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Abstract. We generalize Margulis’ construction of the measure
of maximal entropy from to the case of nonpositively curved man-
ifolds with geometric rank one.
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1. Introduction

The measure of maximal entropy for the geodesic flow is useful for
many purposes, including precise asymptotics for the number of closed
geodesics and of volume in the universal cover. (See [Gun2, section 1]
and [Gun3] for a detailled description of these problems in nonpositive
curvature, as well as [Kni1], [Kni2], [KHK]. For the negative curvature
case, see [Mar3] and [Mar4]). One method to provide this measure
for nonpositively curved manifolds of rank one (see [Bal] for the geo-
metric background) is Knieper’s construction, which in turn uses the
Patterson-Sullivan construction. In this article we provide a different
method: We consider the construction which Margulis used to obtain
his famous asymptotics. He covered the case where the curvature is
strictly negative on compact manifolds and hence the geodesic flow
uniformly hyperbolic. In this article we show that Margulis’ measure
construction can actually be extended to nonpositively curved mani-
folds of rank one, where the geodesic flow is nonuniformly hyperbolic.
Our construction works even if stable and unstable leaves become tan-
gential.

See [Gun2, section 2] for a detailled description of the history of the
study of the dynamics of the geodesic flow on nonpositively curved rank
one manifolds, including Margulis’ asymptotics, Knieper’s multiplica-
tive bounds, and Katok’s entropy conjecture.

The Liouville measure on SM, denoted by λ, is a finite and smooth
measure. Existence and uniqueness of a measure whose entropy equals
the topological entropy h were established for nonpositive curvature by
G. Knieper [Kni1] with the Patterson-Sullivan construction, building
the measure as limit of measures supported on periodic orbits.

For the special case of strictly negative curvature, the measure of
maximal entropy was constructed in a different way by G.A. Margulis
([Mar1], [Mar4]). His construction builds the measure as the product
of limits of measures supported on pieces of stable and unstable leaves.
(See also U. Hamenstädt’s geometric description of this measure [Ham],
and B. Hasselblatt’s generalization to Anosov flows [Has].)

We will show how to carry out a Margulis-type construction to obtain
a measure which is well adapted to dynamical properties of the flow.
We show that it has maximal entropy. Hence in nonpositive curvature
and rank one it agrees with Knieper’s measure.

It is not a priori clear that the Knieper measure has all of the relevant
properties which the Margulis measure has in the negatively curved
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case, such as holonomy invariance and uniform expansion. By general-
izing Margulis’ construction, we show that those properties are actually
present. (These two properties can actually also be derived directly
from Knieper’s construction ([Gun2, Theorems 4.6 and 4.7]).)

Compared to Knieper’s approach, the Margulis-type method in this
article could be easier to use when applications require to generalize
the measure to further spaces. Examples of such applications are ge-
odesic flows on not necessarily nonpositively curved spaces (i.e. with
some controlled amount of positive curvature), as well as studying non-
geodesic flows satisfying suitable cone conditions (see [Kat] for those).
These examples will be treated in a separate article.

2. Preliminaries

In the following, M will be a compact manifold with nonpositive
sectional curvatures and (geometric) rank one. We summarize some
known facts (which are explained in greater detail in [Gun2, section
3]).

Continuity of the stable and unstable foliations was proved by P.
Eberlein [Ebe2] and J.-H. Eschenburg [Esch]. Due to compactness of
M , the continuity is automatically uniform. It was demonstrated by
Eberlein ([Ebe1]) that stable manifolds are dense. Similarly, unstable
manifolds are dense. M. Babillot [Bab] has shown that the measure of
maximal entropy for the geodesic flow on a compact rank one nonpos-
itively curved manifold is mixing.

We call an open set U ⊂ SM of size ≤ δ regularly coordinated if for
all v, w ∈ U there are unique x, y such that

x ∈ W u
δ (v), y ∈ W 0

δ (x), w ∈ W s
δ (y).

If v is regular then it has a regularly coordinated neighborhood ([Gun2,
Proposition 3.14]).

Lemma 2.1. The vector v ∈ SM is regular if and only if W u(v),
W s(v) and W 0(v) intersect transversely at v.

The proof is given in [Gun2, Lemma 3.12].
Let

〈ξ, η〉 := 〈dπξ, dπη〉+ 〈Kξ,Kη〉
for ξ, η ∈ TvSM be the Sasaki metric on SM .

Let b(., q, ξ) be the Busemann function centered at ξ ∈ M̃(∞)
and based at q ∈ M̃ :

b(p, q, ξ) := lim
pn→ξ

(d(q, pn)− d(p, pn)) = lim
t→∞

(d(cp,ξ(t), q)− t)

(independent of the sequence pn → ξ ) where cp,ξ is the geodesic with
cp,ξ(0) = p and cp,ξ(t) → ξ as t →∞.

For ξ, p fixed, we have

b(p, pn, ξ) → −∞ for pn → ξ
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and

b(p, pn, ξ) →∞ for lim
n

pn ∈ M̃(∞) \ {ξ}.

Also: b(p, q, ξ) = −b(q, p, ξ).
µp is a h-dimensional Busemann density (also called conformal den-

sity) if the following are true:

• For all p ∈ M̃, µp is a finite nonzero Borel measure on M̃(∞).
• µp is equivariant under deck transformations, i.e., for all γ ∈

π1(M) and S ⊂ M̃(∞) we have

µγp(γS) = µp(S).

• When changing the base point of µp, the density transforms as
follows:

dµp

dµq

(ξ) = e−hb(q,p,ξ).

Knieper has shown [Kni1] that µp is unique up to a multiplicative
factor.

3. Existence of holonomies

This section recalls some facts from Margulis, although we have to
use a somewhat different approach later since in our setup transversal-
ity is missing.

For L1, L2 ⊂ W 0u (not necessarily in the same leaf) the holonomy
map H from L1 to L2 can be defined by {H(x)} := W s

D(x) ∩ L2 for
x ∈ L1 where D is sufficiently large for the intersection to be nonempty
and sufficiently small for it to be just one point. This intersection is
well-defined if for all y in L2 some local intersection W s

γ ∩W u
γ consists

of a single point, in particular if W s and W 0u are transversal on L2.

Lemma 3.1. Assume that the vector v and the set L are regular, where
L is open in a W 0u-leaf. Then for δ > 0 sufficiently small and D ∈ R
sufficiently large there is an open set U ⊂ L such that B0u

δ (v) is D-
equivalent to U. Moreover, the holonomy between these sets is a home-
omorphism.

