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1 Introduction

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain with a smooth boundary ∂Ω. In this note, we

are interested in the following control problem:

minw∈U J(w) = 1
2

∫

Ω |G(Bw) − y0|2 + α
2 ‖w‖2

U

subject to G(Bw) ≤ y a.e. in Ω.
(1.1)

Here and throughout, ”a.e.” stands for ”almost everywhere”. We suppose that α > 0, y0 ∈
H1(Ω) and y ∈ W 2,∞(Ω) are given. Further (U, (·, ·)U ) denotes a Hilbert space which we
identify with its dual, and B : U → (H1(Ω))′ a linear, continuous operator. For given f ∈
(H1(Ω))′ the function G(f) denotes the unique weak solution y ∈ H1(Ω) to the elliptic
boundary value problem

Ay = f in Ω,
∑d

i,j=1 aijyxi
νj = 0 on ∂Ω.

(1.2)

Here, ν is the outward unit normal to ∂Ω, and

Ay := −
d∑

i,j=1

∂xj

(
aijyxi

)
+

d∑

i=1

biyxi
+ cy,
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where subsequently we assume that, for simplicity, the coefficients aij , bi and c are smooth
functions in Ω̄, and that there exists c0 > 0 such that

d∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|2 for all ξ ∈ R
d and all x ∈ Ω.

We associate with A the bilinear form

a(y, z) :=

∫

Ω

(
d∑

i,j=1

aij(x)yxi
zxj

+

d∑

i=1

bi(x)yxi
z + c(x)yz

)
dx, y, z ∈ H1(Ω).

Furthermore we suppose that a is coercive on H1(Ω), i.e., there exists c1 > 0 such that

a(v, v) ≥ c1‖v‖2
H1 for all v ∈ H1(Ω). (1.3)

Furthermore, if f ∈ L2(Ω), then the solution y belongs to H2(Ω) and satisfies

‖y‖H2 ≤ C‖f‖,

where have used ‖ · ‖ to denote the L2(Ω)-norm.
We note that the formal adjoint operator of A is given by

A∗y = −
d∑

i=1

∂xi

(
d∑

j=1

aijyxj
+ biy

)
+ cy.

It is not hard to prove that problem (1.1) admits a unique solution u ∈ U . Moreover, from
[5, Theorem 2] we deduce that there exist functions λ ∈ M(Ω̄) and p ∈ L2(Ω) satisfying,
together with y = G(Bu), the dual system

∫

Ω
pAv =

∫

Ω
(y − y0)v +

∫

Ω̄
vdλ ∀v ∈ H2(Ω) with

d∑

i,j=1

aijvxi
νj = 0 on ∂Ω, (1.4)

B∗p + αu = 0 in U, (1.5)

λ ≥ 0, y ≤ y a.e. in Ω and

∫

Ω̄
(y − y)dλ = 0. (1.6)

Here, M(Ω̄) denotes the space of Radon measures, which is defined as the dual space of
C0(Ω̄). It is endowed with the norm

‖λ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄
fdλ.

Now suppose

Assumption 1.1.
For u ∈ U there holds G(Bu) ∈ C0(Ω̄).

Example 1.2. There are several examples for the choice of B and U , for which Assump-
tion 1.1 holds.

(i) Distributed control: U = L2(Ω), B = Id : L2(Ω) → H1(Ω)′.

(ii) Boundary control: U = L2(Ω), Bu(·) =
∫

uγ0(·) dx : L2(Ω) → H1(Ω)′, where γ0 is the
trace operator in H1(Ω). In this case Assumption 1.1 holds in the case d = 2.
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(iii) Linear combinations of input fields: U = R
n, Bu =

∑n
i=1 uifi, fi ∈ H−s(Ω), s <

(d − 1)/d.

