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PRECISE VOLUME ESTIMATES IN NONPOSITIVE
CURVATURE

ROLAND GUNESCH

ABSTRACT. We show that on a compact manifold of nonpositive
curvature and rank 1 the volume of spheres (hence also that of
balls) has an exact asymptotic; it is purely exponential, and the
growth rate equals the topological entropy.

The resulting formula is the sharpest one which is known. It
generalizes results of G. A. Margulis to the nonuniformly hyper-
bolic case. It improves the multiplicative asymptotic bound by
G. Knieper.

1. INTRODUCTION

LetM be a compact smooth Riemannian manifold whose sectional
curvature is nonpositive. We assume the (geometric) rank of M to
equal 1; that is, there exists a geodesic which has no parallel Jacobi
field except multiples of its velocity vector. (For the geometric back-
ground, see [BuKa], [BuSp], [Esch], [Bal], [Ebe], [Gro], [BGS] and
[KaHa].)

Let br(x) := volBr(x) be the Riemannian volume of the ball of
radius r around x in M̃ (the universal cover of M ). Let h be the
topological entropy of the geodesic flow on the unit sphere bundle
of M. We show that

br(x) ∼ c(x)ehr

for a continuous function c : M → R.
This result was obtained by G. A. Margulis in the special case that

the curvature is strictly negative everywhere; in that case the ge-
odesic flow is uniformly hyperbolic. His result was published in
[Mar2]. The proofs were part of his doctoral dissertation [Mar1] and
were finally published in [Mar4].

In our situation, the problem is more difficult since we are dealing
with a non-uniformly hyperbolic system. In particular, in our setup
one has to deal with the singular set where the product structure of
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stable and unstable manifolds breaks down. We show how to over-
come this problem.

It is known ([Man]) that in nonpositive curvature the exponential
growth rate of volume equals h. The best known result so far in this
setting is the estimate in [Kni2] and [Kni3] provided by G. Knieper
which says that there exists a constant C such that asymptotically
1/C < e−htbt(x) < C. However, the upper and lower bound in his
estimates cannot be made to be asymptotically close with the meth-
ods he provides. Our methods presented in this article give upper
and lower bounds which are asymptotically the same. We use Mar-
gulis’ methods and refine them with techniques from the geometry
from nonpositive curvature.

2. CONSTRUCTION OF (UN-)STABLE MEASURES ON FIBERS WHICH
ARE NOT IN THE (UN-)STABLE FOLIATION

Let SM be the unit sphere bundle of M and let (gt)t∈R be the geo-
desic flow. Recall that the regular set Reg := {v ∈ SM : rank(v) = 1}
is open and dense in SM. Recall that the regular set has a local prod-
uct structure with respect to the foliationsW s (stable manifolds), W u

(unstable manifolds), and flow lines of the geodesic flow. Denote by
W 0u the weakly unstable leaves (integral manifolds of W u and flow
lines). The set Reg has full measure with respect to the measure m
of maximal entropy, and m is supported on Reg.

The articles [Gun1] and [Gun2] give independent proofs of the
following: On Reg, the measure of maximal entropy has condi-
tional measures m0u, ms, supported on the weakly unstable and on
the stable foliation, respectively. They have the property of being
uniformly expanding and contracting, i.e. m0u ◦ gt = ehtm0u and
ms ◦ gt = e−htms. Moreover, they are holonomy invariant, i.e. two
nearby sets in W 0u which are pointwise uniquely connected by short
W s-fibers have the same m0u-measure. Those two articles also pro-
vide different constructions of the conditionals. Next we show how
to extend the conditional measure ms to a measure on sets which are
not necessarily subsets of W s; only transversality to W 0u is required.
Similarly we show how to extend m0u to arbitrary sets which are
transversal to W s.

Let K ⊂ SM be a compact submanifold of dimension dimM − 1
which is transversal to W 0u. Let L ⊂ SM be a compact submanifold
of dimension dimM which is transversal to W s. We denote by Bε(p),
Bs

ε(p), B
u
ε (p) etc. the open ball of size ε around p in M, in the stable

leaf of p, in the unstable leaf of p, etc. If D is an open subset of the
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regular set which has diameter ε, which has such a product structure
and which is topologically a ball, then we use the notationBs

D(p) :=
Bs

2ε(p) ∩D, B0u
D (p) := B0u

2ε (p) ∩D.

Definition 2.1. For a point p ∈ D define the projection πs
D,p : D →

Bs
D(p) by

πs
D,p(x) := B0u

ε (x) ∩Bs
D(p).

For a set K ⊂ K ∩D define the function

preimgK,D,p(x) := #{y ∈ K : πs
D,p(y) = x}.

This function is integer-valued and semicontinuous from below,
hence integrable.

