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ON ONE LINEAR EQUATION IN ONE QUATERNIONIC UNKNOWN

DRAHOSLAVA JANOVSKA* AND GERHARD OPFER
Dedicated to Bernd Fischer on the occasion of his 50th kagthd

m

Abstract. We study quaternionic linear equations of typg, (z) := ijl bjxc; = e with quaternionic constants;, c;,e and

arbitrary positive integefn. Form = 2 the resulting equation is calleBylvester's equationFor this case a complete solution (solution
formula, determination of null space) will be given. For theneral case we show that the solution can be found by a pomrdmg matrix
equation of a particular simple form. This matrix form is neated with the centralizers of a quaternion and of its isinic image inR4>x4,
We present a complete determination of these centralizéosvever, the mentioned matrix form does not inlude a detaabf the singular
cases. The determination of singular cases is to some gxbsstble by applying Banach’s fixed point theorem from whighare able to
deduce several sufficient conditions for non singular cadésend the paper with a conjecture on the form of the invefselinear mapping
and show that interpolation problems and recovery probleawe in general no solution.

Key words. One linear equation in quaternions, Sylvester’'s equatiaquaternions, Centralizers of quaternions.
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1. Introduction. Linear mappings in one real or one complex variable are nohwth interest from an
algebraic point of view. The situation changes if we go totgrr@onic linear mappings. In this area non trivial
non singular linear mappings exist and we have to cope wéttifficulty that it is usually impossible to apriorily
distinguish between singular and non singular mappings.

Linear quaternionic mappings may be understood as the sstijolrm of systems of linear equations in quater-
nions. Such systems were investigated alreadyldy QrE, 1931] with references back to papers of the 19th
century. However, all treated equations are of the fafm:, + ai222 + - - -, one coefficient on the left side of the
unknowns. In non-commutative algebra also other formg,exig).ax + zd or ax + bxc+ xd, and more generally
Z}”:l bjxzc;. Afirst approach of linear systems including this generpétgf equation was made by the authors,
[8]. However, a thorough investigation of one linear equatioone quaternionic variable is still missing. There is
one exception, a paper by(, R. E. JounsoN, 1944]in which an equation of typer + 2d = e was investigated
over an algebraic division ring. The same topic with quéteric matrices was treated by, [HuANG, 1996].

2. Quaternionic linear mappings in one variable. We denote the (skew) field of quaternionsifiyand the
field of real, complex numbers ¥, C, respectively. The zero element of all three fields will baated by0 and
the multiplicative unit byl. In H we will also use the notatioris= (0, 1,0,0), j := (0,0,1,0), k := (0,0,0,1).
And i will be used inC with the ordinary meaning. We shall also use

(2.2) wVy=1, wy=1; W3:=j, W=k

The objective of this paper is to studyaternionic linear mappings : H — H overR which are defined by
the property

(2.2) Ayx 4+ 0y) = yA(z) + o\ (y) forall z,y € Hand allvy, § € R.

All linear mappings have the property thei0) = 0. This follows from @.2) by puttingz = y,v = 1,0 = —1.

Let A(zo) = 0 for some specifiey € H. Then, we will callzy asolution of the homogeneous equati@nce
xo = 0 is always a solution of the homogeneous equation, werga# 0 thetrivial solution of the homogeneous
equation. Let € H\{0} be a given quaternion. The equatidfx:) = e will be calledinhomogeneousquation.
The linearity has the following consequence: hét,) = 0 andA(z1) = e. Then A(yxg +21) = eforall v € R.
For this reason, it is important to study thell space(or kerne) of A defined by

(2.3) N:={xeH: \z)=0}.

The null spaceV is a linear subspace &ff, regarded as a space olrThus, the dimension of that space, regarded
as a subspace @, may vary from zero to four. Linear mappings: R — R and also\ : C — C are easy to
describe and\(zo) = 0 either implies that is the trivial solution or\ is the trivial mapping\(z) = 0 for all «.
Thus, linear mappings in one variable&ror onC are not of much interest from the algebraic point of view.
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DEFINITION 2.1. A quaternionic linear mapping,: H — H, will be callednon singularif A\(z) = e has a
unique solution for all choices ef€ H. The mapping\ will be calledsingularif it is not non singular.

LEMMA 2.2. The linear mapping\ is singular if and only if the homogeneous equatidm) = 0 has non
trivial solutions.
Proof: Follows directly from the definition, since = 0 is always a solution of the homogeneous equatfion.

If we leave the trivial mapping(x) = 0 for all = aside, it is not at all obvious that singular linear mappings
exist, in particular, if we compare with the non trivial lememapping® — R andC — C, which are always non
singular. Let\, 11 : H — H be two linear mappings. We can define ttoeenposition\ o i by

(Ao p)(@) := Au(x)).
A composition of two linear mappings is again a linear magpin

LEMMA 2.3. Let A\, : H — H be two linear mappings. (i) Let be non singular. Then, the composition
Ao pis singular if and only ifu is singular. (i) Letu be non singular. Then, the compositidr 1 is singular if
and only if\ is singular.

Proof: (i) Let u be singular. Thus, there exist # 0 such thatu(xzg) = 0. Then, (X o u)(zp) = 0, and
hence, the compositioho 4 is singular. Let the compositioko i be singular, i. e. there existy # 0 such that
(Ao p)(zo) = Au(xo)) = 0. Since is non singular it follows that(z) = 0, thus,u is singular. (i) This part
is similar. O

A linear mapping\ : H — H also defines a linear mapping R* — R* which can be defined by a matrix.

THEOREM 2.4. Let A : H — H be a quaternionic linear mapping. Then, there is a malvix ¢ R***
such that\(z) = Mx where the quaternions, A(z) have to be identified with the column vectardVix € R*,
respectively, and where

(2.4) M = (A1), A(W2), \(W3), \(#4) ) .
The entries\(#;), j = 1,2, 3,4 must be read as column vectorsi.

Proof: Letz := (x1,22,23,24) € H and putz = Zj’:l z;#;. Then, using the linearity\(z) =
> i_1 7 A(#;). And this expression equaldx. O

This theorem is of importance because it allows us in a ceac@se to reduce the given linear equation to a
linear matrix equation in four variables for which soluti@ehniques are known. This will be the topic of the next
section.