Supposing a Slater condition of the type

Assumption 1.3.
There exist û ∈ U, τ > 0 : G(Bû) ≤ −τ,

a finite element analysis of problem (1.1) was carried out in [7] (compare also [6]) for ImB ⊆
L2(Ω), yielding the following error bounds:

‖u − uh‖U , ‖y − yh‖H1 =







O(h
1

2 ), if d = 2,

O(h
1

4 ), if d = 3,
(1.7)

where uh and yh are the discrete optimal control and state, respectively. If, in addition,
Bu ∈ W 1,s(Ω) then

‖u − uh‖U , ‖y − yh‖H1 ≤ Ch
3

2
− d

2s

√

| log h|.
In the present paper, our aim is to investigate a finite element approximation of an interior
point technique for the numerical solution of (1.1) and to provide optimal adjustment strate-
gies for the relaxation parameter with respect to the finite element mesh size. From here
onwards and without loss of generality it is convenient to set y ≡ 0.
The regularized version of (1.1) considered in this paper reads

min
w∈U

J(w)=
1

2

∫

Ω
|G(Bw) − y0|2 +

α

2
‖w‖2

U − µ

∫

Ω
log (−y)dx, (1.8)

where µ > 0 denotes the relaxation parameter. In order to make the functional well defined
for all w ∈ U , we set J(w) = +∞, if y > 0 on an non-zero set.
The rest of the paper is organized as follows: In Section 2 we collect basic results on (1.8).
In Section 3 we present the finite element analysis of problem (1.8). Among other aspects we
prove the error bounds

‖yµ − yµ
h‖1 + ‖uµ − uµ

h‖U ≤ Ch1− d
4 (≤ Ch2− d

2
−ǫ for Bu ∈ W 1,s(Ω)),

where yµ
h , uµ

h denote the finite element approximations to yµ and uµ, respectively. We note
that the latter estimate is in the spirit of (1.7). In Section 4 we discuss the overall errors

‖y − yµ
h‖1 ∼ ‖y − yµ‖1 + ‖yµ − yµ

h‖1 and ‖u − uµ
h‖U ∼ ‖u − uµ‖U + ‖uµ − uµ

h‖U

and propose a-priori strategies for balancing µ and h.
In Section 5 we present numerical results which confirm our theoretical findings.
Let us comment on further approaches that tackle optimization problems for pdes with con-
trol and state constraints. In [14] Meyer considers a fully discrete strategy to approximate an
elliptic control problem with pointwise state and control constraints. He obtains the approx-
imation order O(h2−d/2−ǫ) for the state in H1 and for the control in L2, where d denotes the
spatial dimension and ǫ > 0 can be chosen arbitrarily. His results confirm those obtained by
Deckelnick and the first author in [6] for the purely state constrained case. A Lavrentiev-type
regularization of problem (1.1) is investigated in [16]. In this approach the state constraint
y ≤ b in (1.1) is replaced by the mixed constraint ǫu + y ≤ b, with ǫ > 0 denoting a reg-
ularization parameter. It turns out that the associated Lagrange multiplier µǫ belongs to
L2(Ω). Numerical analysis for this approach with emphasis on the coupling of gridsize and
regularization parameter ǫ is presented by the first author and Meyer in [13]. The resulting
optimization problems are solved either by interior-point methods or primal-dual active set
strategies, compare [15]. The development of numerical approaches to tackle (1.1) is ongoing.
An excellent overview is given by Hintermüller and Kunisch in in [9, 10]. An introductory
text is provided by Tröltzsch with [24].
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2 The regularized problem

Problems of the type (1.8) have been analyzed in [21] for the case B = Id. However, by
straightforward modifications this analysis can be extended to the more general case consid-
ered here, provided Assumption 1.1 holds.
First, for each µ ≥ 0 problem (1.8) admits a unique solution uµ ∈ U with associated state
yµ = G(Buµ). Furthermore there exists a function pµ ∈ W 1,s(Ω) and a regular Borel measure
λµ ∈ M(Ω) which satisfy the adjoint system

a(v, pµ) =

∫

Ω
(yµ − y0)v +

∫

Ω
vdλµ ∀v ∈ H2(Ω) with

d∑

i,j=1

aijvxi
νj = 0 on ∂Ω, (2.9)