Definition 2.2. Define

ms
D,p(K) :=

∫
Bs

D(p)

preimgK,D,p(x)dm
s(x).

In the following, we will often deal with pairs of quantities whose
proximity we want to quantify:

Definition 2.3. For f1,f2 ∈ R with f1/f2 ∈ (1/2, 2) we define the
logarithmic distance by

dlog(f1, f2) :=

∣∣∣∣ln f1

f2

∣∣∣∣ .
This quantifies the proximity of f1 and f2. Evidently for f1/f2 ∈
[0.9, 1.1], the expressions |f1/f2 − 1| and dlog(f1, f2) differ at most by
a factor 2. However, error estimates are easier using dlog since it sat-
isfies the triangle inequality dlog(f1, f3) ≤ dlog(f1, f2)+dlog(f2, f3) and
hence is a distance function.

In the following we consider functions f1 = f1(t, x), f2 = f2(t, x) :
[0,∞) × M → R be functions depending on a base point x and a
parameter t (which will tend to ∞). We write dlog(f1, f2) as before;
in that case this will depend on x, t. In particular, we will show that
there is a continuous function c : M → R so that for all x ∈ M we
have

lim
t→∞

dlog(bt(x), c(x)e
ht) = 0.

Lemma 2.4. Let K, ε and D be as above, let D′ ⊂ D be open and have a
product structure. For p ∈ D, p′ ∈ D and K ⊂ D ∩D′ we have

dlog

(
ms

D,p(K),ms
D′,p′(K)

)
< hε.
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Proof. Recall that the measure ms contracts uniformly with exponent
h in the time direction, i.e. ms ◦ gt = e−htms, and is invariant under
holonomy in u-direction. Using the product structures in D and D′

there is a bijective 0u-holonomy from πs
D,p(K) to πs

D′,p′(K) that moves
points by at most ε. �

Now we show how Margulis’ construction of measures [Mar4] is
done in nonpositive curvature:

Definition 2.5. Let M be a manifold of nonpositive curvature and
rank 1 and let K ⊂ M be a compact submanifold. A regular
partition-cover of K of size ε is a triple (D,K,p) where D = (Di)i∈N
is an open cover of Reg so that all Di have a product structure and
are of diameter at most ε, where p = (pi)i∈N with pi ∈ Di for all i,
and where K = (Ki)i∈N is a (disjoint) partition of K ∩Reg such that
Ki ⊂ Di for all i.

Note that a regular partition-cover does not cover the singular part
of K. To avoid multiindices we allow the Ki to be empty.

Definition 2.6. For a regular partition-cover (D,K,p) we define a
measurems

D,K,p onK by declaring that forK ⊂ K∩Reg the measure
is

ms
D,K,p(K) :=

∑
i∈N

ms
Di,pi

(K ∩Ki)

and declaring that it vanishes on the singular set (the complement of
the regular set), i.e. ms

D,K,p(K ∩ Sing) := 0. Hence ms
D,K,p is defined

on all of K, including the singular part.

Lemma 2.7. Let (D,K,p) and (D′,K′,p′) be regular partition-covers of
K of size ε. Then

dlog

(
ms

D,K,p(K),ms
D′,K′,p′(K)

)
< 2hε.

Proof. Use lemma 2.4 for a common refinement of D and D′. Note
that the common refinement contains only sets which are ε-small
and ε-close to a set in each D and D′. Thus each holonomy from
πs

Di∩D′
j ,p(K) to πs

Di∩D′
j ,p′(K) moves points by distance at most 2ε. �

Definition 2.8. Choose a sequence (Di,Ki,pi)i∈N of regular
partition-covers of K of size 1/i. Let

ms
K(K) := lim

i→∞
ms

Di,Ki,pi
(K).
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By the previous lemma, this does not depend on the sequence
(Di,Ki,pi)i∈N chosen. Note that for all K ⊂ K and for all ε > 0
there is N(ε) so that for all i > N(ε) we have

dlog(m
s
K(K),ms

Di,Ki,pi
(K)) < hε.

Hence ms
K is an additive measure.

Similarly, forL compact and transversal toW s we construct a mea-
sure m0u

L by repeating the construction with s and 0u exchanged.
Once again, we declare that m0u

L (L) is zero for L ⊂ Sing, which
makes m0u

L defined on all of L, including the singular part.
It is interesting to note that for the construction of m0u

L , we do not
even need the limit of i → ∞ since the holonomy along s-fibers (as
opposed to 0u-fibers) leaves the measure in the 0u-direction strictly
invariant.

Similarly, for Λ compact and transversal to W 0s we get a measure
mu.

We normalize dm = dmudmsdt so that m(SM) = 1.

