Clearly the whole horosphere has in�nite mu-measure, but µx

is �nite for any x. Thus the multiplier of dµp has to have a singu-
larity, and this has to happen at η = ξ since any neighborhood of ξ
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is the projection of the complement of a compact piece of the horo-
sphere. The term e−hb(p,q,η) has the right singularity (note that η → ξ
means q → ξ), and by the basic properties of the Busemann function
the term e−hb(p,q,η) then converges to in�nity. Therefore we investigate
mp(q) := e−hb(p,q,η)dµp(η). First we prove that this is indeed the sta-
ble conditional measure for dms. We will parameterize dm by vectors
instead of their base points.

De�nition 4.3. For v, w ∈ SM̃ , let

dmu
v(w) := e−hb(πv,πw,w∞) · dµπv(w∞),

dms
v(w) := e−hb(πv,πw,w−∞) · dµπv(w−∞).

Proposition 4.4. dms
v, dmu

v and dt are the stable, unstable and center

conditionals of the measure of maximal entropy.

Proof. Observe that

dt dmu
v(w) dms

v(w) = dt e−h(b(πv,πw,w∞)+b(πv,πw,w−∞))

· dµπv(w∞)dµπv(w−∞)

= dt e−h(b(p,q,ξ)+b(p,q,η))dµp(ξ)dµp(η) =: E

with p := πv, q := πw, ξ := w∞, η := w−∞. This formula already
agrees with the formula in De�nition 4.2, although the meaning of the
parameters does not necessarily do so: In De�nition 4.2, p and to some
extend q are arbitrary in M̃ , while in the formula for E they are �xed.
Thus we need to show that if we change them within the range allowed
in De�nition 4.2, the value of E does not change.

Lemma 4.5. The term E does not change if q is replaced by any point

in M̃ on the geodesic cηξ from η to ξ and p by an arbitrary point in M̃ .

Proof. First we show that q can be allowed to be anywhere on cηξ:
Parameterize cηξ by arclength with arbitrary parameter shift in the
direction from η to ξ. Replacing q = cηξ(s) by q′ = cηξ(s

′) changes
b(p, q, ξ) to b(p, q′, ξ) = b(p, q, ξ)− (s′ − s) since we move the distance
s′ − s closer to ξ. It also changes b(p, q, η) to b(p, q′, η) = b(p, q, η) +
(s′− s) since we move the distance s′− s away from to η. Thus E does
not change under such a translation of q.
Now �x q anywhere on cηξ and replace p by some arbitrary p′ ∈ M̃ .

Note that

dµp′(ξ) = ehb(p′,p,ξ)dµp(ξ),

b(p′, q, ξ) = b(p, q, ξ) + b(p′, p, ξ),
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which of course also holds with ξ replaced by η. Thus

e−h(b(p′,q,ξ)+b(p′,q,η))dµp′(ξ)dµp′(η) = e−h(b(p,q,ξ)+b(p,q,η))dµp(ξ)dµp(η).

Hence E also does not change if p is changed to any arbitrary point. �

This also concludes the proof of Proposition 4.4. �

4.2. Proof of uniform expansion/contraction of the condition-
als. Let wt denote gtw.

Theorem 4.6 (Uniform expansion/contraction of the conditionals).
For all t ∈ R and all v, w ∈ SM̃ we have

dmu
v(wt) = eht · dmu

v(w),

dms
v(wt) = e−ht · dms

v(w).

The same uniform expansion holds with dmu replaced by dm0u = dmudt
and the same uniform contraction with dms replaced by dm0s = dmsdt.

Proof.

dms
v(wt) = e−hb(πv,πwt,w−∞)dµπv(w−∞)

= e−h(b(πv,πw,w−∞)+b(πw,πwt,w−∞))dµπv(w−∞)

= e−hb(πv,πw,w−∞)−htdµπv(w−∞)

= e−ht · e−hb(πv,πw,w−∞)dµπv(w−∞)

= e−ht · dms
v(w).

Similarly, the equality b(πv, πwt, w+∞) = b(πv, πw, w+∞) + t yields

dmu
v(wt) = eht · dmu

v(w).

This shows the desired uniform expansion of mu and the uniform con-
traction of ms. From this we also immediately see the uniform expan-
sion of m0u and the uniform contraction of m0s since dt is evidently
invariant under gt. �

4.3. Proof of holonomy invariance of the conditionals. Another
important property of the conditional measures on the leaves is holo-
nomy invariance. We formulate holonomy invariance on in�nitesimal
unstable pieces here, but of course this is equivalent to holonomy in-
variance that deals with pieces of leaves of (small) positive size.
We consider positively asymptotic vectors w,w′ and calculate the

in�nitesimal 0u-measure on corresponding leaves. We let v, v′ be some
(arbitrary) base points used as parameters for the pieces of leaves, so
that w lies in the same 0u-leaf of v and similarly w′ in that of v′. The
factor dt is evidently invariant, so we do not have to mention it any
further.
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Theorem 4.7 (Holonomy invariance of the conditionals of the measure
of maximal entropy).

dmu
v(w) = dmu

v′(w
′)

whenever v′ ∈ W s(v), w′ ∈ W s(w), w ∈ W 0u(v) and w′ ∈ W 0u(v′). In
that case also dm0u

v (w) = dm0u
v′ (w

′) holds.