LEMMA 2.5.The linear mapping\ is singular if and only ildet M = 0, whereM is defined in 2.4)
Proof: Follows from Definition2.1and Theoren2.4. O

Letaq,as, a3, aq € H be any collection of four quaternions and define

4
Az) == ijaj, wherezx := (z1, T2, 3, 74) € H.
j=1

Then, X is a quaternionic linear mapping and the above matrixlis= (a1, as, as, a4 ) With columnsa;,j =
1,2, 3,4 and thusM could be any matrix ifR***. However, this linear mapping has no direct relation to guat
nionic algebra and we do not want to consider this type of rimapin our investigation.

3. Quaternionic linear mappings of type A\(x) := 2311 bjxc;. We are interested in studying the linear
mappings of type

3.1) Am(z) = > bjzc;,
j=1
defined for any fixed positive integer and for2m quaternionic constarits ¢; € H, j = 1,2,...,m. The

function \,,, will loose its property of linearity if in 2.2) the real multipliersy, § are replaced with non real
multipliers. Each ternb,zc; in the definition 8.1) will be called middle termif neitherb; nor¢; is real. Itis
reasonable to assume thbat; # 0 for all j = 1,2,...,m. The particular difficulty resulting from the existence
of middle terms arises from the fact that they are not lineith wespect to the defining constarits c;. It is
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not difficult to find the corresponding matrix representatad A, by applying Theoren?2.4. For this purpose
we first repeat the multiplication rule for quaternions,csint is used very frequently. Let b € H anda :=
(al, a2, as, a4), b:= (bl, bg, b3, b4) Then

(3.2) ab = (a1by — azbs — azbz — asby, a1bs + azby 4 azby — asbs,
a1bs — asby + azby + agbs, a1by + asbs — agbs + a4b1).

Second, we introduce two mappings IH — R***, 1, : H — R*** and putA := 1,(a), A := I5(a), where

al —agy —as —Qay
a a; —a a
(3.3) A = (aWy,aWy, aWs,aly) = | 2 ! 4 31 e P4,
as Q4 ap —az
g4 —as a9 aq
a; —az —a3 —a4
~ a a ay —a
(3.4) A = (Wia,Woa, V3a,Wea) = | 2 ! 4 31 e RM
az —aq a1 a2
a4 az —a2 ay

In the above definition the quantitiesy;, #;a, j = 1,2, 3,4 have to be read as column vectors. We will
denote all matrices of the form given i.) by Hr and those of3.4) by Hp. The first mappingylis a well known
isomorphism betweeH andHg, the second mapping could be callegpseudo isomorphistmetweent andHp
because it reverses the order of the multiplication. We eddbthe elements oflp pseudo quaternionsMore
details are in the following theorem.

THEOREM3.1. Let 1, I, be defined as inX3),(3.4), respectively. Let b € H and letb € R* be the column
vector corresponding té. Then,

(3.5) 11(a)12(b) = 12(b)11 (a) for all a,b € H,

(3.6) I2(ab) = 12(b)12(a) € Hp for all a,b € H,

(3.7) I2(a)b = ba € Hforall a,b € H,

(3.8) lo(a™') = (12(a)) ™" = (12(a))" /|a|* € Hp for all a € H\{0},
(3.9) I2(a) = 0 < 13(a) is singular < a = 0 where0 = zero matrix
(3.10) Ii(a) =12(a) & a € R,

where in 8.7) one has to read the right hand siéle as column vector.
Proof: By evaluation and comparison. O

The pseudo quaternions behave almost like quaternions. nlyehave to change the multiplication rule
according to 8.6). The elements off commute with all elements iHlg, however, the product {a)i12(b) is in
general neither ifflp nor in Hy. Nevertheless, the first column af(a)i2(b) contains the produetb. We could
define a new algebr := R* by keeping the addition rules & and by introducing a new multiplication rule in
H, denoted by: b, namely

a*b=ba,

whereba is the ordinary product ifHl. In this new algebra,,lis an isomorphism betweef and Hyp, since

ly(axb) = 15(ba) = 12(a)12(b), using B.6) from TheorenB.1. It should be observed that is not a real polynomial
in A, since all such polynomials will remain iiz. There is another well known isomorphism betwé#mand

certain complexX2 x 2)-matrices which will not be used, however.

From the above representation it is clear how to recover teguian from the corresponding matrix. Thus, it
is also possible to introduce inverse mappifgsi Hg — H, 15! : Hp — H. Since | defines an isomorphism
between quaternions and certain rebak 4) matrices it is possible to associate notions known from im#teory
with quaternions. Let := (a1, as, as, aq), then:

(3.11) det(a) := det(11(a)) = |a|*,
(3.12) tr(a) :=tr(11(a)) = 4aq,
(3.13) eig(a) :=eig(l1(a)) = [o4,04,0-,0_], where
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(3.14) or =a1+/ai+a3+dii, o_ =71

4
(3.15) lal = ln(@llz= ] > a2
j=1
(3.16) cond(a) := cond(l;(a)) =1, a#0,
where  det, tr,eig,cond refer to determinant, trace, collection of  eigenvalues(in

square brackets [ ]xondition respectively. It should be noted however, that a geneealrthof determinants
for quaternionic valued square matrices cannot exist. SdéN, 2003]. Let\ : H — H be any linear mapping
in the sense ofd.2) and lety := A(x). SinceH is isomorphic toHy the mapping\ induces a linear mapping
A : Hg — Hyg defined by the following diagram where we have put= 1, (z),Y := 11 (y):

A
roo— Yy

(317) lh l|1 .

x Moy

Now, let us return to the mapping,, defined in 8.1). We first only determine the matrixI which defines
the linear mapping fom = 1. Thus, we investigate only the mappiig(x) := bxzc and determindI such that
A1(x) = Mx where the column vectar and the matrix produdvIx must be identified with the corresponding
guaternion. The result is put into the following lemma whadso shows the connection ta |

LEMMA 3.2.Letz,b,c € Hand let 1,1, be defined as in3(3),(3.4), respectively. Define the linear mapping
A H — Hby

A (z) := baxe

and identify the quaternions, y := A;(z) with the corresponding column vectatsy, respectively. Also put
11(b) := B, 12(c) := C. Then,

(3.18) y = A1 (x) = Mx whereM := 1,(b)15(c) = BC.

Proof: Using (3.7) of TheorenB.1we havez := 15(¢) x = xc. Sincebz = bxc, the proof is complete. [

It should be noted that the above Lemma has an analogue iixmmetppingsA XB — C where Kronecker’s
product is employed. Seet,[Lemma 4.3.1].