3. FIBERWISE ERGODIC THEOREMS

Definition 3.1. A family F of functions SM → R is called uniformly
equicontinuous in the 0u-direction iff ∀ε > 0∃δ > 0∀f ∈ F,∀p, q ∈
SM the condition d0u(p, q) < δ implies |f(p)− f(q)| < ε.

We apply this later to nonnegative functions in C0(SM, [0,∞)).

Lemma 3.2. For any f which is continuous in the 0u-direction, the family
F = {f ◦ gt : t ≤ 0} is uniformly equicontinuous in the 0u-direction.

Proof. Note that by compactness of SM, the function f is automati-
cally uniformly continuous in 0u-direction, i.e. ∀ε > 0∃δ > 0∀p, q ∈
SM : d0u(p, q) < δ implies |f(p)− f(q)| < ε. By nonpositivity of the
curvature, d0u is nondecreasing with the flow (in positive time direc-
tion), i.e. d0u(p, q) < δ implies d0u(gtp, gtq) < δ for all t ≤ 0, thus
|f(gtp)− f(gtq)| < ε. �

Note that d0u(p, q) < δ does not imply that d0u(gtp, gtq) → 0 as
t→ −∞, unlike in the hyperbolic case.

Definition 3.3. If the set D has a product structure, then for all p in
D, the measure m0u(B0u

D (p)) is the same (because of strict holonomy
invariance along W s-fibers). We call this number S(D).

Lemma 3.4. Assume K ⊂ W s, D ⊂ SM open and with product struc-
ture, for all i ∈ N let Di be open in D, with BD(p) ⊂ Di for p ∈ Di, with
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K = ∩i∈NDi and Di ⊂ B0u
1/i(K). Let F be uniformly equicontinuous in

0u-direction. Then, for all f ∈ F we have

lim
i→∞

1

S(Di)

∫
Di

f dm =

∫
K

f dms.

Proof. By uniform equicontinuity, for all γ > 0 there exists i0 ∈ N
such that for all x, y ∈ M with d0u(x, y) < 2/i and for all f ∈ F
we have |f(x) − f(y)| < γ. Now we use holonomy invariance and
uniform contraction of the conditional measure on stable leaves and
deduce that if H : Di → K is the holonomy map which moves along
0u-leaves in Di, i.e. H(q) = K ∩B0u

Di
(q), then we have

dlog (dms, dms ◦H) < h/i

i.e. if v ∈ Di and w ∈ K ∩B0u
Di

(v), then for all u we have

dlog (dms(v), dms(w)) < h/i.

Therefore for all f ∈ F we have∣∣∣∣ 1

S(Di)

∫
Di

f dm−
∫

K

f dms

∣∣∣∣
≤

∫
K

(
eh/i max

x∈B0u
D (x)∩K

f(x)− e−h/i min
x∈B0u

D (x)∩K
f(x)

)
≤ e2h/i2γ.

�

Proposition 3.5. Assume K ⊂ W s, D ⊂ SM open and with product
structure, for all i ∈ N let Di be open in D, with BD(p) ⊂ Di for p ∈ Di,
with K = ∩i∈NDi and Di ⊂ B0u

1/i(K). Let f : D → [0,∞) be uniformly
continuous in the 0u-direction. Then∫

gtK

f dms ∼ e−htms(K)

∫
SM

f dm

for t→∞. Indeed,

dlog

(∫
gtK

f dms, e−htms(K)

∫
SM

f dm

)
< c1(diam (Di)) + c2(t).

Proof. Using the previous two lemmata, for all ε > 0, for i large
enough and for all t ≤ 0,

dlog

(
1

S(Di)

∫
Di

f ◦ gt dm,

∫
K

f ◦ gt dms

)
= dlog

(
1

S(Di)

∫
Di

f dm,

∫
K

f dms

)
< γ.
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Using the mixing property (see [Bab]),∫
Di

f ◦ gt dm =

∫
SM

χDi
· (f ◦ gt)dm→ m(Di)

∫
SM

f dm

for t → −∞. (Here χDi
is the characteristic function of Di.) In other

words, there exists a function c2 : [0,∞) → [0,∞), c2 = c2(i, t), so
that for all i we have limt→∞ c2(i, t) = 0.

dlog

(∫
Di

f ◦ gt dm,m(Di)

∫
SM

f dm

)
< c2(i, t).

Hence

dlog

(∫
K

f ◦ gtdms,
m(Di)

S(Di)

∫
SM

f dm

)
< γ + c2(i, t).

Note that
m(Di)

S(Di)
→ ms(K) for i→∞.

Thus, using the uniform expansion property∫
gtK

f dms = e−ht

∫
K

f ◦ gt dms,

we get the claim. �

Lemma 3.6. For D ⊂ SM open and K ⊂ W s ∩Reg :

ms(D ∩ gtK) ∼ ehtms(K)m(D).