Similarly,

dms
v(w) = dms

v′(w
′)

whenever v′ ∈ W u(v), w′ ∈ W u(w), w ∈ W 0s(v) and w′ ∈ W 0s(v′),
and in that case also dm0s

v (w) = dm0s
v′ (w

′) holds.

Proof. Note that the equation w′ ∈ W s(w) is equivalent to the two
equations

w′
∞ = w∞,

b(πw, πw′, w∞) = 0.

The latter equation is equivalent to b(p, πw, w∞) = b(p, πw′, w∞) for
all p ∈ M̃. Thus clearly

dmu
v′(w

′) = e−hb(πv′,πw′,w∞)dµπv′(w
′
∞)

= e−hb(πv′,πw′,w∞)dµπv′(w∞).

Now

b(πv′, πw′, w∞) = b(πv′, πv, w∞) + b(πv, πw′, w∞)

= b(πv′, πv, w∞) + b(πv, πw, w∞)

and dµπv′(w∞) = e−hb(πv,πv′,w∞)dµπv(w∞). Thus

dmu
v′(w

′) = e−h(b(πv′,πw′,w∞)+b(πv,πv′,w∞))dµπv(w∞)

= e−h(b(πv′,πv,w∞)+b(πv,πw,w∞)+b(πv,πv′,w∞))dµπv(w∞)

= e−hb(πv,πw,w∞)dµπv(w∞)

= dmu
v(w).

The proof for dms is analogous. �

Note that m0u is invariant under holonomy along s-�bers and m0s

under holonomy along u-�bers, but mu is not invariant under holonomy
along 0s-�bers and ms not invariant under holonomy along 0u-�bers
due to expansion (resp. contraction) in the �ow direction.
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5. Counting closed geodesics

In this �nal section we count the periodic geodesics on M. The
method used here is a generalization of the method which, for the
special case of negative curvature, was outlined in [Tol] and provided
with more detail in [KaHa]. Margulis ([Mar1], [Mar4]) is the originator
of that method, although the presentation in this article looks quite
di�erent.

De�nition 5.1. Let f = f(t, ε), g = g(t, ε) : [0,∞)× (0, 1) → (0,∞)
be expressions depending on t and ε. We are interested in the behavior
for t large and ε > 0 small.
Write

f ∼ g

if for all α > 0 there exists ε0 > 0 such that for all ε ∈ (0, ε0) there
exists t0 ∈ (0,∞) such that for all t > t0 we have∣∣∣∣ln f(t, ε)

g(t, ε)

∣∣∣∣ < α.

Write

f ./ g

if there exists K ∈ R, ε0 > 0 such that for all ε ∈ (0, ε0) there exists
t0 ∈ (0,∞) such that for all t > t0 we have∣∣∣∣ln f(t, ε)

g(t, ε)

∣∣∣∣ < Kε.

We write

f ∼= g

if there exists f ′ with f ∼ f ′ ./ g, i.e. if there exists K ∈ R so that for
all α > 0 there exists ε0 > 0 such that for all ε ∈ (0, ε0) there exists
t0 > 0 such that for all t > t0 we have∣∣∣∣ln f(t, ε)

g(t, ε)

∣∣∣∣ < Kε + α.

Thus the relation �∼=� is implied by both �∼� and �./�, which are the
special cases K = 0 and α = 0, respectively; but the relations �∼� and
�./� are independent.

Remark 5.2. Similarly, in the de�nition of �∼� and �∼=�, the variable t0
may depend on ε, i.e. the convergence in t does not have to be uniform
with respect to ε. All arguments in the rest of this article work without
requiring this uniformity.
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Remark 5.3. Obviously these relations are also well-de�ned if the do-
main of the functions f, g is [T0,∞)× (0, γ) for some T0, γ > 0.

Lemma 5.4. The relations �∼�, �./� and �∼=� are equivalence relations.

Proof. It su�ces to consider �∼=� since the others are special cases of
it. Re�exivity and symmetry are trivial. If the functions f1, f2, f3 :
[0,∞) × (0,∞) → (0,∞) satisfy f1

∼= f2
∼= f3, i.e., for i = 1, 2

we have ∃Ki ∀α > 0 ∃ε0,i > 0 ∀ε ∈ (0, ε0,i) ∃t0,i > 0 ∀t > t0,i :
|ln(fi(t, ε)/fi+1(t, ε))| < Kiε + α/2, then clearly ∃K3 ∀α > 0 ∃ε0,3 >
0 ∀ε ∈ (0, ε0,3) ∃t0,3 > 0 ∀t > t0,3 :

|ln(f1(t, ε)/f3(t, ε))| < K3ε + α,

namely K3 := K1 + K2, ε0,3 := min(ε0,1(α/2), ε0,2(α/2)) and t0,3 :=
max(t0,1(ε0,3), t0,2(ε0,3)). This shows f1

∼= f3. �

Remark 5.5. In De�nition 5.1, we could have written
∣∣∣f(t,ε)

g(t,ε)
− 1
∣∣∣ instead

of
∣∣∣ln f(t,ε)

g(t,ε)

∣∣∣. This would be equivalent to our de�nition since the terms

ln x and |x− 1| di�er by at most a factor 2 (indeed any a > 1) for all
x close enough to 1. The advantage of our notation is that multiple
estimates can easily be transitively combined, as seen in the proof of
Lemma 5.4. Also, our notation is symmetric in f, g.