Proof. We use regularity and the same transversality argument as in the
negatively curved case. Namely: Since W s(v) is dense, it approximates
arbitrarily closely any point of L. By regularity, it is transversal to L,
thus it passes through the interior of L. Hence, the holonomy map
from a sufficiently small neighborhood of v maps this neighborhood to
an open subset of L homeomorphically. �

Even though the preceding statement is what was used by Margulis
to prove results in negative curvature, we find it more useful to look
at holonomies with less restrictions to size of leaves but with more
restrictions on closeness of them. This is done in the following.
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4. Exponentially growing Lebesgue measure of
projections: multiplicative bounds

4.1. Positive density of some projections.

Definition 4.1. We use the notation Lt := gtL for a set L ⊂ W 0u

(and for v ∈ SM̃). In particular, L∞ := g∞L = limt→∞ gtL.

Definition 4.2. Let L ⊂ W 0u be a set in the weakly unstable foliation.
We call L a tall set if it is nonempty, regular and open in W 0u.

In particular, any regular vector has a tall neighborhood in its 0u-
leaf. Technically, the empty set is singular, and hence the requirement
of nonemptyness in this definition is already implied by regularity.

Definition 4.3. For a set U ⊂ M̃ we define the projection projpU

from a point p ∈ M̄ into the boundary at infinity to be the set of
endpoints of all geodesic rays emanating from p and passing through
the set U.

ixp
v

0

t

Figure 4.1. Projecting into the boundary at infinity.

From Knieper’s results we derive:

Proposition 4.4. There is ρ = ρ(M) such that if L ⊂ W 0u contains
a weakly unstable ball B0u

r of radius r > ρ then µpL∞ > 0 for some
(hence all) p ∈ M.

Proof. Knieper showed in [Kni1] that there are constants ρ, A > 0 such
that balls of radius at least ρ project to sets of µp > A, i.e. for any

x ∈ M̃ and q ∈ M̄ it is true that

µxprojqBρ(x) > A.

Let C0 = C0(M) ≥ 1 be such that πB0u
C0r(v) ⊃ Br(πv) for all v ∈

X = SM̃. C0 can be chosen to be finite by compactness of M . For
r ≤ r0, C0 can also be assumed independent of r.

Let v ∈ X, r ≥ C0ρ be such that B0u
r (v) ⊂ L. Let x := πv.
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For the unique q with {q} = L−∞ we get

g∞B0u
r (v) = projqπB0u

r (v) ⊃ projqBr/C0(x) ⊃ projqBρ(x).

Hence

µpL∞ ≥ µpprojqπB0u
r (v) ≥ µpprojqBρ(x) > A > 0.

�

Proposition 4.5. Let L ⊂ W 0u be regular and open in W 0u (i.e. tall).
Then it satisfies µpL∞ > 0 for some (hence all) p ∈ M.

Proof. If there exist two vectors v, w ∈ L for which the iterations gtv,
gtw stay at a bounded distance for all positive t (hence for all t) then
the geodesics through v and w bound a flat strip, hence lie on the same
geodesic by regularity of L.

Now pick any v ∈ L. Pick R > 0 small enough so that g[−R,R]B̄u
Rv ⊂

L. We know that for all w ∈ L ∩Bu(v) \ {v} :

d(πgtv, πgtw) →∞ as t →∞.

Thus
min

w∈∂Bu
R(v)

d(πgtv, πgtw) →∞ as t →∞

by the compactness of ∂Bu
R(v). In particular, gtBu

R(v) contains arbitrar-
ily large u-balls for t sufficiently large. By Proposition 4.4 it follows
that µpL∞ > 0. �

4.2. Projecting distant balls to infinity. The following theorem
uses the results of G. Knieper [Kni1]:

Theorem 4.6 (Projection of distant balls). Given some arbitrary p ∈
M̃ , for r > ρ there exists some number a = a(r) such that for all
x ∈ M̃ :

(4.1)
1

a
≤

µpprojpBr(x)

e−ht
≤ a,

where t := d(p, x).

Proof. As we pointed out before, Knieper showed that there are con-
stants ρ = ρ(M), A = A(M) > 0 such that for any x ∈ M̃ and q ∈ M̄
and r > ρ it is true that

µxprojqBr(x) > A.

(Actually, Knieper’s formulation assumes that moreover d(x, p) > r.
Note that the claim of the Theorem is true even without this stipulation
since for d(x, p) < r we get µxprojpBr(x) = µxM̃(∞) > A. )

Recall that µx is a finite measure for all x. Thus for all r > ρ there
exists A > 0 such that for any q ∈ M̃ :

A < µxprojqBr(x) ≤ µxM̃(∞) < ∞.
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t

Figure 4.2. Projection of a distant ball.

Next we change the base point of µ :

µpprojpBr(x) =

∫
projpBr(x)

1dµp(ξ)

=

∫
projpBr(x)

dµp

dµx

(ξ)dµx(ξ)

=

∫
projpBr(x)

e−hb(x,p,ξ)dµx(ξ).

Let φ(ξ) := b(x, p, ξ). For ξ0 := projpx we see that φ(ξ0) = d(x, p)

and φ(ξ0) ≥ φ(ξ) for all other ξ ∈ M̃(∞).
We are interested in distant x and p, so assume now that d(x, p) > R0

for some large R0. Let

y := cp,ξ ∩ b(x, ., ξ)−1(0),

i.e., y is the point on the intersection of the geodesic from p to ξ with
the horosphere centered at ξ based at x. In yet different terms, y is
given by

y = cp,ξ(b(x, p, ξ)).

Note that for R0 sufficiently large, for all ξ ∈ projpBr(x) the triangle
inequality shows that x and y are at a bounded distance, i.e., we have
d(x, y) < 2r.

Hence for all ξ ∈ projpBr(x) we have

0 ≤ φ(ξ0)− φ(ξ) ≤ C

independent of p, x (as long as p, x are more than R0 apart). Therefore

1 ≥ e−hb(x,p,ξ)

e−hd(x,p)
≥ e−C

and thus
1

a
≤

µpprojpBr(x)

e−ht
≤ a.
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Figure 4.3. Construction of y.

So far we have assumed that d(x, p) > R0. However, since the ball
of radius R0 is compact, by increasing a we can ensure that the claim
is true also if d(x, p) ≤ R0, hence holds for all x, p. �

From this we immediately deduce the following, which is the same
formula but where the variables involved have a slightly different mean-
ing:

Corollary 4.7 (Projection of balls in distant leaves). Let r > ρ. Let L
be tall and bounded. Let p ∈ M̃ be arbitrary. Then there exists some
number b = b(p, L) such that for all t ≥ 0 and for all x ∈ πLt the
estimate

1

b
≤

µpprojpBr(x)

e−ht
≤ b

holds.