Proof. First assume thatD has a product structure. Choose a decreas-
ing nested sequence (Di)i∈N of open sets withD =

⋂
i∈NDi. Choose a

pointwise nonincreasing sequence of continuous functions fi which
are 1 on D and 0 outside Di. Then the previous proposition states
that ∫

gtK

fi dm
s ∼ e−htms(K)

∫
SM

fi dm,

and letting i→∞ shows the claim (for this D). Next, note that both
sides of the claimed equation are additive in D. Any open subset
of Reg is the union of product cubes, thus the claim is proven for
regular D. �



8 ROLAND GUNESCH

4. HOLONOMY CONTINUITY AND REGULAR NEIGHBORHOODS

The counting argument in section 7 requires a certain function to
be continuous. That property is easily established in the uniformly
hyperbolic case; however, for the nonuniform case that we are deal-
ing with in this article, it is quite nontrivial. This section is devoted
entirely to that point. We use several fairly new results about the
measure of maximal entropy for the geodesic flow, in particular ex-
istence of conditional measures, holonomy invariance and uniform
expansion for those. The holonomy continuity discussed here differs
from the holonomy invariance proved in [Gun1] and [Gun2]: Instead
of taking a set and its holonomic counterpart and showing that the
conditional measure is preserved, we show that nearby sets of given
geometry have similar conditional measure.

Definition 4.1. For x, y ∈ SM let ds(x, y) be the distance of x and y
along stable leaves; if x 6∈ W s(y) then ds(x, y) = ∞. For r ∈ [0,∞)
define ϑr : [0,∞] → [0,∞) by

ϑr(t) := max(0, r − t).

For r ∈ [0,∞) and v, w ∈ SM define

σr(v, w) := ϑr(d
s(v, w)).

Finally, define

ψr(v) :=

∫
z∈Bs

r(v)

σr(v, z) dm
s(z).

Evidently σr(., .) is symmetric. Note that it is also Lipschitz with
Lipschitz constant 1 along W s-leaves, i.e. for all z contained in at
least one of the leaves W s(x) and W s(y) we have

|σr(v, z)− σr(w, z)| ≤ ds(v, w).

This is so because ϑ is 1-Lipschitz.

Theorem 4.2. ψr(v) is continuous in r. It is continuous in v along any
W s-leaf. If Bs

r(v) ⊂ Reg then ψr(v) is continuous in all variables at v.

Proof. Continuity of ψr(v) in r easily follows from the fact that for all
v, w the map r 7→ σr(v, w) is continuous.

To show continuity of ψr in v in the s-direction, let v, w be such that
ds(v, w) < δ. Write A1 := Bs

r(v) ∩ Bs
r(w) and A2 := Bs

r(v) 4 Bs
r(w);
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then

|ψr(v)− ψr(w)| ≤ ms(A1) sup
z∈A1

|σr(v, z)− σr(w, z)|

+ms(A2) ·
(

sup
z∈A2

|σr(w, z)|+ sup
z∈A2

|σr(v, z)|
)
.

Note that if z ∈ A2 then ds(v, w) ∈ [0, δ), thus σr(v, z) < δ and
σr(w, z) < δ. Thus the first summand on the right hand side is at most
δms(A1) and the second at most 2δms(A2). Thus ψr(v) and ψr(w) are
arbitrarily close for v, w sufficiently close. Thus ψr is continuous
along any W s-leaf.

Now let Bs
r(v) ⊂ Reg; we want to show continuity in v. Continu-

ity in the s-direction is shown above. Next we deal with the flow
direction. Let w = gδv. Then

ψr(w) =

∫
z∈Bs

r(gδv)

σr(g
δv, z) dms(z)

=

∫
z′∈g−δBs

r(gδv)

σr(g
δv, gδz′) dms(gδz′).(1)

Recall that on a manifold of nonpositive curvature, any stable
Jacobi field is nonincreasing in length; hence the map F : t 7→
ds(gtv, gtw) is nonincreasing, thus for t ≥ 0 its values are bounded
by ds(v, w). Thus

gδBs
r(v) ⊂ Bs

r(g
δv).

On the other hand, the decrease of F is bounded by the derivative
of the unstable Jacobi field, which is bounded due to compactness of
M. Hence for all ε > 0 there is δ0 > 0 so that for all δ < δ0 we have
Bs

ε(g
δBs

r(v)) ⊃ Bs
r(g

δv).
First note that δ 7→ σr(g

δv, gδz′) is continuous in δ because the folia-
tionW s is continuous. Next note that dms(gδz′) is continuous in δ be-
cause it is uniformly expanding in δ and ehδ is arbitrarily close to 1 for
δ sufficiently small. Finally note that ∀v ∈ SM ∀ε > 0∃δ0 > 0∀δ < δ0
we have

Bs
r(g

δv) ⊃ gδBs
r(v) ⊃ Bs

r−ε(g
δv),

hence the value of σris at most ε on the set Bs
r(g

δv) \ gδBs
r(v). This

shows that ψr(w) and ψr(v) are close because in the last line of equa-
tion (1) all terms are continuous with respect to δ.