THEOREM 3.3. Let \,, be defined as in3(1) and let 1, 15 be defined as in3(3),(3.4), respectively. Then,
there is a matrixM e R*** such that

(3.19) Am(z) = Mx, whereM := > M, andM; := 11 (b;)i2(c;),

j=1

where the quaternions, A, (x) have to be identified with the corresponding column vectolel x, respectively.
Proof: Follows from Lemme&3.2, formula 3.18. O

This theorem is the concrete form of Theor@m. It allows us to solve all equations of the forkp, (z) = e
by applying matrix techniques. However, it does not inclidermation on the question whether we are dealing
with singular or non singular cases. It should be mentiotiet,the above matri¥ is in general not normal.

For later use we introduce a new notion, namely that of edgivee between two quaternions. In this connec-
tion, algebraists (sedp, v. D. WAERDEN, 1960, p. 35]) usually use the terconjugate which, however, for
guaternions is not a good choice.

DEFINITION 3.4. Two quaterniona,b € H will be calledequivalent if there is anh € H\{0} such that
b= h~tah (or hb — ah = 0). Equivalent quaternions b will be denoted by: ~ b. The set

[a] := {s:5:=h"tah, h € H}
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will be calledequivalence class af. Leta = (a1, a9, as, a4). The complex number

or :=aj+/a3 +a}+aii€ [al.

will be calledcomplex representative o).

LEMMA 3.5. The above defined notion of equivalence defines an equiatelation. Two quaternions, b
are equivalent if and only if

(3.20) Ra = RNb, |a| = |b].

Proof: [6, JANOVSKA & OPFER, 2003]. O

It turns out, that the set of all linear mappings separates into two classes. One class consists of all nggpin
Am With m < 2 for which a complete answer to all reasonable questionsedound. All other),,,, namely those
with
m > 3 belong to a class for which we can gather only incompletermégion. We introduce some formal
simplification. Letu(z) := b;}xcl‘l. This linear mapping is non singular and thus, (but= b,,'b;, ¢; =

-1 .

cjci 7 =2,3,...,m—1)

m m—17 ~
A — -l boze Vel — bix + 3 . 5 bjxé; + xcy,, form > 2,
(o dmie) = (D by = { 2 form =2,

will be singular if and only if),, is singular. See Lemma.3. Without loss of generality we can, therefore,
investigate

m—2
(3.21) Am (2) == ax + Z bjre; +xd, m > 2,
j=1
which reduces to
(3.22) Xo(x) := ax + xd form = 2, and form = 3 we write simply

(3.23) As(x) = ax + bzc + xd.

These two equations will be treated in the sequel. The igegdn of the mappings already shows all difficulties
of \,,, form > 3.

4. Sylvester's equation.The equation defined b8(22, namely\s(z) := ax +xd = eis ordinarily referred
to asSylvester’s equatioand A\, will be called correspondinglgylvester’s functior mapping We will show
that Sylvester’s equation has an elementary solution mgef quaternions.

THEOREM4.1. Leta := (a1, as,as,a4), d:= (di,dz,ds,ds). The function defined by (2) := az + zd is
non singular if and only igjﬂ(af — d?) # 00ray + dy # 0. If Ay is non singular, the solution otz (z) = eis

4.1) = fYet+ated), fi:=2Rd+a+|dat ifa#£0,or
(4.2) x=(e+aed ), fri=2Ra+d+|a?dt ifd#0.

Proof: The mapping\; is described by a matri¥I whose form is given in Theoref3

01 —02 —03 —O04
L | 02 o1 —04 3

(4.3) Mi=n(a) +1a(d) = [ 2 T A
g4 —53 62 g1

whereo := (01,09,05,04) := a+d, § := (01, 62,95,04) := a — d and wherey, I, are defined ing.3), (3.4).
The determinant of this matrix is (se®])

(4.4) det(M) = o5 (|o|* + 65 + 65 + 03) + (0202 + 0303 + 0464)%.

It does not vanish if and only if the above mentioned condgi@re met. In order to find the solution, let
wu(z) = a~'zd + z. The composite mapping o Az is (u o X2)(x) = p(Aa(x)) = a Xa(z)d + Ma(z) =
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(2Rd + a + |d|?a=1)x. This yields ¢.1). The same technique with(z) := azd~! + x yields @.2). And the
mappingu is non singular if and only if the mapping is non singular. Only a little later, we will see that the two
employedus for composition are apart from a factor forms of the invensg@ping of)\;. See also§, JANOVSKA
& OPFER, Lemma 2]. O

COROLLARY 4.2. Leta, d be arbitrary quaternions. Then, Sylvester's equathaiiz) := ax 4+ xd will be
singular if and only if

(4.5) la| = |d| andRa + Rd = 0,
or in other words if and only i: and —d are equivalent. The null space »f is

{0} if (4.5 is not valid,
(4.6) No =< H if (4.5 is valid anda, d € R,

2 dim, real subspace @ if (4.5 is valid anda ¢ R ord ¢ R.

Proof: Leta := (a1, a2, as,a4),d := (d1,ds, ds,ds). From Theorerd.], it follows that\, is singular if and
only ofa; +d; =0 andZ?ZQ(aﬁ —d3) = 0. The first condition impliea? = d3, thereforezz%:l(aﬁ —d3) =0,
which is equivalent tda|? = |d|?. An alternative proofis: Letx + zd = 0 for somez # 0. Then, according to
Definition 3.4the two quantities, —d are equivalent and the result follows from Lemfa&. In order to find the
null space, we have to investigate the malvixdefined in ¢.3), only with o; = 0. Becausse aM + MT = 0,
the matrix can have only even rank and the ranks zero or feunatrpossible. See als6]| O

It seams reasonable also to compute the null space (kefngl) o= ax + xd explicitly. For the definition
see £.3).

TABLE 4.3. Various cases for kernel of Sylvester’s equation.