5.1. The �ow cube. Fix any v0 ∈ Reg. Choose su�ciently small
ε > 0 and δ > 0 such that 4δ < 2ε < inj(M) (the injectivity radius of
M), such that B4ε(v0) ⊂ Reg, and such that further requirements on
the smallness of these which we will mention later are satis�ed.

De�nition 5.6. Let the �ow cube be A := Bs(g[0,ε](Bu
δ (v0))) ⊂ Reg.

Here Bu
δ (v0) is the closed unstable ball of radius δ around v0. We choose

Bs = Bs(v) as the closure of an open set contained in the closed stable
ball of radius δ around v ∈ g[0,ε](Bu

δ (v0)); this set, which depends on
v, can be chosen in such a way that it contains v and that A has
the following local product structure: For all w,w′ ∈ A there exists a
unique β ∈ [−ε, ε] such that

Bs(w) ∩Bu
2δ(g

βw′)

is nonempty, and in that case it is exactly one point. This is the local
product structure in Reg described in Proposition 3.14. We call Bs(v)
the stable �ber (or stable ball) in A containing v.

In the following arguments, the cube A will �rst be �xed. In par-
ticular, ε and δ are considered �xed (although subject to restrictions
on their size). Then we make asymptotics certain numbers depending
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Figure 5.1. The �ow cube A: an unstable neighbor-
hood of v0 (top) is iterated (center) and a stable neigh-
borhood of that is formed (bottom).

on t and A as t → ∞ (while A, hence ε, is �xed). Afterwards we will
consider what happens to those asymptotics when ε → 0.

De�nition 5.7. Let the depth τ : A → [0, ε] be de�ned by

v ∈ Bs(gτ(v)Bu
δ (v0)).

Lemma 5.8. For all v ∈ A, w ∈ Bu
2δ(v) ∩ A it is true that

|τ(w)− τ(v)| < ε2/2.

Proof. The foliation W u is uniformly continuous by Theorem 3.7 and
compactness of SM , and without loss of generality δ was chosen small
enough. �

Lemma 5.9 (Stable �ber contraction). There is a function σ = σ(t)
such that

ms(gtBs(v)) ./ σ(t)

for all v ∈ A. In particular, for all v, w in A we have

ms(gtBs(v)) ./ ms(gtBs(w)).

Moreover, the constants in the relation �./� can be chosen independent

of v, w, i.e., there exists K > 0, ε0 > 0 such that for all 0 < ε < ε0
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and all �ow cubes A = A(ε) there exists t0 such that for all t > t0 and

all v, w ∈ A we have∣∣∣∣ln ms(gtBs(v))

σ(t)

∣∣∣∣ < Kε and

∣∣∣∣ln ms(gtBs(v))

ms(gtBs(w))

∣∣∣∣ < Kε.

Proof. First we show the second claim. Observe that for any a ∈
(0, inj(M)/2) (with a independent of ε), the set g[0,a]Bs(v) is u-holonomic
to a subset S of g[−2ε,a+2ε]Bs(w). Thus

ms(Bs(v))

ms(Bs(w))
=

m0s(g[0,a]Bs(v))

m0s(g[0,a]Bs(w))
=

m0s(S)

m0s(g[0,a]Bs(w))

≤ m0s(g[−2ε,a+2ε]Bs(w))

m0s(g[0,a]Bs(w))
=

∫ a+2ε

−2ε
e−htdt∫ a

0
e−htdt

./ 1,

since the quotient of the integrals can be bounded by 1 + Kε. The in-
equality is symmetric in v and w, proving equality. Hence ms(Bs(v)) ./
ms(Bs(w)), i.e. ∃K > 0, ε0 > 0 ∀ε ∈ (0, ε0) ∃t0 ∀t > t0 ∀v, w ∈ A :∣∣∣∣ln ms(Bs(v))

ms(Bs(w))

∣∣∣∣ < Kε.

Using uniform contraction on s-�bers (Theorem 4.6) gives∣∣∣∣ln ms(gtBs(v))

ms(gtBs(w))

∣∣∣∣ < Kε,

i.e., ms(gtBs(v)) = ms(gtBs(w)), showing the second claim. It imme-
diately follows that we can de�ne

σ(t) := ms(gtBs(v))

for some arbitrary v ∈ A, and this de�nition does not depend on v (up
to ./-equivalence). The constant K in ./ is independent of v. This also
shows the �rst claim. �

Remark 5.10. Uniform contraction (Theorem 4.6) then shows that
σ(t) = const · e−ht.

5.2. Expansion at the boundary.

De�nition 5.11. For the cube A as above, we call

∂uA := Bs(g[0,ε](∂Bu
δ (v0))) the unstable end of the cube,

∂sA := (∂Bs)(g[0,ε](Bu
δ (v0))) the stable end,

∂0A := Bs(Bu
δ (v0)) the back end and

∂εA := Bs(gε(Bu
δ (v0))) the front end of the cube.
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For v ∈ A de�ne
s(v) := sup {r : Bu

r (v) ⊂ A}
to be the distance to the unstable end of the �ow cube.