The same statement is true with Br(x) replaced by B0u
r (v) :

Theorem 4.8 (Projection of pieces of distant leaves). Let r > ρ. Let
L be tall and bounded. Let p ∈ M̃ be arbitrary. Then there exists some
number c = c(p, L) such that for all t ≥ 0 and for all v ∈ Lt :

(4.2)
1

c
≤

µpprojpπB0u
r (v)

e−ht
≤ c.

4.3. A multiplicative bound for the growth of Lebesgue mea-
sure. Our efforts are now rewarded by the following Theorem:

Theorem 4.9 (Tall sets grow exponenetially). If L ⊂ W 0u is bounded
and tall then there is a constant C = C(L) such that for all t ≥ 0 :

1

C
≤ λ0u(gtL)

eht
≤ C.

Proof. Write
lt := λ0u(Lt).
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Fix p ∈ M̃ and r > ρ. From Theorem 4.8 we see that each 0u-ball of
radius r casts a projection from p of µp-measure at most ce−ht. Thus it
takes at least 1

cC0
eht ·µpπL∞ such 0u-balls of radius r to cover πLt, with

c as in Theorem 4.8, even if their projections to L∞ do not overlap.
Hence we get the lower bound

lt = λ0u(gtL) ≥ C1e
ht

with

C1 :=
A

C0

·min
x∈M̃

λ0u(B0u
r (x))

where A is as in the proof of Proposition 4.4.
The minimum exists and is positive because the minimum over M̃

is the minimum over M, which is compact. Note that C1 depends only
on L and M, not on t.

Now take any maximal set Z of points in πLt which are at least
distance 2r apart from each other and at least at distance r from the
boundary of πLt. (It is easy to see that without the restriction of staying
away from the boundary, this set would contain at most C ′

0 times as
many points, where C ′

0 just depends on the manifold and is independent
of L and t.) This set contains at most ceht ·µpπL∞ such points since the
balls (B0u

r (xi))i∈Z are disjoint and project to disjoint subsets of πL∞,
each of which has µp-measure at least 1

c
e−ht. Thus it takes at most

ceht · µpπL∞ such 0u-balls of radius 2r to cover πLt. This gives the
upper bound

λ0u(gtL) ≤ C2e
ht

with

C2 := cC0µp(M̃(∞)) ·max
x∈M̃

λ0u(B0u
2r (x)).

The maximum exists and is finite because the maximum over M̃ is the
maximum over M, which is compact. The number C2 again depends
only on L and M, not on t. Hence taking C := max( 1

C1
, C2) we have

proved the claim:

(4.3)
1

C
≤ λ0u(gtL)

eht
≤ C.

�

Remark 4.10. The right hand inequality of 4.3 still holds if L is not
tall, even if L does not contain any regular vectors. Also, it is true
even if L is not open, since any set sits inside a bigger open set.

Remark 4.11. The left hand inequality of 4.3 is not necessarily true if
L does not contain a regular vector.
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5. Construction of conditionals of the measure of
maximal entropy

5.1. Integration and relative independence of the function.

Lemma 5.1. For any compact L which is contained in a W 0u-leaf and
which is the closure of a tall set and for any L′ ⊂ W 0u compact (not
necessarily containing regular vectors or the closure of an open set)
there exists a constant C(L, L′) such that for all t ≥ 0 :

l′t ≤ C(L, L′)lt

where l′t := λ0u(L′t).

Proof. Immediate from Theorem 4.9:

l′t ≤ C(1)(L′)eht, lt ≥
1

C(2)(L)
eht

where the right inequality is true since L is a tall set. If L′ is not a tall
set, then the left inequality is still true by Remark 4.10. �

Definition 5.2. Whenever a function f has support in a W 0u-leaf, we
simply write

∫
f for

∫
supp(f)

fdλ0u.

Corollary 5.3. For all nonnegative f1 ∈ C(W 0u) with support in a
compact set L which is the closure of a tall set and all L′ ⊂ W 0u there
is a constant C(L′, f1) such that for any bounded measurable function
f2 which is supported on L′ and for any t > 0 :∫

f2 ◦ g−t < C(L′, f1)||f2||∞
∫

f1 ◦ g−t.

Proof. Choose ε ∈ (0, max f1) such that A := {x : f1(x) > ε} still is a
tall set (in particular nonempty). Then

lt ≤ C(A, L) · λ0u(At)

by Corollary 5.1. Thus∫
f2 ◦ g−t ≤ ||f2||∞l′t

≤ C(L, L′)||f2||∞lt

≤ C(A, L)C(L, L′)||f2||∞λ0u(At)

≤ ε−1C(A, L)C(L, L′)||f2||∞
∫

f1 ◦ g−t.

Choosing C(L, f1) := ε−1C(A, L)C(L, L′) gives the result. �

In particular, this proof shows that for any tall set L and for any
nonzero bounded function f (not necessarily supported on a tall set)
the following holds:

(5.1) ||f ||−1
∞ ·

∫
f ◦ g−t ≤ λ0u(gtsupp(f)) ≤ C(L, supp(f)) · lt.
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5.2. Linear functionals on leaves. Next we can define objects F on
C(W 0u) which are linear functionals in the sense that they satisfy

F (a · f1 + b · f2) = a · F (f1) + b · F (f2)

whenever f1, f2 ∈ C(W 0u) and the sum f1 + f2 of those functions still
is supported on one single leaf:

Definition 5.4. Let t ≥ 0. Define

Ft(f) :=

∫
gtL

f ◦ g−tdλ0u

for a function f with support in L ⊂ W 0u. Then Ft is a linear functional,
depending on a parameter t.

Remark 5.5. Note that this functional is positive, i.e. Ft(f) ≥ 0
whenever f ≥ 0.

Remark 5.6. The set C∗ of all functionals on C(W 0u) naturally is
equipped with a topology by embedding it into a product of real lines.

Definition 5.7. Given t ≥ 0, define

F ′
t := e−htFt.

Moreover, given numbers ti ≥ 0, define

C∗
0 :=

{∑
i

ciF
′
ti

: 0 ≤ ci ≤ 1,
∑

ci = 1

}

=

{∑
i

cie
−htiFti : 0 ≤ ci ≤ 1,

∑
ci = 1

}
.

Finally, let

C# := C̄∗
0 .

(C# is the closure of C∗
0 .)

5.3. Note on Margulis’ construction. Unlike in the hyperbolic
case, we have to work without uniform transversality of the stable
and unstable foliations and without uniform exponential convergence
along stable manifolds. A very detailed description of the construction
in the particular case that zero curvature is absent (i.e. on compact
manifolds whose curvature is strictly negative) can be found in [KaHa].