Finally, we show that ψr is continuous in the u-direction. Assume
that w ∈ Bu

δ (v). Recall that the measure m0s is invariant under ho-
lonomy along W u-fibers. Hence if H is a holonomy map along W 0u

from some set A ⊂ W s to some set B ⊂ W s so that for all v1 ∈ A the
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points v1 and Hv1 are ε1-close, then dlog (ms(A),ms(B)) < hε1. We
are interested in the case A = Bs

r(v), w ∈ B.
Note that due to the condition that Bs

r(v) ⊂ Reg there is some
open neighborhood of Bs

r(v) which lies inside Reg and on which
W s,W 0u are uniformly transversal.

Note that for H as above we have |σr(Hv1, Hv2)− σr(v1, v2)| ≤ 2ε1

by 1-Lipschitzness of σr. Thus

ψr(w) =

∫
z∈Bs

r(w)

σr(z, w) dms(z)

≤
∫

z′∈H−1Bs
r(w)

(σr(z
′, v) + 2ε1) dm

s(Hz′)

≤
∫

z′∈Bs
r+ε2

(v)

(σr(z
′, v) + 2ε1) dm

s(z′)

≤ ψr(v) + 3ε1m
s(Bs

r+ε1
(v)).

Letting ε1 → 0 shows that ψr(w) and ψr(v) are arbitrarily close for
v, w close enough. �

5. MEASURING RIEMANNIAN VOLUME BY COUNTING
INTERSECTIONS

Let x, y ∈M. Define

ar(x, y) := #(Br(x) ∩ (π1(M) · y))
to be the number of copies of y under Deck transformations that are
inside the ball of radius r around x in the universal cover of M.

Lemma 5.1. For all x ∈M, r ∈ R we have

br(x) =

∫
y∈M

ar(x, y)d vol(y),

where vol is the Riemannian volume on M.

Proof. ([Mar4]) Let F be a fundamental domain of M. Denote the
characteristic function of B by χB. Then

br(x) =
∑

γ∈π1(M)

vol(γF ∩Br(x)) =
∑

γ∈π1(M)

∫
y∈γF

χBr(x)d vol(y)

=

∫
y∈F

∑
γ∈π1(M)

χBr(x)d vol(γ−1y) =

∫
y∈M

ar(x, y)d vol(y).
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�

For x, y ∈ M assume K := SyM to be transversal to W 0u and
Λ0 := SxM to be transversal to W s. Let L := g[0,a]Λ0. Let K,Λ0 be
the disjoint unions K =

⋃
j Kj, Λ0 =

⋃
i Li. Then

at(x, y) = #((π1(M) · y) ∩Bt(x))

= #(SyM ∩ g[0,t]SxM)

= #(K ∩ g[0,t]Λ0)

=
∑
i,j

#(Kj ∩ g[0,t]Li).

Therefore it suffices to be able to count these intersections in order to
find br. Note that these intersections are always finite, even though
the components of intersection of stable and unstable manifolds can
be uncountable.

For uniform hyperbolicity, it would now suffice to treat the sin-
gle choice of submanifolds K = SyM, L = SxM and calculate the
number at(x, y) in one single counting step. The counting step re-
quires a product structure in the neighborhood of the submanifolds
K, L. In our setup of nonpositive curvature, no such (global) product
neighborhood exists. Instead we proceed as follows: We decompose
our submanifolds into the regular and singular part. Concerning the
latter, we show that it asypmtotically contributes only a zero pro-
portion and hence can be ignored. The former is decomposed into
countably many pieces, each of which has a product neighborhood.
For each piece we calculate a multiplicative asymptotic, and then
we show that the asymptotics can be combined in a multiplicative
asymptotic for the whole set.

Definition 5.2. Let x, y ∈M, A ⊂ SxM. Define

at(A, y) := #(SyM ∩ g[0,t]A)

to be the number of copies of y under Deck transformations which
can be reached from x by a geodesic of length at most t and with
initial velocity in A.

Lemma 5.3. For all x, y ∈M we have

lim
t→∞

at(SxM ∩ Sing, y)

at(SxM ∩Reg, y)
= 0.

In fact, there exists α > 0 and t0 <∞ so that for all t > t0 we have
at(SxM ∩ Sing, y)

at(SxM ∩Reg, y)
≤ e−αt.
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Obviously the same holds with the denominator replaced by
at(x, y).