The stable and the unstable end are topologically the product of
an interval, a k-ball and a (k − 1)-sphere, where k = dim W u(v) =
dim W s(v) = (dim SM − 1)/2; hence they are connected i� k 6= 1, i.e.
i� M is not a surface.

Lemma 5.12 (Expansion of the distance to the unstable end). There
exists a monotone positive function S : R → R satisfying S(t) → 0
as t → ∞ and such that if s(v) > S(t) for an element v ∈ A which

satis�es gtv ∈ A then

Bu
2δ(g

tv) ∩ A ⊂ gtBu
S(t)(v).

That means that if a point v is more than S(t) away from the unsta-
ble end of the cube then the the image under gt of a small u-disc (of size
> S(t)) around v has the property that its unstable end is completely
outside A.

Proof. By nonpositivity of the curvature, Bu
δ noncontracts, i.e., for all

p, q ∈ Bu
δ the function t 7→ d(gtp, gtq) is nondecreasing. This is true

even in�nitesimally, i.e. for unstable Jacobi �elds. By convexity of Ja-
cobi �elds and rank 1, such distances also cannot stay bounded. Hence
the radius of the largest u-ball contained in gtBu

δ becomes unbounded
for t →∞.
Hence for all γ > 0 we can �nd Tγ < ∞ such that

(5.1) gTγBu
γ (v) ⊃ Bu

2δ(g
Tγ (v)).

By compactness of A, this choice of Tγ can be made independently of
v ∈ A. Without loss of generality Tγ is a strictly decreasing function of
γ. Choose a function S : [0,∞) → (0,∞) so that S(t) ≤ γ for t > Tγ.
E.g., choose S(.) = T−1

. , i.e. TS(t) = t for t ≥ 0. S can be chosen
decreasing since T. can be. Therefore, given v ∈ A, if t > Ts(v) then
s(v) > S(t), and thus equation (5.1) shows the claim. �

Remark 5.13. The convergence of S to zero in the previous Lemma is
not necessarily exponential, as opposed to the case where the curvature
of M is negative (i.e. the uniformly hyperbolic case). However, we do
not need this property of exponential convergence.
If the smallest such S would not converge to zero, it would require

the existence of a �at strip of width lim inft→∞ S(t) = limt→∞ S(t),
which would intersect A. Since a neighborhood of A is regular, this
cannot happen.
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5.3. Intersection components and orbit segments.

De�nition 5.14. Let A′
t be the set of v ∈ A with s(v) ≥ S(t) and

τ(v) ∈ [ε2, ε− ε2]. Thus A′
t is the set A with a small neighborhood of

the unstable end and of the front end and back end removed.

De�nition 5.15. Let Φt be the set of all full components of inter-
section at time t: If I is a connected component of A′

t ∩ gt(A′
t) then

de�ne
φI

t := g[−ε,ε](I) ∩ A ∩ gt(A),

Φt := {φI
t : I is a connected component of A′

t ∩ gt(A′
t)}.

Let N(A, t) := #Φt be the number of elements of Φt.
We call the set g[−ε, ε]v∩A the geometric orbit segment of length

ε in A through v. Similarly we speak about the orbit segment of length
ε− 2ε2 in A′

t.
Let Φs

t := {φI
t ∈ Φt : φI

t intersects ∂sA′
t}.

Lemma 5.16. For every geometric orbit segment of length ε− 2ε2 in

A′
t that belongs to a periodic orbit of period in [t− ε + 2ε2, t + ε− 2ε2]

there exists a unique φI
t ∈ Φt through which the geometric orbit segment

passes.

Proof. Existence: If gLo = o for an orbit segment o of length ε− 2ε2 of
A′

t that belongs to a periodic orbit of period L ∈ [t−ε+2ε2, t+ε−2ε2]
then o also intersects gtA′

t, hence some component of A′
t ∩ gtA′

t.
Uniqueness: Assume that o passes through φI

t , φ
J
t ∈ Φt, i.e. p =

o(a) ∈ φI
t , q = o(b) ∈ φJ

t for |b−a| ≤ ε. Then o passes through I, J (the
connected components corresponding to φI

t , φ
J
t ) respectively. Without

loss of generality, p, q ∈ A′
t. Since gtA′

t is pathwise connected, there is
a path c in gtA′

t from p to q. Using the local product structure, we can
assume that c consists of a segment in W u, followed by a segment in
W 0, followed by a segment in W s. By applying g−t, we get a path g−t◦c
in A′

t from o(a− t) ∈ A′
t to o(b− t) ∈ A′

t. The local product structure
in A′

t and the fact that distances along unstable �bers become > 2ε for
t →∞ whereas distances along stable �bers become > 2ε for t → −∞
(see Lemma 5.12) show that the u-segment and the s-segment of g−t ◦c
have length 0. Therefore g−t ◦ c and hence c is an orbit segment. This
means that c lies in A′

t and in gtA′
t. Hence p and q lie in the same

component, i.e. φI
t = φJ

t . �

In the other direction, we have the following Lemma:

Lemma 5.17. For every φI
t ∈ Φt \ Φs

t there exists a unique periodic

orbit with period in [t− ε, t + ε] and a unique geometric orbit segment

on that orbit passing through φI
t .
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In other words, up to a small error, intersection components corre-
spond to periodic orbits, and of all orbit segments that belong to such
a periodic orbit, just one orbit segment goes through any particular
full component of intersection.