B∗pµ + αuµ = 0 in U. (2.10)

Moreover, yµ is strictly feasible a.e. in Ω, the measure λµ ∈ M(Ω) is non-negative, and splits
into two parts: ∫

Ω̄
vdλµ = −

∫

Ω

µ

yµ
v +

∫

yµ=0
v dλ. (2.11)

The measure λ is non-negative and vanishes, if yµ is strictly feasible. In this case λµ and pµ

are uniquely defined. As a consequence the following complementarity condition
∫

Ω̄
yµ dλ = 0 (2.12)

holds. Furthermore, from [21, Proposition 4.5] we deduce

‖λµ‖M(Ω̄), ‖ µ

yµ
‖L1(Ω), ‖λ‖M(Ω̄), and ‖pµ‖W 1,s(Ω) ≤ C (2.13)

with some positive constant C that is independent of µ.

Remark 2.1. The potential occurrence of λ in (2.11) motivates to consider rational barrier
functionals

∫

Ω b(y;µ) of the form

b(y;µ) =
µq

(q − 1)yq−1
.

Their (formal) gradients read

b′(y, µ) = −µq

yq
.

In [21] it is shown that for sufficiently high order q, the non-regular part λ vanishes for all
µ > 0. The analysis of this paper also applies to this class of functionals. An appropriate
order q depends on the dimension of the problem and on the regularity of yµ, and can be
chosen a-priori for certain classes of problems.

The convergence analysis of the regularization path is also covered by the results of [21]. In
Lemma 5.1 and Theorem 5.3 there it is proven that

J(uµ) − J(u) ≤ Cµ

and
‖uµ − u‖ ≤ C

√
µ

hold.
From

c1‖y − yµ‖2
H1 ≤ a(y − yµ, y − yµ) = 〈B(u − uµ), y − yµ〉 ≤ C‖u − uµ‖U‖yµ − y‖H1

we immediately infer
‖yµ − y‖H1 + ‖uµ − u‖U ≤ C‖uµ − u‖U . (2.14)
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3 Finite element discretization and error analysis for (1.8)

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th
diam(T ) and vertices

x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th so that element edges lying
on the boundary are curved. In addition, we assume that the triangulation is quasi-uniform
in the sense that there exists a constant κ > 0 (independent of h) such that each T ∈ Th is
contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define the space
of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}

with the appropriate modification for boundary elements.
In what follows it is convenient to introduce a discrete approximation of the operator G. In
fact, for a given function v ∈ H1(Ω)′ we denote by zh = Gh(v) ∈ Xh the solution of the
discrete Neumann problem

a(zh, vh) = 〈v, vh〉 for all vh ∈ Xh.

It is well-known [22] that for all v ∈ L2(Ω)

‖G(v) − Gh(v)‖ ≤ Ch2‖v‖, (3.15)

‖G(v) − Gh(v)‖L∞ ≤ Ch2− d
2 ‖v‖. (3.16)

The estimate (3.16) can be improved provided one strengthens the assumption on v, compare
[7, Lemma 2.1]. To simplify the exposition we from here onwards assume ImB ⊆ L2(Ω).

3.1 Estimate for ‖yµ − y
µ
h‖H1

+ ‖uµ − u
µ
h‖U

Problem (1.8) is now approximated by the following sequence of control problems depending
on the mesh parameter h:

min
u∈U

Jh(u) :=
1

2

∫

Ω
|Gh(Bu) − y0|2 +

α

2
‖u‖2

U − µ

∫

Ω
log (−Gh(Bu)). (3.17)