Proof. For any ε smaller than half the injectivity radius ofM , any two
geodesics from x to y of length at most T are (T, ε)-separated. There-
fore aT (LSing, y) ≤ N(g|Sing, T, inj(M)/2) where N(g|Sing, T, r)is the
maximum cardinality of an (T, r)-separated set with respect to the
flow g|Sing (the geodesic flow restricted to the singular set) and with
respect to the distance function on SM induced by the Sasaki metric.
Taking growth rates, we get

lim
t→∞

1

t
at(LSing, y) ≤ htop(g|Sing) < htop(g) = h

where the last inequality was shown in [Kni1]. On the other hand,
for all x, y there exists c(x, y) > 0 and t0 < ∞ such that for all t > t0
we have at(x, y) ≥ c(x, y)eht. This is shown in more detail later, but
for this lower estimate it suffices to notice that the growth rate of
volume equals h ([Man], [Kni3]) and hence at(x, y) has growth rate
h. �

However, in our case we achieve this:

Lemma 5.4. Fix x, y ∈ M. If LReg = SxM ∩ Reg =
⋃

i∈NAi is
a decomposition of LReg into countably many disjoint open regular sets
Ai and for each i there exists C(i) such that at(Ai, y) ∼ C(i)eht then
at(LReg, y) ∼ Ceht with C =

∑
i∈NC(i).

Proof. Let Âi :=
⋃

k<iAi and Ri := LReg \ Âi. It is easy to see that
the counting functions at and hence their asymptotics are finitely
additive in Ai, i.e., we have at(Âi, y) =

∑
k<i at(Ak, y) and thus we

have at(Âi, y) ∼
(∑

k<iC(i)
)
eht.

We know that at(Ri, y) ≤ C(i)eht for some C(i). We will show that
C(i) → 0 as i→∞.

Assume the contrary. Then there exists C > 0 such that for all
i ∈ N and for all t > t0(i) we have at(Ri, y) ≥ Ceht. By closedness and
nestedness of the Ri and continuity of the flow and the uniform pro-
jection property of the conformal density (Busemann density) it fol-
lows that also at(

⋂
i∈NRi, y) ≥ Ceht. But

⋂
i∈NRi is empty and hence

its at-value zero. �

Summarizing, we have shown:

Theorem 5.5. Let Lsing ∪
⋃

i∈NAi be a decomposition of L = SxM (or
L ⊂ SxM ) into the singular part and countably many regular open sets Ai
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which are pairwise disjoint. Assume that for each i there is a constant C(i)
such that at(Ai, y) ∼ C(i)eht. Then at(x, y) ∼ Ceht with C =

∑
i∈NC(i).

6. PRODUCT NEIGHBORHOODS

Let D be open with D ⊂ Reg. Hence it has a local product struc-
ture and transversality is uniform on D. Let L ⊂ D be transversal to
W s. Note that for each v ∈ L we have

lim
r→0

ψr(v) = 0.

Note that this is not true without assuming L ⊂ D and D̄ ⊂ Reg.
By compactness of D and continuity of ψr(v) in r, the convergence

ψr(v) → 0 as r → 0 is uniform with respect to v. Hence there exists
c0 > 0 so that for all c < c0 and all v ∈ L there exists rc = rc(v)
so that ψrc(v)(v) = c. From the product structure of D follows that
for c sufficiently small, for each v ∈ L, the intersection of Bs

rc(v)(v)

contains exactly one point of L.

Definition 6.1. Write

Z = Z(L, c) := Bs
rc

(L) :=
⋃
v∈L

Bs
rc(v)(v).

Let πL : Z → L be the projection defined by πL(z) = l for z ∈ Bs
rc(l)

(l).

Define the function fL,c supported on Z by

fL,c(z) := σrc(z, πL(z))

for z ∈ Z and fL,c(z) := 0 otherwise.
Then ∫

Z

fL,cdm = cm0u
L (L)

since dm = dmsdm0u on D and since the stable measure of each s-
fiber equals c.

For two subspaces E1, E2 of a vector space let

d(E1, E2) := dH(E1 ∩ S1, E2 ∩ S1)

be the distance in the Grassmannian bundle induced by the Haus-
dorff distance on unit spheres.

Lemma 6.2. Let K be compact and transversal to W 0u. Then for all ε > 0
there exists t0 so that for all t > t0 we have

d(Tg−tK, TW s) < ε

uniformly on K.
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Proof. Each ξ ∈ Tg−tK can be written as ξ = ξ‖ + ξ⊥ with ξ‖ ∈ TW s,
ξ⊥ ⊥ TW s (perpendicular with respect to the Sasaki metric on SM ).
Recall that for t → −∞, any unstable Jacobi field is bounded and
any stable Jacobi field is unbounded. Since (dgtξ)‖ is unbounded for
t → −∞ and (dgtξ)⊥ is bounded, it follows that ∠((dgtξ), TW s) → 0
for t→ −∞. Compactness gives uniformity. �

7. INTERSECTION ESTIMATE

Definition 7.1. ForK compact and transversal toW 0u andL compact
and transversal to W s, K ⊂ K, L ⊂ L define

Q(K,L, t) := #(L ∩ g−tK),

define Φ(K,L, c, t) to be the set of connected components ϕ of Z ∩
g−tK such that if p ∈ ϕ and p ∈ Bs

rc
(l) for l ∈ L then Bs

rc
(l) = ϕ, and

finally define
N(K,L, c, t) := #Φ(K,L, c, t).