Proof. Choose φI
t . It su�ces to consider the case t ≥ 0. Since A′

t ⊂ A
has rank one, it follows that for every v ∈ A′

t any nonzero stable Jacobi
�eld along cv is strictly decreasing in length, and any nonzero unstable
Jacobi �eld is strictly increasing in length. Since the set of stable
(resp. unstable) Jacobi �elds is linearly isomorphic to Es (resp. Eu)
via (dπ,K)−1, it follows that for all v ∈ A′

t ∩ gtA′
t:

|dgtξ| < |ξ| ∀ξ ∈ Es(v) \ {0},

|dg−tξ| < |ξ| ∀ξ ∈ Eu(v) \ {0}.
By compactness of A′

t and hence of φI
t there exists c < 1 such that for

all v ∈ A′
t ∩ gtA′

t:

|dgtξ| < c|ξ| ∀ξ ∈ Es(v) \ {0},

|dg−tξ| < c|ξ| ∀ξ ∈ Eu(v) \ {0}.
Hence gt restricted to φI

t is (apart from the �ow direction) hyperbolic.
By the assumption that φI

t 6∈ Φs
t , stable �bers are mapped to stable

�bers that do not intersect the stable end of the �ow cube. Thus the
�rst return map on a transversal to the �ow is hyperbolic. Hence it
has a unique �xed point.
Therefore there exists a unique periodic orbit through φI

t . Two ge-
ometrically di�erent (hence disjoint) orbit segments would give rise to
two di�erent �xed points. Hence the geometric segment on the periodic
orbit is also unique. �

5.4. Intersection thickness.

De�nition 5.18. De�ne the intersection thickness (or intersection
length) θ : Φt → [0, ε] by

θ(φI
t ) := ε− sup

τ(v) : v ∈ gt

 ⋃
w∈A, gtw∈I

g[−ε,ε]w ∩ ∂0A


for such φI

t which intersect ∂εA (the front end of A) and

θ(φI
t ) := inf

τ(v) : v ∈ gt

 ⋃
w∈A, gtw∈I

g[−ε,ε]w ∩ ∂εA


for such φI

t which intersect ∂0A (the back end of A).
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Lemma 5.19 (The average thickness is asymptotically half that of the
�ow box).

1

N(A, t)

∑
φI

t∈Φt

θ(φI
t )
∼=

ε

2
.

In other words, ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 >

0 ∀t > t0 : 1
N(A,t)

∣∣∣ln(2
∑

φI
t∈Φt

θ(φI
t )/ε)

∣∣∣ < Kε + α.

Proof. Take any full component of intersection φI
t ∈ Φt. Assume that it

intersects the front end of A. We cut A along �ow lines in n := b1/εc
pieces

Ai :=

{
v ∈ A : τ(v) ∈

[
iε

n
,
(i + 1)ε

n

)}
of equal measure (i = 0, . . . , n − 1). By the mixing property, m(Ai ∩
gtA0) is asymptotically independent of i as t →∞. Hence the number
of full components of intersection of Ai with gtA0 is asymptotically
independent of i. Since any intersection component of Ai ∩ gtA0 has
depth τ with |τ − iε/n| < ε/n, we see that the average of θ is ε/2 up
to an error of order ε2.
The same reasoning applies if A0 is changed to An−1, hence for φI

t

intersecting the back end of A instead of the front end. �

Note that if we compute the measure of an intersection A0 ∩ gtAn−1

for t large, the terms which are not in full components of intersection
contribute only a fraction which by mixing is asymptotically zero be-
cause m(A′

t)
∼= m(A), i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A =

A(ε) ∃t0 > 0 ∀t > t0 : |ln(m(A′
t)/m(A))| < Kε + α. This follows from

m({v ∈ A : s(v) < S(t)}) → 0 as t →∞
and

m({v ∈ A : τ(v) ∈ [0, ε2] ∪ [ε− ε2, ε]}) = 2εm(A).

5.5. Counting intersections.

Theorem 5.20 (Few intersection components through the stable end).
The number #Φs

t of intersection components that touch the stable end

∂sA is asymptotically a zero proportion of the number of all boundary

components:
#Φs

t

N(A, t)
∼= 0.

In other words, ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 >

0 ∀t > t0 :
#Φs

t

N(A,t)
< Kε + α.
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Proof. Let F := g[0,ε]Bu
δ (v0). First note that

m(φI
t ) ./

θ(φI
t )

ε
m0u(F )σ(t)

for φI
t ∈ Φt \ Φs

t , i.e., ∃K, ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣∣∣ln εm(φI
t )

θ(φI
t )m

0u(F )σ(t)

∣∣∣∣ < Kε.