Case | g9 | 02 | 03 | 03 | 04 | 04
(Ga) | 0 | 0 |Z0|Z0|Z£0]£0
)| 0| 0| o0 |#£0] 0|0
(ic) 0 0 0 |#0]|#0] 0
(id) 0 0 |[#0| 0 0 |#0
(ie) 0 0 |[#0| 0 |#0| O
(ia) | 0 |£0|£0|Z£0|#£0]|£0
(itb)y | 0 |#£0] 0 |#0] 0 |#0
(iic) 0 |[#0| 0 |#0|#0] 0
(iid) | 0 |#£0[#£0] 0 0 |#0
Gie) | 0 |#0|#£0| 0 [£0] 0
(iiia) | 0| O |#A0|#A0|#A0|#0
(iiib) | #0| 0 0 |#0] 0 |#0
(iiic) | £0| 0 | 0 [#£0]|#0] 0
(iiid) | £0| 0 [#0] 0 | 0 |#£0
(iiie) | £0| 0 |£0| 0 |#0] 0

THEOREM4.4. Leta, d € H be given such that, (z) := ax + zd is singular and that at least one of the two
guaternions is not real. Put

o:=a+d, 0:=a—d withcomponentso;, ¢;, j =1,2,3,4.

(i) Let the following matrixm be well defined and non singular:

) e L (0
} =\ o o)
Then,
-1/ —-04 &
4.8 R — 4073
(4.8) m 52( 7 54),

and the null space (kernel) of is

(4.9) Na :=kernel(\q) := {x = (xl) iX1+mxe =00rm 'x; +xo = 0} .
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TABLE 4.5. The kernel of Sylvester’s equation for various cases.

Case 1 T2 T3 T4
5 _ .
(ia) X To arbitrary o T4 arbitrary
g3 03
(ib) arbitrary 0 g—?’ x4 arbitrary
4
(ic) g—?’ T arbitrary arbitrary 0
4
(id) - % T2 arbitrary 0 arbitrary
3
(ie) 0 arbitrary — ? 24 arbitrary
3
. 0372 — O23 : o4 ,
(iia) arbitrary —— x4 arbitrary
04 o3
. ) 0 .
(iib) arbitrary 2 T3 3 T4 arbitrary
3 04
(iic) 53:62;& arbitrary|  arbitrary 0
4
-0 0 . :
(iid) M arbitrary 0 arbitrary
3
(iie) 6—2 Ta arbitrary _o T4 arbitrary
g3 03
5 . 0 .
(iiia) ~ arbitrary| 27104 | orpitrary
(o 54
(iiib) LE ; 9324 0 arbitrary | arbitrary
2
(itic) 5—3 o o 24 arbitrary arbitrary
04 o2
(iiid) 0 T 7z x3 arbitrary arbitrary
g3 g2
(iiie) 0 arbitrary —m arbitrary
3

(ii) If the matrix m is either singular ¢303 + 0494 = 0) or not well defined4> = 0) we summarize the result in

Table4.5which refers to various cases which are listed in Tablé
Proof: In matrix terms we have to solelx = 0, whereM is given in @.3) with the additional property that

its determinant is vanishing which b¥.4) is equivalent tar; = 0 andosds + 0393 + 0404 = 0. We partitionM

as follows:

(4.10) M =

. L X1
By puttingx := (x2

(4.11)

0 —09 ‘ —03 —04
09 0 —64 53 . (Mul
o3 54 0 —62 . Mll
g4 —53 62 0

Mulxl + Murx2
Myx1 + Mpxo

We distinguish between the following two cases.
1. Assume that all four submatrices are non singular. Then

0,
= 0.

X1 + M;llMurXQ = 0,

X1 + MﬁlerXQ =0.

M,
er '

> with x1, x5 € R?, we can write the systefIx = 0 into the form
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Since we already know thaink M = 2, we have

1 /—
m = M_'M,, = M;]'M;, = — ( 1 53) :

092 03 04

Using the second equation, it is easy to find the inversaof

m-! — _i <—CT4 53>
0o o3 04)°
For the kernel we, thus, have the given formulag).
. Assume that at least one of the submatrices is singulan,Tiecessarily2d2 = o363 + 0464 = 0. If
oy = 0o = 0, thenM,,, # 0, My # 0, since the cas®l,, = 0 < M) = 0 < a,d € R was excluded.

There are 15 cases which we have listed above in FaBld_et us putx; = (21, 22)T, x2 = (23, 24)7.
Then in the cases (ia) to (ie) of Table3it follows from (4.11) that

M, %y — <—0’3I3 — U4$4> — 0, Myx; — (03171 + 54562> —0

(412) —54173 + 531174 o421 — 53$2

The cases (iia) to (iie) are governed by the following setopfaions

_ —03T3 — 044
MurXQ o ( —54$3 + 53:174 > o 0

—1 [ —o421 + 032 T
-1 4+ 421 372 3
m X; +Xz = 5 ( 03x1+54:c2)+<:c4)
where it should be observed, that™! coincides with the formerly introduced matrix, though isisgular.
The cases (iiia) to (iiie) follow

(4.13)

|
[=)

|
=)

0471 — 03%2

1 /-
x1+mxz—<i1>+—< 54I3+53I4> = 0.

2 (P 03T3 + 0474

Myx; = (03201 + 042 )
(4.14)

Here, it should also be noted, thatis singular.

The 15 cases are treated in the sequel one by one. Explicitlyrang coefficients are supposed to be non

zZero.

(4.15) <i§i§§ ; gﬁff) =0 <Ziii tﬁ;iﬁz) -0

10 (i) o (Bnti)-o

w1 (Smam)=e (antir)-o

@19 (Zomiam)=o (Smtee,)=e

w19 (rmiem)=e (Cnien)-e
(mazz)=o & (mmiim)+(2) -
(4.21) (‘_0(;‘42;2;1”4) o o (_8:2 Iiii) ’ Gi) -
(4.22) (:gii;;?gﬁ) =0, ;_21 (inf?fiii) * (Z) =0
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6z (peibim)=o () () o
(4.24) (__O(:fij N S‘f;) =0, ;—; <_Zﬁ;2 igiﬁi) * (ii) =0
. (mvie)mo () L (2mrie) <

(4.26) 8:2 J_rg‘;x) —0, <2) n Ui (0 *64;?:05:%) —0.

wzm (Comrsir)=o () (Dimim) =o

. (mtgm Y=o (2) e 2 (i g o

29 (e co () L (Prmien) o

The solutions of these systems are summarized in Fable -

The two formulas4.1), (4.2) for z produce the same valuedt! # 0. However, for numerical purposes one
would prefer the first formula ifd| < |a| and otherwise the second formula. These formulas are ioveiermulas
for the operatoi, and we could also write

M) = fi (e +a ed) = (v +axd ) f7Y, ad #0.
We observe, that; !is formally different from\,. However,
afiryt(x) = ax +ad, M\ (2)frd=ar + xd.