For a set K as above with the property that K ⊂ D where D is
open, has diameter < ε, and D carries a product structure, we abbre-
viate the notation πD,p(K) by K ′. This means that the choice of p is
suppressed in the notation and all of the following estimates are true
for any choice of p.

Note that K ′ may be disconnected even if K is connected.
For a set K ′ ⊂ W s with BαK

′ ⊂ D for α > 0 we write

B̂s
αK

′ := πD,pBαK
′,

i.e. the set K ′ is (arbitrarily) extended by distance α in the s-
direction. Similarly, for α < 0 we write

B̂s
αK

′ := (K \B−α(∂K))′

for the opposite, namely shrinkingK ′ by distance α from the bound-
ary of K. (We use the boundary of K, not that of K ′, because the
transition fromK toK ′ introduces new boundary points ofK ′ which
do not correspond to the boundary of K.

Note that by the previous lemma, for eachK,L there exists t0 such
that for t > t0 the number Q(K,L, t) is finite.

Clearly for K,L as before and for all c > 0, t ≥ 0 :

N(K,L, c, t) ≤ Q(K,L, t).

On the other hand, unboundedness of stable Jacobi fields for t →
−∞ and hence unboundedness of the diameter of the image of the
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annulus (B̂s
αK

′) \ K ′ under g−t gives ∀K,L, ∀c > 0∀α > 0 ∃T =
T (α) ∀t > T :

Q(K ′, L, t) ≤ N(B̂s
αK

′, L, t).

Moreover, ∀ϕ ∈ Φ(K ′, L, c, t) :∫
ϕ

fL,cdm
s = c.

Hence ∀K,L, ∀c > 0, ∀t :

N(K ′, L, c, t) ≤ 1

c

∫
SM

fL,c · (χK′ ◦ gt)dms.

On the other hand, ∀α > 0∃T = T (α)∀t > T :

N(B̂s
αK

′, L, c, t) ≥ 1

c

∫
SM

fL,c · (χK′ ◦ gt)dms.

Note that ms
K(∂K ′) = 0 = m0u

L (∂L).
In the following, the only type of L we need to consider is L =

g[0,t0]Λ for some Λ contained in some Di with a product structure
(which makes Λ transversal to W 0s). This L is the disjoint union
L =

⋃n−1
i=0 Li with Li ⊂ g[it0/n,(i+1)t0/n)Λ, and we can further assume

without loss of generality that Li ⊂ Di for i < n (by renumbering the
Di appropriately).

Lemma 7.2. For all α > 0 there exists T such that for all t > T :

k−2∑
i=2

Q(K ′, B̂u
−αLi, t) ≤

k−1∑
i=1

Q(K,Li, t) ≤
k∑

i=0

Q(K ′, B̂u
αLi, t).

Proof. Note that once more the nonpositivity of the curvature gives
unboundedness of the boundary annulus as t → −∞. Moreover
g−tK ′ is arbitrarily close to W s as t becomes large. Note also that
each point p ∈ K which lies on Li gets moved by at most ε in the
flow direction under the map K 7→ K ′ and hence gets mapped back
to Li or gets mapped to Ljwith |i− j| a/k < ε.Note that, for i 6= j, in-
creasing the term Q(K ′, B̂u

αLj, t) by 1 and simultaneously decreasing
the term Q(K ′, B̂u

αLi, t) by 1 does not change the sum in the state-
ment of the lemma. �
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Theorem 7.3. The following two estimates hold:

(1): lim sup
t→∞

e−ht

k−1∑
i=1

Q(K,Li, t) ≤ e2hεms
K(K)

k∑
i=0

m0u
L (Li),

(2): lim inf
t→∞

e−ht

k∑
i=0

Q(K,Li, t) ≥ e−2hεms
K(K)

k−1∑
i=1

m0u
L (Li).

Proof. For the first inequality (1), we see that for α > 0

lim sup
t→∞

e−ht

k∑
i=1

Q(K,Li, t) ≤ lim sup
t→∞

e−ht

k∑
i=1

Q(K ′, B̂u
αLi, t).