This is so since by Lemma 5.9 the stable measure of the pieces of stable
�bers in φI

t is equal to σ(t) up to an error term that converges to 0 as
ε → 0 and since by holonomy invariance (Theorem 4.7) and by Lemma
5.12 the m0u-measure of 0u-leaves of φI

t is the same as that of F , except
that the thickness of the intersection is not ε but θ(φI

t ).
For s-holonomic p, q, i.e. p ∈ W s(q), the bounded subsets B0u

r (p)
and B0u

r (q) get arbitrarily close under the �ow �pointwise except at
the boundary� in the following sense: there exists R1 := ds(p, q) with
d
(
gtp, B0u

R1
(gtq)

)
→ 0 as t → ∞. Moreover, if we write H for the

holonomy map from B0u
r (p) to B0u

r (q) along stable �bers, then for R2 >
R1 the convergence d

(
gtp′, B0u

R1
(gtH(p′))

)
→ 0 as t →∞ is uniform in

p′ for all p′ ∈ B0u
R2−R1

(p). See [Gun] for a proof of these claims. Thus
there exists Ds = Ds(t) : [0,∞) → (0,∞) with Ds(t) → 0 as t → ∞
such that φ ∈ Φs

t implies φ ⊂ Bs
Ds(t) (∂sA).

Existence of a decomposition of m into conditionals (Proposition 4.4)
and their holonomy invariance (Theorem 4.7) imply that m (Bs

D(∂sA)) →
0 as D → 0.
For φI

t ∈ Φs
t de�ne

φ̂I
t := g[−ε,ε](I) ∩Bs

Ds(t)(A) ∩ gtA.

This di�ers from φI
t by extending it in the stable direction beyond

the stable boundary of A. We could also have written φ̂I
t = g[−ε,ε](I)∩

Bs
Ds(t) (∂sA)∩gtA. The set φ̂I

t is the intersection of gtA not only with A

itself, but with a stable neighborhood of A; this allows us to treat φ̂I
t ∈

Φs
t like the elements φI

t ∈ Φt. Namely, for such φI
t ∈ Φs

t , the formula

m
(
φ̂I

t

)
./ θ

(
φ̂I

t

)
m0u(F )σ(t)/ε still holds, by the same argument as in

the case of φI
t ∈ Φt. Since θ

(
φ̂I

t

)
≤ θ

(
φI

t

)
+ ε2 and θ

(
φI

t

)
/ε ≤ 1, this

shows that m
(
φ̂I

t

)
≤ const · e−ht. Therefore

#Φs
t/#Φt ≤ const ·m

(
Bs

Ds(t) (∂sA)
)
→ 0 as t →∞,

proving the claim. �
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Remark 5.21. The proof of Theorem 5.20 would be much shorter and
very easy if distances in the stable direction would contract uniformly,
as they do for uniformly hyperbolic systems. But in our case they do
not. In fact, they do not necessarily even convege to zero.

Proposition 5.22. The number N(A, t) satis�es

N(A, t) ∼= 2ehtm(A).

In other words, ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 >
0 ∀t > t0 :

∣∣ln(N(A, t)/2ehtm(A))
∣∣ < Kε + α.

Proof. As in the proof of Theorem 5.20, writing F := g[0,ε]Bu
δ (v0) gives

the estimate

m
(
φI

t

)
./

θ
(
φI

t

)
ε

m0u(F )σ(t).

Since by Lemma 5.19 the average of the θ(φI
t ) is asymptotically ε/2,

we get

1

N(A, t)

∑
φI

t∈Φt

m
(
φI

t

) ∼= 1

2
σ(t)m0u(F ),

i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣∣∣∣ln 2
∑

φI
t∈Φt

m
(
φI

t

)
N(A, t)σ(t)m0u(F )

∣∣∣∣∣ < Kε + α.

Since the measure of A ∩ gtA is asymptotically the sum of the mea-
sures of the full components of intersection (there are N(A, t) of those),
we obtain

(5.2) m(A ∩ gtA) ∼=
1

2
N(A, t)σ(t)m0u(F ),

or, in more detail, ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A =
A(ε) ∃t0 ∀t > t0 : |ln(2m(A ∩ gtA)/N(A, t)σ(t)m0u(F ))| < Kε + α.
Moreover note that by the mixing property of g,

m(A ∩ gtA) ∼= ehtm(A)σ(t)m0u(F ),

i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣ln(m(A ∩ gtA)/ehtσ(t)m(A)m0u(F ))
∣∣ < Kε + α.

The claim follows from combining these two estimates. �
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5.6. Bounds on error terms in intersection counting.

De�nition 5.23. De�ne G(t, ε) := {all geometric orbit segments in A
of periodic orbits with period in [t− ε, t + ε]}. Let G(t, ε) := #G(t, ε).
For better comparison we write N(t, ε) := N(A, t) = #Φt(ε) where
Φt = Φt(ε) is as before the set of all full intersection components for
given t, ε.

Proposition 5.24. The number of orbit segments passing through A
that belong to periodic orbits with period in [t − ε, t + ε] is ∼= N(A, t).
I.e.,

N(t, ε) ∼= G(t, ε),

or more formally: ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A =
A(ε) ∃t0 ∀t > t0 : ∣∣∣∣ln G(t, ε)

N(t, ε)

∣∣∣∣ < Kε + α.