If we have a look at the solution formulas.(), (4.2), then it is clear that the correspondiihgis singular if and
only if f; = 0 or f,. = 0. This can be shown directly.

LEMMA 4.6. Leta := (a1,a9,as3,a4),d := (d1,ds,ds,ds) andad # 0. Sylvester’s function., defined
by X\o(z) := ax + xd is singular if and only iff, = 0 (f, = 0), wheref; := 2Rd + a + |d|>a™" (f, =
2Ra + d + |a|?d™1).

Proof: (a) Let @.5 be valid. Then, f = —2Ra + a + |a]?a”! =
—2Ra + 2Ra = 0. (b) Assume thaff, = 0. Putq® := |d|?/|a®|. Then,f, = 2Rd + a + ¢*a = (2d; +
(1+¢®a1, (1 —¢*az, (1 — ¢*)as, (1 — ¢*)as) = (0,0,0,0). If ¢> = 1, then, @.5) follows. Letqg? # 1. Then,
az = az = a4 = 0 anda; # 0. The remaining equation i§ = 2d; + (1 + ¢*)a; = (a1+d)” +d2+d2+d4 = 0.
Thus,d is also real and; + d; = 0, which implies that;?> = 1, a contradiction. The casg # 1 is impossible.
The proof forf,. is almost the same. O

The above solution formulad (1), (4.2) put us in the position to solve another type of equation.

COROLLARY 4.7.LetA, B, C, D, E be given quaternions with BC'D # 0. Define the functiof, : H — H
by

(4.30) Ao(z) :== AxB + CzD,and solveAs(z) = E, z € H.

Then, the function,, is non singular if and only if

(4.31) R(AIC) +R(BDY) £ 0or Z (BD™1)3) #0



10 Drahoslava Janovska & Gerhard Opfer

where the subscript defines the component number.4f3)) is true, the solution ol (z) = E'is

(4.32) z = F Y(A'ED™' + C"'EB/|D|?), where
(4.33) F:==2R(BD )4+ A7'C + |BD'|*C A or
(4.34) z = (A'ED' + CEB™'/|A]*)F !, where
(4.35) F.:=2R(A"'C)+BD ' +|A"'C|*’DB .

Proof: FromA,(z) = E it follows by multiplication from the left byA—! and from the right byD ! that
rBD '+ A7 'Cx = A'ED™
Put
a:=A"'C, d:=BD7 ', e:=A'ED!,

then we have exactly equatioB.22 and Theorend.lyields the desired result. O

The expression far in formulas @.32), (4.349) is an expression for the inverse mapping\ef Therefore, we
summarize the result in the following theorem.

THEOREM4.8. Let A, be defined as ind(30. Then, the inverse oX,, if it exists, has the same form As.
Proof: Compare the form4.30 of A, with the solution formulas4.32), (4.34). O

The function)s, defined in 8.23, depends on four quaternionsb, c,d, i. e. on sixteen unrelated real
numbers. If we reduce this number to twelve in a specific wayarmeeable to characterize the non singular cases
of A3.

LEMMA 4.9. Let A3 be defined bys(x) := ax + bxc + xd. Puta = (a1, a2, a3, as) and analogously for
b, c,d. Letabed # 0. If () b = a andc # —1 orif (i) ¢ = d andb # —1, then); is singular if and only if

(4.36) rla] = |d| andRa + R{d(1 +2)/r*} = 0 wherer := |1 + ¢|, for (i),
(4.37) pld| = |a| andRd + R{(1 + b)a/|p*} = 0 wherep := |1 + b], for (ii).

If A3 is non singular, then the solution af(z) = e is

Ye(1+72) + d)  for (i),
(4.38) { (((31 +b) e+ a(il d) for (ii),
where

(4.39) fi:=2R{d(1+0)} + |1+ clPa+|d|*a" for (i),
' fo:=2Rd+ (1+b)ta+|d?a= (1 +b) for (ii).

Proof: (i) We have)s(z) := az + azc + xd = az(1 + ¢) + xd. Multiplying from the right by(1 + ¢)~!
yields\3(z)(1+c¢)~! = az + zd(1 + ¢)~!. This equation has the form of Sylvester’s equation andatording
to Corollary4.2 singular if and only ifla| = |d(1 + ¢)~| andRa + R{d(1 + ¢)~'} = 0. Putr := |1 +¢| > 0,
then(1+c¢)~! = (1 +¢)/r%. The given conditions can be written®8a + R{d(1 +¢)/r?} = a1 + [(1 + c1)d1 +
cady + c3ds + cudy]/r? = 0 andr|a| = |d|. (i) We havels(z) = az + bwd + xd = ax + (b+ 1)zd. Similarly to
(i) we obtain®{(1 +b)~ta} + Rd = 0 andp|d| = |a|, wherep := |1 + b|. For the solution we used formula.()
from Theoremi.1 O

How can we find quaternions which lead to singular functiohgctv obey the equationg 36), (4.37). The
answer for .39 is:

Chooser, d € H\R at random, determine := |1 + ¢|?,
1
pUtCLl = ——((1 + Cl)dl + cods + ngg + C4d4),

choosey, az, ay such that?|al? = |d|*.
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ExamMPLE 4.10.The above construction may result in:

c:=(-1,0,-6,3), d:=(-4,9,5,-2), r:=[14c|* =45,
ay :=4/5,
a = (4,3v2,3v2,3V?2) /5.
Now check4.36):
|d|*> = 126, r?|a|?> =45-14/5 =126 = |d|?,
r2a; + (14 c1)dy + cads + c3d3 + cady = 45-4/5 — 36 = 0.

The following relation between some of the numbers giverdi)( (4.2) will be used later.
LEMMA 4.11.Leta,d € H\{0} and definef;, f asin @.1), (4.2. Then

(4.40) lallfil = [dl|fr|-

Proof: We show thata|?|f;? = |afi|?> = (afi)(af;) = (df.)(df,). We have(af;)(af)) = (2(Rd)a + a® +
|d?)(2(Rd)@ + @ + |d|?) = 4(Rd)?|a|® + |a|* + |d|* + 4RaRd(|a|? + |d|?) + 2|d|*Ra>. If we switcha andd,
then the two sides of(40) also switch. Therefore, it is sufficient to show that (4(Rd)? — 2Rd?) + |d|? (2Ra? —
4(Ra)?) = 0. If we employ the multiplication rule3.2), we obtaimd(Rd)? — 2Rd* = 2|d|? and, correspondingly,
2Ra? — 4(Ra)? = —2al?. O

Thus, a complete solution of Sylvester’s equation has bb#ireed. An application will be treated in the next
section. It should be noted that the solution formulas efidsy [LO, Theorem 1, formula (10)] and] Corollary
6, formula (37)] have both the form of sums and differ froms@given here in Theoreml

5. The centralizers ofa and of 11 (a). We begin with the definition of the algebraic notioentralizer It
makes sense only in non commutative algebras.