Problem (3.17) represents a convex infinite-dimensional optimization problem of a similar
structure as problem (1.8). It admits a unique solution uµ

h ∈ U with corresponding state
yµ

h ∈ Xh. Furthermore, in accordance with problem (1.8), there exist a unique function
pµ

h ∈ Xh and a regular, non–negative Borel measure λµ
h satisfying

a(vh, pµ
h) =

∫

Ω
(yµ

h − y0)vh +

∫

Ω̄

vhdλµ
h for all vh ∈ Xh, and (3.18)

αuµ
h + B∗pµ

h = 0 in U. (3.19)

The function yµ
h is strictly feasible a.e. in Ω. The measure can be represented in the form

∫

Ω̄

fdλµ
h = −

∫

Ω

µ

yµ
h

fdx +
m∑

i=1

µiδxi
f for all f ∈ C0(Ω̄), (3.20)

where µ1, . . . , µm ≥ 0 and δxi
denotes the Dirac measure concentrated at the finite element

node xi (i = 1, . . . ,m). Furthermore, the measure vanishes if yµ
h is strictly feasible. As a

consequence we also have strict complementarity

∫

Ω̄
yµ

h d(

m∑

i=1

µiδxi
) = 0. (3.21)
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We note that the control is not discretized in (3.17), compare [6, 7, 12, 20] for a more detailed
discussion of this discretization approach.
Next we prove an error estimate in h which is independent of µ. For this purpose we first

prove an uniform bounds w.r.t. µ for ‖ µ
yµ

h

‖L1(Ω), ‖λµ
h‖M(Ω̄), and

m∑

i=1
µi.

Lemma 3.1. Let Assumption 1.3 be satisfied, let uµ
h denote the unique solutions to (3.17),

and let yµ
h denote the corresponding state. Then

‖λµ
h‖M(Ω̄), ‖ µ

yµ
h

‖L1(Ω) and

m∑

i=1

µi ≤ C (3.22)

with some positive constant C independent of µ and of h.

Proof. Using (3.16) we obtain for some small enough 0 < h0

Gh(Bû) ≤ −τ

2
for all 0 < h ≤ h0. (3.23)

Therefore,

τ

2

∫

Ω̄

dλµ
h ≤

∫

Ω̄

−Gh(Bû)dλµ
h =

=

∫

Ω

(yµ
h − y0)Gh(Bû) − a(Gh(Bû), pµ

h) =

∫

Ω

(yµ
h − y0)Gh(Bû) −

∫

Ω

Bûpµ
h =

=

∫

Ω

(yµ
h − y0)Gh(Bû) + α(û, uµ

h) ≤ C.

Since

sup
‖f‖∞≤1

∫

Ω̄

fdλµ
h = −

∫

Ω

µ

yµ
h

fdx +
m∑

i=1

µiδxi
f ≤ ‖ µ

yµ
h

‖L1(Ω) +
m∑

i=1

µi =

∫

Ω̄

dλµ
h ≤ 2C

τ
,

the claim follows for ‖λµ
h‖M(Ω̄). Since

m∑

i=1
µi ≥ 0 the last estimate also gives the claim for

‖ µ
yµ

h

‖L1(Ω) and
m∑

i=1
µi.

We are now prepared to prove

Theorem 3.2. Let uµ denote the solution of (1.8) with yµ = G(Buµ), and uµ
h the solution to

(3.17) with yµ
h = Gh(Buµ

h). Then there exists some h0, 1 ≥ h0 > 0, and a constant independent
of µ and h such that

‖uµ − uµ
h‖U + ‖yµ − yµ

h‖H1 ≤ Ch1− d
4 for all 0 < h ≤ h0. (3.24)

Proof. Let yh, ph ∈ Xh denote the finite element functions defined by

a(yh, vh) =

∫

Ω

Buµvh, and a(vh, ph) =

∫

Ω

(yµ − y0)vh +

∫

Ω̄

vhdλµ for all vh ∈ Xh
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and set λh :=
m∑

i=1
µiδxi

. Next we test the difference of (2.10) and (3.19) with uµ − uµ
h. This

gives

α‖uµ − uµ
h‖2

U =

∫

Ω

(pµ − pµ
h)B(uµ

h − uµ)dx =

=

∫

Ω

(pµ − ph)B(uµ
h − uµ)dx +

∫

Ω

(ph − pµ
h)B(uµ

h − uµ)dx =: (1) + (2).