Remark 5.8. We could have normalized, similar to the way Margulis
does, as follows: Let K ⊂ W 0u be a fixed set which is open in W 0u,
has compact closure and is a tall set. E.g. a sufficiently large W 0u-ball
will do. Let θ ∈ C(W 0u) be a fixed continuous and integrable function
with θ > 1 on K. Then instead of F ′

t use

F̂t(f) :=
Ft(f)

Ft(θ)
.
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Our formalism appears slightly simpler, although they are of course
similar. We are able to simplify the notation because we already know
that the measure we are about to construct has entropy h, hence is
the unique maximal measure, a fact not available to Margulis when he
pioneered his construction.

5.4. Uniform bounds for the functionals.

Proposition 5.9 (Uniform upper bound). For any f ∈ C(W 0u), there
exist C > 0 such that for all F ∈ C# the bound

|F (f)| ≤ C

holds.

Proof. Define

S := {F ′
t : t ∈ R, t ≥ 0}.

Then the convex hull of S equals C∗
0 and C# is the closure of that.

First of all, fix some tall set L. Then inequality 5.1 shows that

Ft(f)

||f ||∞
≤ C(L, K)λ0u(Lt)

where K is the support of f. By Theorem 4.9 and Remark 4.10, there
is a constant C1 such that

λ0u(Lt) ≤ C1e
ht.

Replacing Ft by F ′
t means introducing another factor e−ht and hence

the claim

|F (f)| ≤ C = C(f)

is true for all φ ∈ S.
Second, any φ ∈ C∗

0 can be written as φ =
∑

aiφi with φi ∈ S where
ai ∈ [0, 1] and

∑
ai = 1. Hence

|φ(f)| ≤
∑

ai|φi(f)| ≤ C(f).

So the claim is true for φ ∈ C∗
0 .

Finally, if φ ∈ C# then φ = limi φi with φi ∈ C∗
0 , thus

|φ(f)| = lim
i
|φi| ≤ C(f).

Therefore the claim is true for φ ∈ C# as well. �

Proposition 5.10 (Uniform lower bound). For any f ∈ C(W 0u), f ≥
0, such that for some ε > 0 the set {x : f(x) > ε} is a tall set, there
exist C > 0 such that for all F ∈ C# the bound

1/C ≤ |F (f)|

holds.
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Proof. Let A := {x : f(x) > ε} which we assume to be tall. Then we
proceed with a comparison similar to that in the proof of Lemma 5.3:

εC2e
ht ≤ ελ0u(Lt)

≤ C(L, A)

∫
At

f ◦ g−tdλ0u

≤ C(L, A)Ft(f).

Hence F ′
t(f) ≥ C2ε

−1C(L, A)−1 as claimed. Thus the claim is true for
S.

Again, any φ ∈ C∗
0 can be written as φ =

∑
aiφi with φi ∈ S where

ai ∈ [0, 1] and
∑

ai = 1, hence |φ(f)| = |
∑

aiφi(f)| ≥ C(f)−1 for
some C(f) and therefore the claim is true for φ ∈ C∗

0 as well.
And as in the previous proof, if φ ∈ C# then φ = limi φi with

φi ∈ C∗
0 , thus |φ(f)| = limi |φi| ≥ C(f)−1. Therefore the claim is true

for φ ∈ C# as well. �

5.5. The conditional measure as a fixed point.

Definition 5.11. Let (Gt)t∈R be the flow on C# defined by

GtF := F ◦ gt.

Let (Ĝt)t∈R be the flow on C# defined by

ĜtF := e−htF ◦ gt.

Proposition 5.12. There is a measure m′ which is a fixed point for
Ĝt.

Proof. For each t, the map gt is a smooth diffeomorphism. Hence Ĝt

is a continuous map from C# to itself. C# is a convex compact subset
of a locally convex topological vector space. Thus the Tychonoff fixed
point theorem [KaHa] applies and gives a fixed point for Ĝt. �

Note that for any t1, t2 ∈ R \ {0} the fixed point for Ĝt1 is the fixed

point for Ĝt2 . This is clear for t1/t2 ∈ N, hence for t1/t2 ∈ Q and thus
for all t1, t2 since gt → Id as t → 0.

Definition 5.13. Later we will denote m′ by m0u.

Remark 5.14 (Comment on Margulis’ method). Note that m0u (the
family of conditional measures on the weakly unstable leaves) is already
normalized due to the fact that m0u lies in C#.

5.6. Uniform expansion and contraction of the conditionals.
The preceding fixed point statement immediately shows the following:

Theorem 5.15 (Uniform expansion on weakly unstable leaves). The
measure m0u satisfies

m0u ◦ gt = eht ·m0u.
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This is what we actually need for the calculation of the asymptotics
of periodic orbits. Before we do so, we verify that these conditionals
are indeed those of the maximal measure.

6. Holonomy invariance of the measure on leaves

Definition 6.1. If the leaves L, L′ ⊂ W 0u are related by a holonomy
map H, i.e. L′ = H(L) and all connecting pieces of W s between v ∈ L
and H(v) ∈ L′ are of length at most γ then L and L′ are called γ-
holonomic. If f1, f2 ∈ C(W 0u) and the support of f2 is obtained from
the support of f1 via a holonomy H of length at most γ and f2 = f1◦H
then f1 and f2 are called γ-equivalent or also γ-holonomic.

Theorem 6.2. Let M be a manifold of nonpositive curvature with geo-
metric rank one. Then the measure m0u is locally holonomy invariant
inside regular neighborhoods.

In other words, if L, L′ ⊂ W 0u are tall and ε-equivalent for ε suffi-
ciently small then

m0u(L) = m0u(L′).

6.1. Strategy for showing holonomy invariance. The strategy is
as follows: To show that the Jacobian between two holonomic leaves
in W u is 1, we first show in Lemma 6.19 that it is between 1−ε and
1+ε whenever the leaves are δ-close and lie in the same chart. That by
itself would not necessarily be sufficient (e.g. this would also be true
for Lebesgue measure); we also show that the leaves which initially
are δ0-close (where δ0 is small but fixed) become δ-close for any δ > 0
as t → ∞. We show this in Lemma 6.20. Then the claim follows by
noting that the Jacobian converges to 1 uniformly and that any two
holonomic leaves can be broken into pieces of holonomic pairs which
lie within one chart. Note that δ0 is assumed sufficiently small for the
arguments to work. However, if we chose it small enough then we can
fix it and will then get δ → 0 as t →∞.

Remark 6.3. Unlike in the case of strictly negative curvature, we do
not have uniform transversality of the stable and unstable manifolds
at our disposal. In fact, as we have seen before, the angle between
these is zero on the singular set. This restricts our arguments to the
regular set. Therefore, when in our setup pieces of holonomic leaves
approach each other as t → ∞, it is not a priori clear that their sizes
also become very close. Instead, it is necessary to estimate of the size
of the “overhanging” part, i.e. the part where the two plaques do not
“overlap” in suitable coordinates. This estimate is also achieved in this
subsection.