DEFINITION 5.1. Leta € H be a quaternion. Theentralizer ofa will be denoted byC'(a) and is defined by
the set

(5.1) C(a) :={h € H: ah — ha = 0}.

Let A € R™™" be a square matrix with real elements. Tdentralizer of A will be denoted byC'(A) and is
defined by the set

(5.2) C(A) = {HeR™": AH - HA = 0}.

Both sets are not only vector spaces dReawith finite dimension, but they also form an algebra. In thiéofeing
we are going to determin€(a) andC(11(a)), where the real4 x 4) matrix 1, (a) is defined in 8.3). For the
general case of matrices we refer & HorN & JOHNSON, Section 3.2] and4, HORN & JOHNSON, Section
4.4].

If € R (which includes the case= 0) we haveC(a) = H andC(1;(a)) = R***. Thus, this case is of no
interest. Therefore, we always assume that H\R, when we want to determin€(a) andC(11(a)). We define
two sets of polynomial®(a) C H, andP(A) C R"*" by

(5.3) Pla) :={veH:v:= Zajaj, a; € R},
J=p
(5.4) P(A):={VER™™:V:=> a;A), a; € R},
J=p

wherep, v are variable integers with < v. If A is not invertible we have the additional constraint p < v
when definingP(A). We have the following evident inclusions:

(5.5) P(a) c C(a), P(A)C C(A).
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LEMMA 5.2. Leta € H\{0} and A € R"*" be given. Leb € C(a) and letB € C(A) with invertibled, B.
Then,

P(b) c C(a), P(B)cCC(A).

Proof: We show that? € C(a) for all integers;j. The real span of alV is P(b) and sinceC'(a) is a linear
space, we hav®(b) € C(a). The proof will be by induction. Leta = ab which is equivalent tas = b~ 1ab.
Assume that’ € C(a), which means, that = b=7ab’. Multiplying by b=! from the left and by from the right
impliesa = b=tab = b=~ tab’™!, thus,b/ ™! € C(a). The proof for matrices is the same. O

THEOREMS.3. Leta € H\{RR} be given. Then,
C(a) = P(a) and dim C(a) = 2,

whereC'(a) is the centralizer o and P(a) is the polynomial defined irb(3).
Proof: We have to solve Sylvester’s equation

(5.6) Ao(x) == ax — xa = 0.

Apparently,\, is by Corollary4.2 singular and by definition, the centraliz€(«) is the set of solutions, which
coincides with the null space (or kernel) bf. According to Theorer3.3, equation %.6) is equivalent to the real
matrix equation

0 0 0 0
. . 0 0 —aq as -
(1(a) —12(a))x := Mx := 0 a0 —ay | X7 0,
0 —as as 0

where the column vectot has to be identified with the quaternien The matrixM has the property tha¥l +
MT™T = 0, which implies that the rank must be even. Since by assumptideast one of the three components
as, asz, ay does not vanish, the rank d must be two. This proves the last statement of the lemma. Beaaf the
first general inclusionH.5) we only need to show that the spaBéz) has (at least) dimension two. This is true,
since the two elements= a° anda belong toP(a) and since, by assumptiomjs not real. O

COROLLARY 5.4.Leta € H\R, then all matrices
S := o), %2, a7, a’t] € RV
with j1, jo, j3, j4 € Z have rank at most two.
Proof: Follows from the previous lemma. O

The surprising consequence is contained in the followingléary.
COROLLARY 5.5.Givena € H\R andj € Z. Then we can always find two real numbets3 such that

(5.7) o =a+ Ba.

Proof: Leta := (a1, az,as,as). We will give a proof by induction. Assume first that> 0. Equation §.7)
is apparently true foj = 0 andj = 1. Multiplying equation 6.7) by a yieldsa’*! = aa + Ba%. Computing
a? with the rule given in 8.2) yieldsa’ ™' = f(a? — 2a1 — a3 + a3 + a3) + (@ + 2Ba1)a = & + fa. This
shows that%.7) is valid for all j > 0 and alla € H. Puta = b~—'. Thenb™7 = a + gb~! = a + 3b/|b|*> where
b := (b1, —ba, —bs, —by) is the quaternionic conjugate bf= (by, by, b3, bs). Now it is easy to see that in general
we haven + a = a + 20a; — fa = & + Sa. Therefore, equatiorb(7) is also valid for negative. O

To find an explicit formula fory, 3 leta? =: (A1, As, A3, A4) and

ak = argmax |a]-

Sinceq is not real we have;, # 0 and

8= Ar/ap, «:=A; — Pa.
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EXAMPLE 5.6. Takez := (2,3, 5,7),thena'® = (2773885841, 1363602 108,2 272670 180, 3 181 738 252),
argmax;>o |a)| = a4 =7, = Ay/ay = 3181 738252/7 = 454534 036, v = A1 —fa; = 277388584120 =
1864817 769. Finally,a'® = a+a = 1864817 769(1,0,0,0)+454 534 036(2, 3,5, 7). In particular, all powers
ofe:=(1,1,1,1) have the forme/ = (A;, Az, Az, As),j € Z.

It is clear that Corollan.5is also valid for the isomorphic imagk := 1; (a) of a. And this is reflected also
in the first part of the next theorem which is based on mateotix.

We turn now to the determination @f(1,(a)). Though {(a) is isomorphic toa by the mapping, the
centralizers”(a) andC(11(a)) - as will be shown - are not isomorphic by this mapping. Herg itseful to apply
the general matrix theory. Se¢ HoRN & JOHNSON, Section 4.4]. Let := (a1, a2, a3, aq). From 3.13, (3.19
it follows that thecharacteristic polynomiala of A :=11(a) is

XA = (A= 02N = 02)2 = (A2 = 21 A + |af?)?,
However, theminimal polynomialja of A is
ga(\) = A =0 ) (N — o) = (A% = 2a1\ + |a]?).