We proceed with estimating

(1) ≤ α

2
‖uµ

h − uµ‖2
U +

C

α
‖pµ − ph‖2 ≤ α

2
‖uµ

h − uµ‖2
U +

C

α
h4−d

(

‖yµ − y0‖2 + ‖λµ‖2
M(Ω̄

)

,

where we have used a result of Casas [4] to estimate the finite element error ‖pµ−ph‖. Further,
using the definition of the auxiliary functions yh, ph and the optimality conditions we get

(2) = a(yµ
h − yh, ph − pµ

h) =

∫

Ω

(yµ − yµ
h)(yµ

h − yh)dx +

∫

Ω̄

yµ
h − yhd(λµ − λµ

h) =

= −‖yµ − yµ
h‖2 +

∫

Ω

(yµ − yµ
h)(yµ − yh)dx +

∫

Ω̄

yµ
h − yhd(λµ − λµ

h) ≤

≤ −1

2
‖yµ − yµ

h‖2 +
1

2
‖yµ − yh‖2 +

∫

Ω̄

yµ
h − yhd(λµ − λµ

h) =

= −1

2
‖yµ − yµ

h‖2 +
1

2
‖yµ − yh‖2 +

∫

Ω

(
µ

yµ
h

− µ

yµ
)(yµ

h − yµ)dx

︸ ︷︷ ︸

≤0 by monotonicity

+

+

∫

Ω

µ

yµ
h

(yµ − yh)dx +

∫

Ω

µ

yµ
(yh − yµ)dx +

∫

Ω̄

yµ
h − yhd(λ − λh) ≤

≤ −1

2
‖yµ − yµ

h‖2 +
1

2
‖yµ − yh‖2 + {‖λ‖M(Ω̄)‖, ‖λh‖M(Ω̄), ‖

µ

yµ
‖L1 , ‖ µ

yµ
h

‖L1}‖yµ − yh‖∞,

where we have used the complementarity conditions (2.12) for λ and (3.21) for λh. Combining
(1) and (2) we obtain with the help of (3.15), (3.16) and the bounds (2.13), (3.22)

α‖uµ − uµ
h‖2

U +
1

2
‖yµ − yµ

h‖2 ≤ C

(
1

α
h4−d

(

‖yµ − y0‖2 + ‖λµ
h‖2

M(Ω̄)

)

+ h2‖uµ‖2
U

)

+ C

(

h2− d
2 {‖λ‖M(Ω̄)‖, ‖λh‖M(Ω̄), ‖

µ

yµ
‖L1 , ‖ µ

yµ
h

‖L1}
)

.

Using this estimate and

‖yµ − yµ
h‖H1 ≤ ‖yµ − yh‖H1 + ‖yh − yµ

h‖H1 ≤ C
{
h‖uµ‖U + ‖uµ − uµ

h‖U

}
,

we finally get the desired result, since h0 ≤ 1.
Let us recall that by [7, Lemma 2.1] for v ∈ W 1,s(Ω) (1 < s < d

d−1) we have

‖G(v) − Gh(v)‖∞ ≤ Ch3− d
s ‖v‖W 1,s . (3.25)

Now let us assume that Buµ is uniformly bounded in W 1,s(Ω) for some 1 < s < d
d−1 . Then

we deduce from the proof of the previous Theorem
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Corollary 3.3.

‖uµ − uµ
h‖U + ‖yµ − yµ

h‖H1 ≤ Ch
3

2
− d

2s

√

| log h| for all 0 < h ≤ h0. (3.26)

Remark 3.4. Let us provide the following comments.