6.2. Geometric properties of stable and unstable leaves. Recall
that π : SM̃ → M̃ is the canonical projection πv := x with v ∈ SxM̃.

We start with some elementary considerations:
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Lemma 6.4. πW u(p) ⊥ πgRp at p. Similarly, πW s(p) ⊥ πgRp at p.

Proof. Let b := b(πp, ., g∞p) be the Busemann function based at πp
and centered at g∞p. Then πW u(p) = b(πp, ., g∞p)−1(0) and p =
grad b(πp, ., g∞p)|πp. The gradient of a function is perpendicular to its
level sets. �

Corollary 6.5. πW u(p) is tangent to πW s(p) at p.

Proof.

TpπW u(p) =

(
d

dt
πgtp|t=0

)⊥

= TpπW s(p).

�

Definition 6.6. Let Js
v be the stable Jacobi field along the geodesic

c with c′(0) = v, defined by Js
v (0) and the condition that it is bounded

for t ≥ 0. Similarly, let Ju
v be the unstable Jacobi field along the

geodesic c with c′(0) = v, defined by its initial value at 0 and the
condition that it is bounded for t < 0.

Unless we specify otherwise, we assume that |J i
v(0)| = 1 (for i = s, u),

and we reserve the right not to explicitly assign a value to J i
v(0).

6.3. Contact structure of the geodesic flow. The following is well-
known (see [Pat]): The geodesic flow has a contact structure, i.e.
there exists a one-form α on SM , called the contact form, such that
α ∧ (dα)n−1 is a volume form. There exists a vector field V : SM 7→
TSM with α(V ) ≡ 1, dα(V, .) ≡ 0. We can express α as αv(ξ) =
〈v, dπξ〉 for v ∈ SM, ξ ∈ TvSM.

If we disregard the V -direction (i.e. restrict to ker(α) = TSM/RV ),
then dα =: ω is a nondegenerate closed 2-form. We would call it a
symplectic form if the s- and u-distributions were jointly integrable,
but of course they are not.

Note that the whole tangent bundle TM , which is even-dimensional,
does admit a symplectic form Ω. The restriction of Ω to the odd-
dimensional sphere bundle SM acquires a direction of degeneracy,
namely the flow direction V . In other words, Ω(V, X) = 0 for all
X ∈ TSM .

Analogously to the Sasaki metric, we can write an explicit formula
for the form:

ω(ξ, η) = 〈dπξ, Kη〉 − 〈Kξ, dπη〉.
(This is in fact exactly the expression for the almost complex struc-
ture with respect to the Sasaki metric, but we do not use this structure
in the sequel.)

Lemma 6.7. The spaces Eu := TvW
u and Es := TvW

s are Lagrangian
subspaces.
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Proof. We use the formula ω(ξ, η) = 〈dπξ, Kη〉 − 〈Kξ, dπη〉. Consider
ξ, η ∈ Eu

v . Find curves x, y representing them, i.e.

ξ =
d

dt

∣∣∣∣
t=0

x(t), η =
d

dt

∣∣∣∣
t=0

y(t), x(0) = v = y(0).

Then

(dπ, K)(ξ) =

(
d

dt

∣∣∣∣
t=0

πx(t),∇d
dt |t=0

πxx

)
and

(dπ, K)(η) =

(
d

dt

∣∣∣∣
t=0

πy(t),∇d
dt |t=0

πyy

)
.

Extend d
dt

∣∣
t=0

πx(t) to a vector field X in a neighborhood of x such

that X ∈ TπW u(v) on πW u(v) and similarly extend d
dt

∣∣
t=0

πy(t) to a
vector field Y. Note that curves in W u(v) consist of unit vectors and
therefore their derivative is perpendicular to them, i.e. tangential to
πW u(v). Thus in particular we have y ⊥ X at πy(t) and x ⊥ Y at
πx(t). Thus

0 =
d

dt

∣∣∣∣
t=0

〈Y, x〉

=
d

dt

∣∣∣∣
t=0

〈Y (x(t)), x(t)〉

= 〈∇XY, x〉+ 〈Y,∇d
dt |t=0

πxx〉

and

0 = 〈∇Y X, y〉+ 〈X,∇d
dt |t=0

πyy〉.

Hence

ω(ξ, η) =

〈
d

dt

∣∣∣∣
t=0

πx(t),∇d
dt |t=0

πyy

〉
−

〈
d

dt

∣∣∣∣
t=0

πy(t),∇d
dt |t=0

πxx

〉
= 〈X,∇ d

dt |t=0
πyy〉 − 〈Y,∇d

dt |t=0
πxx〉

= −〈∇Y X, v〉+ 〈∇XY, v〉
= 〈∇Y X −∇XY, v〉.

Note that since the Riemannian connection is torsion free,

ω(ξ, η) = 〈[X, Y ], v〉.
This term is zero since by Frobenius’ theorem, [X, Y ] ∈ TπW u and
v ⊥ TπW u. (A similar argument for general normal bundles can be
found in [Pat].)

Hence we have shown that Eu
v is an isotropic subspace. The exact

same argument with u replaced by s shows that Es
v is also isotropic. If
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v is regular, they are disjoint. Their dimension is equal. Hence they
are maximal isotropic subspaces, i.e. Lagrangian. �

6.4. Dynamical proprerties of Jacobi fields.

Proposition 6.8 (Stable Jacobi fields become short or parallel). Let
v be regular. Then Ju

v (t) (the unstable Jacobi field in the direction v)
is unbounded as t →∞.

t

y

Figure 6.1. The length of an unstable Jacobi field is convex.

Proof. Let
y(t) := |Js

v (t)|.
Let c = c(t, s) be a variation of geodesics in M̃ associated with the

geodesic cv, i.e. c(t, 0) = cv(t) and ∂
∂s

c(t, s) = Js
v (t) and such that

c(s, .) = (t 7→ c(s, t)) is a geodesic for all s close to 0. Then y(t) =
| ∂
∂s

c(t, s)| = limε→0
1
ε
d(c(t, s), c(t, s + ε)). This expression is a convex

function of t since distance along geodesics is convex, i.e. the function
t 7→ d(c1(t), c2(t)) is convex and in particular t 7→ d(c(s, t), c(s, t + ε))
is convex.

Hence y is convex (and in particular never zero since it corresponds
to the stable Jacobi field). Since y is bounded for t < 0, y is either
constant or unbounded for t > 0. Since v is regular, Js

v cannot be
parallel and perpendicular, hence y cannot be constant. Hence y is
unbounded. �

We will write ηt for dgtη and similarly ξt.