Proof. By Lemma 5.16 we have a map G(t, ε − 2ε2) → Φt(ε) and by
Lemma 5.17 a map Φt(ε) \Φs

t(ε) → G(t, ε). These maps are invertible
between their domains and images; hence they are injective. Thus we
have

G(t, ε− 2ε2) ≤ N(t, ε) ≤ G(t, ε).

Since N(t, ε− 2ε2) ≤ G(t, ε− 2ε2), it su�ces to show

N(t, ε) ∼= N(t, ε + ε2),

i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣∣∣ln N(t, ε)

N(t, ε + ε2)

∣∣∣∣ < Kε + α.

Partition A again into n := b1/εc pieces
Ai := {v ∈ A : τ(v) ∈ [iε/n, (i + 1)ε/n)}

of equal measure (i = 0, . . . , n− 1). Mixing implies that

m(A0 ∩ gtAn−1) ∼= ε2m(A)2,

i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :
|ln(m(A0 ∩ gtAn−1)/ε

2m(A)2)| < Kε + α.
Observe that in analogy to equation (5.2) we have

ε2m(A)2 ∼= m(A0 ∩ gt+ε2

An−1) ∼=
1

2
ε2N(t, ε)m0u(F )σ(t),

i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :
|ln(2m(A)2/N(t, ε)m0u(F )σ(t))| < Kε + α.
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The full components of A0 ∩ gt+ε2
An−1 which are newly created at

the back end of A by increasing t to t + ε2 have average thickness ε2/2
and hence average measure 1

2
εm0u(F )σ(t). Hence this increase of t to

t + ε2 can produce at most ∼= εN(t, ε) such full components. Thus

N(t + ε2, ε)
∼
≤ N(t, ε) + εN(t, ε),

where the notation f1(t, ε)
∼
≤ f2(t, ε) means f1(t, ε)≤f3(t, ε)∼=f2(t, ε) for

some f3, i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t >
t0 :

ln
f1(t, ε)

f2(t, ε)
< Kε + α.

In other words, we have shown ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈
(0, ε0), A = A(ε) ∃t0 ∀t > t0 :

ln
N(t + ε2, ε)

N(t, ε) + εN(t, ε)
< Kε + α.

It follows that

N(t + ε2, ε)∼=N(t, ε).

Since increasing ε by ε2 leads to a gain in the number of full com-
ponents by making more of them enter the back end of the �ow cube
exactly like increasing t by ε2 does, plus a similar increase in number
by making some of them delay their departure through the front end
of the �ow cube, we get

N(t, ε + ε2)
∼
≤ N(t, ε) + 2εN(t, ε),

i.e., we have shown ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A =
A(ε) ∃t0 ∀t > t0 :

ln
N(t, ε + ε2)

N(t, ε) + 2εN(t, ε)
< Kε + α.

This shows that N(t, ε + ε2)∼=N(t, ε). Hence N(t, ε) ∼= G(t, ε) as
claimed. �

5.7. A Bowen-type property of the measure of maximal en-
tropy.

De�nition 5.25. Let Pt be the number of homotopy classes of closed
geodesics of length at most t. Let Pt(A) be the number of closed geodes-
ics of length at most t that intersect A. Let P ′

t be the number of regular
closed geodesics of length at most t.
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Remark 5.26 (Terminology). When we say �closed geodesic�, we mean
�periodic orbit for the geodesic �ow�, i.e. with parameterization (al-
though always by arclength and modulo adding a constant to the pa-
rameter). Thus a locally shortest curve is counted as two geodesics (i.e.
periodic orbits for the geodesic �ow), namely one for each direction.

P ′
t , Pt(A) are �nite because there is only one regular geodesic in each

homotopy class. Clearly

Pt(A) ≤ P ′
t ≤ Pt

for any t. We will show that these are in fact asymptotically equal.

Lemma 5.27.
P ′

t ∼ Pt.

Proof. Singular geodesics have a smaller exponential growth rate than
regular ones because the entropy of the singular set is smaller than
the topological entropy ([Kni2]) whereas the entropy of the regular set
equals the topological entropy. �

In the case that M is a surface, the growth rate of Sing is in fact
zero, since the existence of a parallel perpendicular Jacobi �eld implies
that the largest Liapunov exponent is zero.

De�nition 5.28. Let µt be the arclength measure on all regular peri-
odic orbits of length at most t, normalized to 1:

Pt := {regular closed geodesics of length ≤ t},
Pt(A) := {geodesics in Pt which pass through A},

µt :=
1

#Pt

∑
c∈Pt

1

len(c)
δc,

µA
t :=

1

#Pt(A)

∑
c∈Pt(A)

1

len(c)
δc.

Here δc is the length measure on ċ.

Theorem 5.29. Any weak limit µ of (µt)t>0 is the measure of maximal

entropy. Moreover, any weak limit µA of (µA
t )t>0 is the measure of

maximal entropy.

In other words, for any tk →∞ such that (µA
tk

)tk∈R converges weakly
and for any measurable U the following holds:

lim
k→∞

µA
tk

(U) = m(U).