(i) For (i) of Example 1.2 we have Bu = u ∈ W 1,s(Ω) by (2.13) combined with (2.10), so
that (3.26) holds in this case.

(ii) We note that the analysis carried out in this section with obvious modifications also
applies to Neumann boundary control. In this case the control operator is defined
as B : L2(Γ) → H1(Ω)′ and maps boundary controls u ∈ L2(Γ) to the functional
Bu(v) :=

∫

Γ

uγ0vdΓ, where v ∈ H1(Ω). Thus, B = γ∗
0 , where γ0 : H1(Ω) → H1/2(Γ)

denotes the trace operator, see (ii) of Example 1.2. In order to carry out the error
analysis, only finite element error bounds corresponding to (3.16) have to be provided.

(iii) The proof of Theorem 3.2 carries over to rational barrier functionals as considered in
Remark 2.1 by dropping the terms containing λ, λh and by substituting the barrier
integrals accordingly.

3.2 The use of quadrature rules

So far we have assumed that the integrals
〈
µ/yh, vh

〉
are evaluated exactly. Now let us replace

this term in (3.18) by a quadrature rule of the form
〈

µ

yµ
h

, vh

〉

Q

:=
∑

i

ωi
µ

yµ
h(xi)

vh(xi),

so that the discrete optimality system (3.18)–(3.19) is replaced by

a(vh, pµ
h) =

∫

Ω
(yµ

h − y0)vh +

〈
µ

yµ
h

, vh

〉

Q

for all vh ∈ Xh, and (3.27)

αuµ
h + B∗pµ

h = 0 in U. (3.28)

We will now study discretization errors for this case under the following minimal assumptions;

• the quadrature rule yields positive values for positive functions

• it integrates constant functions exactly

• it yields a solution yµ
h which is feasible

Note that assumptions on the error introduced by the quadrature rule are not needed.
It is easy to see that yµ

h is strictly feasible at xi. Otherwise the discrete barrier functional
would be ∞. These assumptions are valid a-priori for linear finite elements, if the bound
y ∈ Xh, the quadrature points are taken at the nodes of the discretization, and the weights
are chosen appropriately (from the trapezoidal rule, say).
We apply the quadrature rule only for the evaluation of the barrier term, while all other
integrals are assumed to be evaluated exactly.

Theorem 3.5. Let uµ denote the solution of (1.8) with yµ = G(Buµ), and uµ
h the solution to

(3.17) with yµ
h = Gh(Buµ

h). Then there exists some h0, 1 ≥ h0 > 0, and a constant independent
of µ and h such that

‖uµ − uµ
h‖U + ‖yµ − yµ

h‖H1 ≤ C

√

h2− d
2 + 2µ for all 0 < h ≤ h0. (3.29)
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Proof. The proof runs along the lines of the proof of Theorem 3.2 with the exception that
the difference of the barrier terms

∫

Ω
(yµ

h − yh)d(λµ − λµ
h)

has to be replaced by

∫

Ω
(yµ

h − yh)dλµ +

〈
µ

yµ
h

, (yµ
h − yh)

〉

Q

=

∫

Ω
(yµ

h − yµ + yµ − yh)dλµ +

〈
µ

yµ
h

, (yµ
h − yµ + yµ − yh)

〉

Q

=

∫

Ω
yµ

hdλµ

︸ ︷︷ ︸

≤0

+µ|Ω| +
∫

Ω
(yµ − yh)dλµ + µ|Ω| −

〈
µ

yµ
h

, yµ

〉

Q
︸ ︷︷ ︸

≥0

+

〈
µ

yµ
h

, (yµ − yh)

〉

Q

≤ 2µ|Ω| +
∫

Ω
(yµ − yh)dλµ +

〈
µ

yµ
h

, (yµ − yh)

〉

Q

≤ 2µ|Ω| +
(

‖λµ‖M(Ω) +

∥
∥
∥
∥

µ

yµ
h

∥
∥
∥
∥

L1(Q)

)
∥
∥
∥yµ − yh

∥
∥
∥

L∞

.