Theorem 6.9. Let v be regular. Then

Js
v (t) → 0 or ∠(ηt, TW u(gtv)) → 0 as t →∞

where Js
v = Jη is the stable Jacobi field along cv with dπη = Jη(0), Kη =

J ′η(0).

Proof. The symplectic form ω on SM is invariant. Note that since ω
is a 2-form, it satisfies

ω(ξ, η) = |ξ| · |η| · ∠(ξ, η) · φ(σ(ξ, η))

where σ(ξ, η) is the 2-plane spanned by (ξ, η) and φ is a (continuous)
function on the Grassmannian 2-plane-bundle with |φ| ≤ C where C
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L

L’

v

i

Hv

Figure 6.2. First possibility: Js
v is short.

L

L’

v

Hvi

Figure 6.3. Second possibility: Js
v has small angle with

the tangent of L.

depends only on M . Note that for the minimal choice of C (i.e. C :=
max|ξ|=|η|=1 ω(ξ, η)), by Darboux’ Theorem for any η there exists ξ such
that φ(σ(ξ, η)) ≥ C/(n−1) because we can find symplectic coordinates
P1, . . . , Pn−1, Q1, . . . , Qn−1 such that P1 := η and then choose ξ := Q1.
Since Es := TW s(v) and Eu := TW u(v) are Lagrangian subspaces, ξ
has nonzero projection to Eu since it obviously cannot lie entirely in
Es. Hence we may assume ξ to lie in Eu.

Now fix some η ∈ Es. In the sequel, ξ will be an arbitrary element
of Eu. Note that by invariance of ω either φ(σ(ξ, η)) is zero or for all t
the term φ(σ(ξt, ηt)) is nonzero. Note that due to the previous Lemma
(Lemma 6.8), |ξt| → ∞ as t → ∞ for all ξ ∈ Eu. This convergence is
uniform on the compact set S := {ξ ∈ Eu : |ξ| = 1}. We see that

|ηt| · ∠(ηt, ξt) · φ(ηt, ξt) =
ω(ηt, ξt)

ξt

= const · |ξt|−1.

Therefore for γ > 0 there is T > 0 such that for all t > T and for all
ξ ∈ S we have |ηt|·∠(ξt, ηt)·maxξ φ(σ(ξt, ηt)) < γ. Hence |η|·∠(Eu, η) <
γn/C. Thus the product |ηt| · ∠(ηt, TW u(gtv)) converges to zero. �

Remark 6.10. For ξ ∈ W u and η ∈ W s note that ∠(ξ, η) is independent
of whether we measure the angle in ker α or in SM.

Remark 6.11. In the special case of a surface, i.e. dim(M) = 2, it
is actually possible to show that of the two possibilities “Js

v (t) → 0”
or “∠(ηt, TW u(gtv)) → 0” mentioned in the previous Proposition, the
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former one always applies, i.e.,

Js
v (t) → 0 as t →∞.

However, we do not need this fact in what follows.

6.5. Geometric comparisons.

Proposition 6.12. Let F,F∗ be foliations of M with C2-leaves satis-
fying |c′′| < a for any L -geodesic and any L∗ -geodesic c parameterized
by arc length for any leaf L of F and for any leaf L∗ of F∗. Let c∗ be a
geodesic in F∗ with (c∗)′(0) = v ∈ SM. Then

d(c∗(ε), BF
2ε(πv)) < 4(aε2 + ε∠πv(F, F ∗).

Proof. First note that if N is a C2-submanifold of M and N satisfies
|c′′| < a for any N -geodesic c parameterized by arc length (the second
derivative is taken in M), then for any v ∈ SN :

d(exp(εv), N) < 2aε2.

This is true because of the tangency.
Next observe that if M, N are as before and if ∠(v, N) < γ then

d(exp(εv), N) < 2(aε2 + εγ).

This follows from adding the previous estimate and a linear term, which
of course has slope γ.

Now let F be a foliation of M with C2-leaves satisfying |c′′| < a for
any F -geodesic c parameterized by arc length. Then

d(exp(εv), BF
2ε(πv)) < 2(aε2 + ε∠(v,F)).

This is true because is the previous statement with the leaf through v
being the submanifold N.

Now the claim of the Proposition is evident from applying the previ-
ous estimate to both foliations and comparing with the corresponding
geodesic in M. �

Now we show that we can apply Proposition 6.12 to any piece L with
the some uniform constant a:

Proposition 6.13 (Bending of (un)stable leaves is bounded). Let M
be nonpositively curved and compact. Then there exists a > 0 such that
|c′′| < a for any geodesic parameterized by arclength in πL for L ⊂
W s or L ⊂ W u.

Proof. By compactness, the curvature is bounded below. Note that
for the stable Jacobi field Js

v along gtv with initial length 1, the initial
derivative |(Js

v )
′(0)| is determined up to an error of order 1/R by the

sectional curvature K along gtv for t ∈ [0, 2R]. Since K is smooth on M,
the sectional curvature K along gtv for t ∈ [0, 2R] depends smoothly on
v (and of course on t). Hence |(Js

v )
′(0)| is continuous in v up to an error
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1/R. Since R can be chosen arbitrarily large, |(Js
v )
′(0)| is continuous in

v. Since SM is compact, this continuity is uniform.
The second derivative |c′′| of the horosphere is given (up to a constant

ci depending on the chart) by |(Js
v )
′(0)| where c parameterizes πW s

δ (v).
Since it is continuous, by compactness and since it suffices to consider
finitely many charts, |c′′| is globally bounded above.

This proves the claim for W s. Exchanging Js
v with Ju

v (the unstable
Jacobi field) gives the claim for W u. �

Definition 6.14. For a smooth curve c on M̃ from p to q let

Parc : TpM̃ → TqM̃

denote the parallel transport along c. We define a distance function d
on SM̃ as follows: For v, w ∈ SM̃ (not necessarily in the tangent space
of the same point) let

d(v, w) := d(πv, πw) + |w − Parcπv,πwv|,

where cπv,πw is the geodesic from πv to πw. Note that cπv,πw is unique

in M̃.

Lemma 6.15. The following are equivalent:

(1) d(gtv, gtw) → 0 as t →∞,
(2) d(πgtv, πgtw) → 0 as t →∞.

Proof. Since d(v, w) ≥ d(πv, πw), the implication from (1) to (2) is
trivial. For the converse, note that d is convex. This means that for
v, w fixed, the function φ : t 7→ d(πgtv, πgtw) is convex. Hence the
function φ is either monotonous or it satisfies φ(t) → ∞ for t → −∞
as well as φ(t) → ∞ for t → ∞. In particular, if d(πgtv, πgtw) → 0
and |gtw − Parcπgtv,πgtw

gtv| 6→ 0, then v, w are not asymptotic, which

contradicts d(πgtv, πgtw) → 0. �

Definition 6.16. Define the distance between two vector spaces
V, V ′ ⊂ TpM as

dH(V, V ′) := dH(V ∩ SpM, V ′ ∩ SpM)

where dH denotes the Hausdorff distance of compact sets.