Similarly with µA replaced by µ.
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Proof. Knieper showed in [Kni1] that m can be obtained as a weak limit
of the measures µtk which are Borel probability measures supported on
Ptk ; see also [Pol]. The singular closed geodesics can be neglected
because the singular set has entropy smaller than h. Hence any weak
limit of µt equals m.
Since

Pt(A) ≥ C
eht

t
([Kni1, Remark after Theorem 5.8]), any weak limit of the measures µA

tk
concentrated on Ptk(A) has entropy h. Since the measure of maximal
entropy is unique, any such weak limit equals m. �

Remark 5.30. This means that we can approximate the measure of
maximal entropy m of a measurable set by its µtk-measure for k suf-
�ciently large. Moreover, when counting orbits, an arbitrarily small
regular local product cube A will su�ce to count periodic orbits in
such a way that the fraction of those not counted will converge to zero
as the period of these orbits becomes large. We use this fact in the
proof of Theorem 5.33.

Corollary 5.31. Pt(A) ∼ Pt.

Proof. By theorem 5.29 the measure on the geodesics in Pt \ Pt(A)
(which assigns zero measure to A) would otherwise also converge weakly
to the measure of maximal entropy. �

De�nition 5.32. Let Pt,ε be the number of regular geodesics with
length in (t− ε, t + ε].

Again, Pt,ε is �nite because there is only one regular geodesic in each
homotopy class.

Theorem 5.33. The number Pt,ε of regular closed geodesics with pre-

scribed length is given by the asymptotic formula

Pt,ε
∼=

εN(A, t)

t ·m(A)
.

I.e. ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣∣∣ln Pt,ε · t ·m(A)

εN(A, t)

∣∣∣∣ < Kε + α.

Proof. By Theorem 5.29, for a typical closed geodesic c with su�ciently
large length,

1

len(c)
δc(A) =

1

len(c)

∫
ċ∩A

dlen ∼= m(A).
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Here �typical� means that the number of closed geodesics of length
at most t that have this property is asymptotically the same as the
number of all closed geodesics of length at most t; in other words,
the ratio tends to 1. That means: ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈
(0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣∣∣∣ln

(
1

m(A) ·#Pt

∑
c∈Pt

1

len(c)
δc

)∣∣∣∣∣ < Kε + α.

Hence such a geodesic of length t (which consists of t/ε segments
of length ε) will have asymptotically m(A)t/ε segments of length ε
intersecting A. Thus

Pt,ε
∼=

εG(t, ε)

tm(A)
,

i.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣∣∣ln tm(A)Pt,ε

εG(t, ε)

∣∣∣∣ < Kε + α,

where G is as in De�nition 5.23. The statement of Proposition 5.24
then shows the claim. �

Remark 5.34. It su�ces to consider closed orbits which are not multiple
iterates of some other closed orbit for the following reason: If H(t, k)
is the number of periodic orbits passing through A of length at most t
which are k-fold iterates, then H(t, k) = 0 for k > t/inj(M). Thus the
number of segments of A which are transversed by all multiple iterates

is at most
∑bt/inj(M)c

k=2 kH(t, k). By Knieper's multiplicative estimate

(see Section 2.3), this number is at most const ·
∑bt/inj(M)c

k=2 keht/k, thus
at most const · t2eht/2. This contributes only a zero asymptotic fraction
of the segments and can thus be ignored.

Proposition 5.22 and Theorem 5.33 combined yield:

Corollary 5.35.

Pt,ε(A) ∼=
2εeht

t
.

I.e., ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), A = A(ε) ∃t0 ∀t > t0 :∣∣ln(tPt,ε(A)/2εeht)
∣∣ < Kε + α. �

5.8. Proof of the main result. The desired asymptotic formula is
now derived:

Theorem 5.36 (Precise asymptotics for periodic orbits). Let M be

a compact Riemannian manifold of nonpositive curvature whose rank

is one. Then the number Pt of homotopy classes of periodic orbits of
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length at most t for the geodesic �ow is asymptotically given by the

formula

Pt ∼
eht

ht
where ∼ means that the quotient converges to 1 as t →∞.

Proof. We use the standard limiting process∫ b

a

f(x)dx ./

bb/2εc∑
i=ba/2εc

2εf((2i + 1)ε)

for suitable functions f (in particular, if f is continuous and piecewise
monotone, as is the case for f(x) = ehx/x); since this is elementary,
�./� requires no explanation in long form here. Choose some �xed
su�ciently large number t0 > 0. Since we can ignore all closed geodesics
of length at most t0 for the asymptotics, we see that for t > t0 by
Corollary 5.35 we get

P ′
t
∼= Pt(A) ∼=

bt/2εc∑
i=bt0/2εc

P(2i+1)ε,ε
∼=

bt/2εc∑
i=bt0/2εc

2ε
eh(2i+1)ε

(2i + 1)ε

∼=
∫ t

t0

ehx

x
dx =

ehx

hx

∣∣∣∣t
t0

+

∫ t

t0

ehx

hx2
dx ∼=

eht

ht
− eht0

ht0

∼=
eht

ht
.

In more detail, ∃K < ∞ ∀α > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0), ∃t0 ∀t > t0 :∣∣∣∣ln htP ′
t

eht

∣∣∣∣ < Kε + α.

Note that there is no longer any dependence on ε and that P ′
t ∼ Pt.

Hence

Pt ∼
eht

ht
.

This concludes the proof. �
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