With the same argumentation as in Lemma 3.1 we show that
∥
∥
∥

µ
yµ

h

∥
∥
∥

L1(Q)
< C independently

of µ. Proceeding as in the proof of Theorem 3.2 yields the stated result.

Hence, using this type of quadrature rules introduces an additional error, which is of the
order of the remaining length of the central path.
Again, if Buµ is uniformly bounded in W 1,s(Ω) for some 1 < s < d

d−1 . Then, as before

Corollary 3.6.

‖uµ − uµ
h‖U + ‖yµ − yµ

h‖H1 ≤ C

√

h3− d
s | log h| + 2µ for all 0 < h ≤ h0. (3.30)

Using the trapezoidal rule as a quadrature rule and a fixed grid we may interpret the resulting
numerical scheme as an interior point method for solving the discrete optimization problem
obtained by discretization in the spirit of [7].

4 Parameter adjustment

The analysis in the preceding two sections allows us to optimally select µ for given h, or vice
versa. In fact, its was shown that there exists a constant C independent of µ such that

‖u − uµ
h‖U ≤ ‖u − uµ‖U + ‖uµ − uµ

h‖U ≤ C
(√

µ + h1− d
4

)

. (4.31)

If we have that Buµ is uniformly bounded in W 1,s(Ω) for some 1 < s < d
d−1 we would obtain

‖u − uµ
h‖U ≤ ‖u − uµ‖U + ‖uµ − uµ

h‖U ≤ C
(√

µ + h
3

2
− d

2s

√

| log h|
)

. (4.32)

For given µ > 0 the mesh size h on the right hand side can be adjusted on the basis of (4.31)
as

h(µ) ∼ µ
2

4−d . (4.33)
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The optimal error bound in (4.31) then is

‖u − uµ
h‖U ≤ Ch1− d

4 (4.34)

if µ is chosen proportional to h
4−d
2 . If we have the regularity of Corollary 3.3 the optimal

adjustment is given by

h(µ) ∼







√
µ if d = 2,

µ if d = 3.

This provides a qualitative guideline when to stop the interior point method for a fixed
discretization, or how to refine the discretization for a given µ.

5 Numerical examples

Finally we illustrate our theoretical findings by a numerical example. We choose Ω = [0; 1]×
[0; 1], A = −∆ + I, B = Id, y = 0.5, y0 = 2 · x1 · x2, α = 10−3. The discretization of y and
p is performed by a linear finite element method, based on the DUNE library [1]. For the
evaluation of the barrier integrals we use the trapezoidal rule, as analyzed in Section 3.2. For
the numerical solution we use an interior point Newton path-following method in the variables
y and p similar to the one analyzed in [20]. The resulting linear systems of equations are solved
by the direct sparse solver PARDISO [18].
We compute yµ

h and pµ
h and estimate their overall errors w.r.t. y∗, p∗ by comparing them with

a discrete solution that is computed on a very fine grid for a very small µ. The choices of h
were h = 2−k with k = 2 . . . 8. The plots in Figure 1 show

∥
∥yµ

h − y∗
∥
∥

H1 +
√

α
∥
∥uµ

h − u∗

∥
∥.

As one can see in the left plot, the error introduced by the regularization dominates, until
a break even point is reached. Even on the finest level of discretization, this is for relatively
large µ ≈ 10−4 − 10−5. In this range would be the most efficient point to stop the algorithm.
It is interesting to note that for this particular problem the convergence of the path is slightly
faster than O(

√
µ). Hence, an a-posteriori estimate for the remaining length of the central

path as described, for example, in [19, Section 8.2] may be appropriate. In the right plot
we observe that the discretization error for a small µ behaves like O(h) as predicted by our
theory.
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Figure 1: Left: Overall errors plotted against µ for h = 2−k, k = 2 . . . 8. Right: Discretization
errors plotted against h for small µ.
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