Lemma 6.17. Let v ∈ Reg, w ∈ Reg ∩ W s(v), d(v, w) < δ/2. Let
L := W u

δ (v), L′ := W u
δ (w). Then

d(gtv, L′t) → 0

and

d(gtw,Lt) → 0

as t →∞.
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Proof. The claim is evidently true if d(gtv, gtw) converges to zero.
Now assume that d(gtv, gtw) does not converge to zero. Then Theo-

rem 6.9 shows that if δ is suitably small (but fixed) and if t is sufficiently
large then the angle between η ∈ TW s(v) and TW u(v) becomes smaller
than any γ > 0. Hence by Proposition 6.12 the distance under consid-
eration becomes smaller than e.g. const · δ2 (in particular smaller than
δ/2). Reapplying the argument to gtv and L′t shows that the distance
becomes arbitrarily small as t →∞. �

6.6. Dynamical properties of stable and unstable leaves.

Definition 6.18. Let L, L′ ⊂ W 0u be bounded, tall, δ-holonomic
pieces of leaves. We can assume that there exist a tubular neighborhood
of L in SM which contains B0u

δ L and B0u
δ L′. Since we are interested in

the case where L and L′ are close and holomic, we can assume without
loss of generality that for each v ∈ L, the shortest geodesic segment
from v to v′ ∈ L′ is contained in the tubular neighborhood. Define the
Riemannian projection P : L → B0u

δ L′ to be the vector Pv := w
so that d(w, v) is minimal with respect to the Sasaki distance on SM .
Let JacP be the Jacobian of the Riemannian projection P , given by

(JacP)(v) := lim
δ1→0

λ0u(P(L ∩Bδ1(v)))

λ0u(L ∩Bδ1(v))
.

Let Pt be the Riemannian projection from Lt to Bu
δ L′t. Let Jac Pt be

the Jacobian of Pt.
Similarly, let P ′

t be the Riemannian projection from L′t to Bu
δ Lt and

let Jac P ′
t be the Jacobian of P ′

t.

Now we are going to show that this projection is arbitrarily close to
preserving Liouville measure if the leaves sufficiently close:

Lemma 6.19. For all ε > 0 there exists δ > 0 such that whenever
L, L′ ⊂ W u are such that they are tall, bounded, holonomic, δ-close
and such that their tangents are δ-close with respect to d, then

| Jac P − 1| < ε.

Proof. Let N be the perpendicular distribution to the distribution
TW 0u. This distribution is uniformly continuous since TW 0u is.

Let γ be any N -geodesic of length s from L to L′ (hence γ′(0) ∈ L⊥,
γ′(s) ∈ (L′)⊥).

Let c be a geodesic in SM with c′(0) = γ′(0). Then c crosses L′ at
some parameter value σ with |σ−s| < σ2 and |∠(c′(σ), L′)−π/2| < σ2

by uniform continuity of the two distributions. Hence d(c(σ),Pc(0)) <
σ2 whenever the distance δ between L and L′ was small enough. Thus
for r sufficiently small, λ0uPBr/λ

0uBr is arbitrarily close to 1. �

From this we deduce that if we start with holonomic leaves at a fixed
distance and wait sufficiently large, Pt will again be arbitrarily close to
preserving Liouville measure:



22 ROLAND GUNESCH

Corollary 6.20. Let L, L′ ⊂ W u be such that they are tall with compact
closure, holonomic, δ0-close and such that their tangents are δ0-close
w.r.t. d. For all ε > 0 there exists T > 0 such that whenever t > T
then

| Jac Pt − 1| < ε.

Proof. Simply observe that by Lemma 6.17, for any v ∈ L̄, after flowing
for sufficiently large time t, vt is δ-close to L′t for δ arbitrarily small.
Observe that by compactness of L̄, this can be guaranteed uniformly
for all v in L. Hence for all δ > 0 there exists T > 0 such that t > T
implies that for all v ∈ L the estimate d(vt, L

′
t) < δ holds. In particular,

Lt and L′t are δ-holonomic. Increasing T further we can assure that
also the tangents of Lt and L′t are δ-close. Hence Lt and L′t satisfy
the assumptions of Lemma 6.19, which shows that the Riemannian
Jacobian after flowing time t is smaller than ε. �

We have already seen that the leaves L, L′ get arbitrarily close every-
where except possibly on the δ-neighborhood of their boundaries. Next
we will show that this neighborhood does not contribute a substantial
part.

Lemma 6.21 (No boundary effects). Let L, L′ be bounded, tall and
δ0-holonomic. Define

O(t) := Lt \ P ′
t(L

′
t), O′(t) := L′t \ Pt(Lt).

Then
λ0uO(t)

λ0uLt

→ 0,
λ0uO(t)

λ0uLt

→ 0

as t →∞.

Proof. First note that it suffices to show the claim for strictly stable
holonomic leaves L, L′ ⊂ W u. It suffices to consider the case that
L = Bu

γ (v) for some arbitrarily small γ. It is obvious that for each
ε2, ε3 > 0 the variable γ can be chosen such that the stable measure of
the annulus

A := B̄u
γ+ε2

(v) \Bu
γ−ε2

(v)

satisfies mu(A)/mu(Bu
γ ) < ε3; this is because the ball Bu

γ+ε2
(v) of fi-

nite measure can be cut into arbitrarily many nested annuli, so some
of the annuli must have small measure. Note that the convexity of
the distance along geodesics implies that if w 6= w′ are in A then
d(wt, w

′
t) → ∞, and in particular this distance d(wt, w

′
t) will become

larger than δ0 (hence larger than the distance between L and L′). Since
the set

K := {(w,w′) : w,w′ ∈ B0u
2γ (v), d(v, w) = γ+ε2/2, d(v, w′) = γ−ε2/2}

is compact and disjoint from the diagonal, we deduce that d(wt, w
′
t) →

∞ uniformly for (w,w′) ∈ K. Thus we can choose T such that for all
t > T and all (w,w′) ∈ K the lower bound d(wt, w

′
t) > δ0 holds.
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On the other hand, since distances along weakly stable fibers are
nonincreasing, the distance d(vt, v

′
t) is bounded by δ0 for all positive

time t. We have shown before that for t sufficiently large, the graphs
are arbitrarily close. Thus the “overhang” O(t) is contained in a δ0-
neighborhood of ∂Lt. Hence for t large enough, O(t) is contained in
At, since At expands without bounds. Therefore the uniform expansion
property implies that

lim
t→∞

mu(O(t))

mu(Bu
γ (v))

≤ lim
t→∞

mu(At)

mu(gtBu
γ (v))

=
mu(A)

mu(Bu
γ (v))

< ε3.