Hence for the limit as α→ 0 :

lim sup
t→∞

e−ht

k∑
i=1

Q(K,Li, t) ≤ lim
α→0

lim sup
t→∞

e−ht

k∑
i=1

Q(K ′, B̂u
αLi, t)

≤ lim
β→0

lim
α→0

lim sup
t→∞

e−ht

k∑
i=1

N(B̂s
βK

′, B̂u
αLi, t)

≤ 1

c
lim
β→0

lim
α→0

lim sup
t→∞

e−ht

k∑
i=1

∫
SM

fB̂u
αLi,c

· (χB̂s
βK′ ◦ gt)dms.

Note that fB̂u
αLi,c

is continuous by Theorem 4.2. Hence by Proposition
3.5 we have

lim sup
t→∞

e−ht

k∑
i=1

∫
SM

fB̂u
αLi,c

· (χB̂s
βK′ ◦ gt+ε)dms

≤ e2hεms
K

(
B̂s

βK
) k∑

i=1

m0u
L

(
B̂u

αLi, c
)
.

Taking limβ→0 limα→0 we get

lim sup
t→∞

e−ht

k∑
i=1

∫
SM

fB̂u
αLi,c

· (χB̂s
βK′ ◦ gt)dms

≤ e2hεms
K(K)

k∑
i=1

m0u
L (Li).
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Hence

lim sup
t→∞

e−ht

k∑
i=1

Q(K,Li, t) ≤ e2hεms
K(K)

k∑
i=1

m0u
L (Li).

By mixing, the summands for i = 0 and i = k are not bigger than
the others, hence can be ignored in the limit.

The second inequality (2) is proven the same way, using the oppo-
site estimates for exchanging Q with N and N with the integral. �

Using the fact that ms
K(∂K ′) = 0 = m0u

L (∂L), we reach the follow-
ing conclusion:

Corollary 7.4. For L regular and K arbitrary (or for K regular and L
arbitrary), we get

lim
t→∞

e−ht

k∑
i=1

Q(K,Li, t) = ms
K(K)

k∑
i=1

m0u
L (Li).

Note that regularity is invariant under the flow. Hence if L is regu-
lar, any intersection of L with g−tK can only occur at regular points.
It is therefore sufficient if just one of the two sets L,K is regular.
Hence the case we have treated before suffices.

If neither K nor L is regular, then we split it as K =
⋃

j Kj and
L =

⋃
i L̃i where each Kj and Li is a subset of Reg or Sing. We have

dealt with the former and are going to show that the latter does not
distort the count. Without loss of generality L̃i =

⋃n−1
k=0 g

kt/nLi and
Li = g[0,t0]Λi.

Proposition 7.5. There exists γ > 0 such that for Kj ⊂ Sing or Li ⊂
Sing there exists T ∈ R such that for t > T we have

0 ≤ #
(
Kj ∩ gtLi

)
≤ e(h−γ)t.

Proof. Let v, w ∈ K ⊂ SyM be such that g−tv, g−t+a1w ∈ Λi ⊂ SxM
for t ≥ 0 and 0 ≤ a1 ≤ t0. Then the geodesic segments g[−t,0]v
and g[−t+a1,0]w either form a geodesic biangle (i.e. 2-gon, bounding a
topological 2-disc) or form a topologically nontrivial loop.

Note that in a space of nonpositive curvature, any geodesic bian-
gle is degenerate, i.e. subset of a single geodesic. This is so because
any biangle is in particular a triangle with one side of zero length,
and by triangle comparison with flat 2-space the nonpositivity of the
curvature shows that both interior angles of the biangle are 0.

Hence either v = w or the orbits of v, w are (t, l0)-separated, where
2l0 > 0 is the length of the shortest closed geodesic in M.
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Since the growth rate of any separated set in Sing is less than or
equal to the topological entropy of Sing and since hSing < h ([Kni1]),
the claim follows. �

From this we deduce:

Theorem 7.6. For each x ∈M there exists c(x) so that

volBt(x) ∼ c(x)eht.

The function c : M → R is continuous. It satisfies

c(x) =
1

h

∫
y∈M

a(x, y)d vol(y)

where
a(x, y) = ms

K(SxM)mu
Λ0

(SyM).

Proof. For x as above, the preceding arguments show that

at(x, y) ∼ ehtms
K(SxM)mu

Λ0
(SyM).

In particular, at(x, y) ∼ ehta(x, y) where

a(x, y) = ms
K(SxM)mu

Λ0
(SyM).

The function a(x, y) is evidently independent of t.
For continuity, simply note that if y is another point of M with

d(x, y) ≤ ε then bt(x) = volBt(x) satisfies

bt−ε(x) ≤ bt(y) ≤ bt+ε(x).

Thus

e−hε ≤ bt(y)

c(x)eht
≤ ehε.

Thus bt(y) and bt(x) are arbitrarily close for x and y sufficiently close.
�
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