This follows fromga (a) := (a® — 2a1a + aa) = a(a — 2a; + @) = 0. The geometric multiplicity ofr,, o

is two. Therefore, the matriA is derogatory See B, Section 3.2]. This follows also from the fact that we have
already found one element of the centralizérA), namelyA, defined in 8.4), which is not a polynomial im..
See fi, Corollary 4.4.18].

THEOREMb.7.Leta € H\R and A :=1,(a). Then,
(5.8) dim P(A) = deg(ga) =2, dimC(A) > 4.

Proof: [4, Theorem 4.4.17]. O

Actually, we have already shown in Theoréri thatHp C C(A). Thus, the centralizef'(A) contains
at least the real span &fp U P(A). Since all elements dfl commute with all elements dflz, and since
Hg N Hp = 11(R), the centralizel’(A) is different from (larger than) the set of polynomid@§A). In order
to find4w£1ether other elements than those containdtirbelonging toC(A), we solveAX — XA = 0 for
X e R™%

LEMMA 5.8.LetC(A) be the centralizer oA := 11 (a) for « € H\R. Then,

BecC(A) = BeCAT),
BecC(A) = BT cC(A).

In other words, the centralizers &f and AT are the same and B belongs toC'(A) then alsoB™ belongs to
C(A)andv. v.

Proof: C(A) := {X : AX — XA = 0}. The matrixA has the property thak + A" = 2R(a)I, wherel is
the (4 x 4) identity matrix. InsertingA = 2%R(a)I — A into the defining equation yields
(2R(a)I — AT)X = X(2R(a)I — AT) & ATX = XAT & AXT = XTA. O

In explicit terms, the systerAX — X A reduces to the linear system of 16 equations:

1
(5.9) > (auau —az) =0, §k=1,2,3,4,
=1

where one has to identify the elemelitsy ), j, k¥ = 1,2,3,4 by the elements;, as, as, a4 according to 8.3),

p. 3. At this stage it would have been possible to apply Kroneskmoduct to find the equivalent system in 16
unknowns. Seed, HORN & JOHNSON, CHAPTER 4, LEMMA 4.3.1]. In the (16 x 16)-matrix G corresponding
to (5.9 only the quantitiesta;, j = 2,3, 4 and the number zero occur. In order to reduce the typograpsize
of G we putj instead ofz; and—j instead of-a;. We number the unknowns rather than(by;, ), row-wise' by
x1,x9,...,216 and denote the vector of the unknownsshyEquation 6.9) takes then the final forfex = 0,
where

1According to Lemmé.8it does not matter whether we enumerate the elemeris miwv-wise or column-wise.
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(5.10) G:=
0 -2 -3 —4 =2 0 0 0 -3 0 0 0 —4 0 0 0
2 0 0 0 0 -2 -3 —4 —4 0 0 0 3 0 0 0
3 0 0 0 4 0 0 0 0 -2 -3 —4 =2 0 0 0
4 0 0 0 -3 0 0 0 2 0 0 0 0 -2 -3 —4
2 0 —4 3 0 -2 0 0 0 -3 0 0 0 —4 0 0
0 2 0 0 2 0 —4 3 0 —4 0 0 0 3 0 0
0 3 0 0 0 4 0 0 2 0 —4 3 0 -2 0 0
0 4 0 0 0 -3 0 0 0 2 0 0 2 0 —4 3
3 4 0 -2 0 0 -2 0 0 0 -3 0 0 0 —4 0
0 0 2 0 3 4 0 -2 0 0 —4 0 0 0 3 0
0 0 3 0 0 0 4 0 3 4 0 -2 0 0 -2 0
0 0 4 0 0 0 -3 0 0 0 2 0 3 4 0 -2
4 -3 2 0 0 0 0 -2 0 0 0 -3 0 0 0 —4
0 0 0 2 4 -3 2 0 0 0 0 —4 0 0 0 3
0 0 0 3 0 0 0 4 4 -3 2 0 0 0 0 -2
0 0 0 4 0 0 0 -3 0 0 0 2 4 -3 2 0

Matrix G has the property thab + G* = 0, which implies that the rank of is even. Seed, Theorem
1]. Some preliminary, numerical tests suggest that theim&irhas rank eight. We can obtain more precise
information.

LEMMA 5.9. Let J, K be vectors with positive, strictly increasing integer égrwithmax J, K < 16. By

G x we denote the submatr®;c s ek 0f G. By : v, < v we denote the integer vectorp + 1,...,v. We
find that
(5.11) Dy :=det Gy:8,1:8 = det Go.16,9:16
= det G1.8,9:16 = det Go.16,1:8 = (a3 + ai)4,
(5.12) Dy := det Gs.12,5:.12 = det Gs.12,1:4U13:16

2, 24
= det Gi.au13:16,5:12 = det Gi.au13:16,1:4u13:16 = (a5 + a3)",

andGs.12,5:12 is the only matrix in the clas&;.; 17 r.x+7, j, k = 1,2, ...,9 which attains the given determinant.
In addition, there is no submatrix in this class with deteranit(a3 + a3 + a3)*.

Proof: Since thg(16 x 16) matrix G contains (at least) 160 zeros and 96 entries with, j = 2, 3,4 itis pos-
sible to compute the determinants of all given submatri€€s.c5ome assistance froMAPLE is acknowledged.]

In order to show that the whole matr{X is of rank eight, there must be some dependencies between the
matrices mentioned in Lemniad.

LEMMA 5.10.Leta € H\R. We consider the following two partitions &f, whereG is defined in$.10:

Gul Gur
5.13 G =
(.13 < Gy Gy ) ’

Gy Gs Gy

(514) G = G2 Gl Gg y

Gy G3 Gy

whereG,; = Gi:g,1:5 (upper left),G,, = Gi.s,0.16 (Upper right),Gy = Go.16,1:8 (lower left), Gi, = Go.16,9:16
(lower right), where we have used the notation for submagintroduced in Lemm@a 9. With the same notation
we haveG; := Gs.12.5:12, G2 = Gs.12,1:4013:16: G 1= G1.4013:16,5:12: G4 1= G1.4U13:16,1:4U13:16-
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(i) Leta3 + a3 > 0. Then, with

[N eleNoNel S =Rl

SO OODOoO R OO O

(5.15) P =

O OO OO oo

SO OO O oo
(e lievlelle e Nall
— OO OO o oo
S OO OO OO
SO, OO0 OO o

we have

(5.16) (

Q

Glr )

I
()
£
()
£
lae!