Since ε3 is arbitrary, this shows that

lim
t→∞

mu(O(t))/mu(Bu
γ (v)) = 0

as claimed. Analogously we see for L′ = Bu
γ (v) that

lim
t→∞

mu(O′(t))/mu(Bu
γ (v′)) = 0.

�

Now we have all the components to formulate the immediate precur-
sor to holonomy invariance:

Theorem 6.22 (Asymptotic equality of Liouville measure for holo-
nomic pieces). Let L, L′ be bounded, tall and holonomic. Then

lim
t→∞

lt
l′t

= 1.

Proof. Corollary 6.20 shows that this is true for large t up to an er-
ror term at the boundary. Lemma 6.21 shows that this error term is
asymptotically zero. �

Lemma 6.23. Let L, L′ be tall, holonomic and bounded. Then

m0u(L)

m0u(L′)
= lim

t→∞

λ0u(Lt)

λ0u(L′t)
.

Proof. The characteristic function on L, L′ can be approximated by
continuous functions. Thus we can write

FtχL

FtχL′
=

∫
χLdλ0u∫
χL′dλ0u

=
lt
l′t
→ 1

as t →∞. Hence clearly also

F ′
tχL

F ′
tχL′

=
e−htFtχL

e−htFtχL′
→ 1

as t →∞. Thus the term ∑
i ciF

′
ti
χL∑

i ciF ′
tiχ

′
L

is arbitrarily close to 1 if ti > T0 for all i and T0 is sufficiently large.
Now let F j be a sequence converging to m0u with each F j of the form
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i ciF

′
ti
. Then we can assume that ti > T0 for all i and for sufficiently

large j, where T0 is sufficiently large. Hence F jχL

F jχL′
is arbitrarily close

to 1 for j large. �

Now we can finish the proof of Theorem 6.2 (holonomy invariance of
m0u):

End of the proof of holonomy invariance. The previous statement
(Theorem 6.22) shows that the quotient of Liouville measures,
λ0u(L)/λ0u(L′), converges to 1. Lemma 6.23 shows that this quotient
converges to

m0u(L)/m0u(L′).

Hence m0u(L)/m0u(L′) = 1. �

7. Assembling the measure of maximal entropy from
measures on leaves

Now we are able to show the following:

Theorem 7.1. There exists a measure m0u on tall sets with compact
closure in W 0u, which extends to a measure m0u on Reg satisfying:

• m0u(gt(U)) = ehtm0u(U),
• 0 < m0u(U) < ∞ for any U ⊂ W 0u tall (and in particular

nonempty),
• γ-equivalent tall sets U1, U2 in W 0u have the same m0u-measure.

Proof. Define

T (p) := {tall sets with compact closure in W 0u(p)},

T :=
⋃

p∈M

T (p).

Let

CU(T ) := {f ∈ C(W 0u) : supp(f) ⊂ Ū}
for U ∈ T.

We have seen that m′ (hereafter called m0u) is a positive linear func-
tional on CU(W 0u). A suitable version of the Hahn-Banach Theorem
shows that m′ extends to C(Ū). This extension is still positive, thus an
appropriate version of the Riesz Representation Theorem [Fol] shows
that there is a measure mU on Ū such that m′(f) =

∫
fdmU for all

f ∈ CU(W 0u). �

Remark 7.2. Nonpositivity of the curvature suffices to see that there
exist t0 = t0(M) > 0, r0 = r0(M) > 0 such that for all U ∈ W u with
diameter at most r0 and for all 0 ≤ t < t′ ≤ t0 the iterates gtU and
gt′U are disjoint. Hence we can define:
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Definition 7.3.
mu(U) := m0u(LU)

where
LU := g[0,t0]U.

Remark 7.4. This gives a measure on W u. This definition is valid
whether U is regular or not, although we will be interested in mu (and
ms, see below) on the regular set.

Proposition 7.5 (Uniform expansion on W u).

mu ◦ gt = eht ·mu.

Proof. Immediate from the analogous property of m0u :

(mu ◦ gt)(U) = m0u(gtLU)

= ehtm0u(LU)

= ehtmu(U).

�

Remark 7.6. If we apply time reversal (i.e. considering the flow ḡ with
ḡt := g−t), then W u of ḡ is W s of g and analog for W 0u etc. Thus the
preceding construction gives another measure ms (and a measure m0s)
with the same properties as time is reversed. In particular:

Proposition 7.7 (Uniform contraction on W s).

ms ◦ gt = e−ht ·ms.

Lemma 7.8. For all ε > 0 there is γ > 0 such that for γ-equivalent
sets A1, A2 we have ∣∣∣∣ms(A1)

ms(A2)
− 1

∣∣∣∣ < ε.

Thus for all γ > 0 there is C such that for γ-equivalent sets A1, A2

we have
1/C < ms(A1)/m

s(A2) < C.

The same statement is true with ms replaced by mu.

Proof. As in [KaHa], we consider g[0,t0]A1 and g[0,t0]A2 and use ho-
lonomy invariance for those, after cutting off the non-overlapping
part. �

We are now able to define a product measure on the regular set as
follows. The regular set is open. As we have shown in Lemma 2.1, a
local product structure exists in the neighborhood of any regular point.
Thus if v is regular, there is a regular neighborhood U of v of the form
U = U s × U0u.

Definition 7.9. Let O ⊂ U be regular and open. Define a function
αO by

αO(q) := ms(({q} × U s(p)) ∩O).
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This function can easily be verified to be semicontinuous and thus
integrable on U . Therefore we can define:

Definition 7.10.
mq(L) := m0u(L× {q}),

m(O) :=

∫
αOdmq.

This gives a well-defined measure on the regular set, since holonomy
invariance shows that mq does in fact not depend on q.

In the sequel we consider m to be normalized to 1.

Lemma 7.11. The measure m has maximal entropy, i.e.

h(m) = htop.

Proof. This follows immediately from the property

m0u(gt(B)) = eht ·m0u(B).

�

Theorem 7.12. The measure m which we have constructed equals the
Knieper measure whenever M is compact, nonpositively curved and of
rank one.

Proof. Since the measure of maximal entropy is unique [Kni1] and both
our measure and the Knieper measure have maximal entropy, these
measures are the same. �

Remark 7.13. The uniqueness of the maximal measure shows that m
has a unique extension to the entire SM given by m(U) := 0 for all
U ⊂ Sing.

This completes the construction.
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