(ii) Let a2 + a2 > 0. Then, with

OO DO OO OO

[N elNeNoell =Nl

(5.17) Q=

O OO OO

OO O OO O+ O
oo o oo~ OOo
[=Nel o NeNe NNl
_— O OO0 o oo
O OO OO oo

we have
(5.18) (Gs Gu)=(G1 G2)Q.

Both matrice® andQ are essentially permutation matrices, with the additigmalperty thatP +P™ = 0, which
implies thatP~! = —P and thusP? = —I and the same foQ.
Proof: Sincea ¢ R (at least) one of the cases (i) or (ii) applies. The mentigregerties of?, Q are obvious.
The application ofP in the formBP = C (with arbitrary B, C € R®*®) has the following effect: Put
P=:(Pj), j,k=1,2,...,8If

—1 then, columnj of B becomes after multiplication by 1
columnk of C.

Using this rule, one can verifyp(16 and £.18. O

LEMMA 5.11.Leta € H\R andG € R'®*!6 be defined as in5(10. Thenyrank G = 8 and the solutions of
the homogeneous equati@x = 0 are:
(i) If a3 + a3 > 0 the solutions of

{ 1 then, columnj of B becomes columh of C,
P, =

(519) Gulxl + Gurx2 = 07
and we can find all solutions by selecting := (z9,710,...,216)" arbitrarily and solve .19 for x; =
(x1,29,...,28)T orvice versa.

(i) If a3 + a3 > 0 the solutions of

(5.20) Giy1 + Gay2 =0,

and we can find all solutions by selectiyg := (21,...,74,213,...,716)" arbitrarily and solve 6.20 for
y1 = (w5,26,...,712)" or vice versa. The final solution is then= (21, s, ...,216)T. The four submatrices
employed are defined iB(3, (5.14. O

Proof: (i) Let a§ +a? > 0. Then by Lemm&.9all four submatrice& .1, G, Gy, G, are non singular and
thusrank G > 8. By (5.16 the lower half ofG depends linearly on the upper half, thereforek G = 8 and the
solution can be found by using only the upper eight equati@is et a3 + a% > 0. Then by Lemmé.9all four
submatrice$z, Gz, G3, G4 are non singular and thuank G > 8. By (5.18 the middle part (rows 5 to 12) of
G depends linearly on the remaining part, thask G = 8 and solvingGx = 0, reduces to the given equatian.
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It should be noted that th@ x 16) matrix (G, G,;) has exactly one additional partition into tw® x 8)
matrices such that the determinants of these matricessr&idh-a3)*. For this case we have to select the columns
1,2,5,6,9,10,

13, 14 for one matrix and the columris4, 7, 8,11, 12, 15, 16 for the other matrix.

THEOREMb5.12.Leta € H\R be given andA := 1,(a), where | (a) is defined in8.3), p. 3. The centralizer
of Ais

Xl(l : 4)
.f axa . | x1(5:8)
(5.21) CA):=¢(XeR X = xo(1: 4)
X2(5 . 8)
wherex = (21, 1,...,216)" is defined in Lemm&a.11, and
(5.22) dim C'(A) = 8.

Proof:. The centralizeris the null spaceAfX —X A and this has dimension eight according to Lentnid. (]

If we choosex; according to the first two columns (rows) efb), p. 3, with an arbitraryb € H, then, the
formula forx, furnishes the last two columns (rows) efa). This is another proof of3.5) in Theorem3.1, p. 3.
If we compare TheoremS.12and5.3we see, thaf’(A) := C(11(a)) is considerably larger than(C'(a)). In the
next theorem we show how to construct a basis for the cengrali(A).

THEOREMS5.13.Leta = (a1, as, as, as) € H\R be given. Define
A :=asay; B:=asasz; C := a%; D :=azay; FE := ai; F = a%.

Letd; := a3 + a3 > 0. Then, the following eight matricds, I, . .., Is define a basis fo€(A)):

dy 0 A -B 0 0 —-B —-A
;| 0 0o B A4 | @ 0 A —-B
L o 0 C DJ| " O 0 D EJ|’
0O 0 D E 0 0 -C -D
0 0 —-C -D 0 0 -D —-E
.| 0o 0-D -E [0 0o ¢ D
3 d; 0 A -B|> 0 0 —-B —-A|°
0 0 B A di 0 A —-B
0 d -B -A 0 0 -A B
.- 0 0 A4 -B | 0 & -B -4
5 o 0 D —-C| "¢ 0O 0 E —-DJ|’
0 0 E -D 0O 0 -D C
0O 0 -D C 0O 0 —-E D
.| 0o o0o-E D . 0o o D -C
T 0 d -B —-A|> ¥ 0 0 —-A B
0 0 A -B 0 d -B -—-A
Letds := a3 + a% > 0. Then the following eight matricek, Js, . . ., Js define a basis fo€'(A):
-D dy 0 A F 0 0 B
;| -F 0 0 -B | -D d 0 A
L -B 0 0 —-C|> "% -A 0 0 -D|’
-A 0 0 -D B 0 0 C
B 0 0 C A 0 0 D
|4 0o o D Jo—|-B 0 0o -C
57| =D dy o A]> *~ | F 0o 0o B
-F 0 0 -B -D dy 0 A
A 0 d» D B 0 0 -F
s_|-B 0o 0o F |4 0 d& D
STl - o 0o B> " | =D o0 0o Al
-D 0 0 A cC 0 0 -B
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cC 0 0 -B D 0 0 -A
| D 0 0 -4 s_|-¢ 0o o0 B
[ | 0 d D] | B 0 0 —F
-B 0 0 F A 0 do D

Proof: If we put/; to Ig row-wise into ones x 16 matrix and the same with to Js, we see that these two matrices
have rank eight because they both contain a multiple ofghe 8) identity matrix. Thus, the basis elements are
linearly independent. O

The entries A to F in the above 16 basis elements wil be integer, Iif
a € H has integer components. This is the reason why the entfies (instead of 1) were chosen. Note
that all basis elements are neither quaternions nor pseuatemions. Note also, that(z) does not commute
with the above defined basis elements which implies thatéh&alizers” (11 (a)) andC(i2(a)) are different.

EXAMPLE 5.14. LetA := 1;(a) be given, where ¢ R. SinceA € C(A) there must be a representation of
A with respect to the given basis elements. Let as before= a3 + a3, ds := a3 + a3. The representation is (in
the first casel; > 0, in the second casg > 0) given by

A (arhy + azls + asls + asly — aols + ay I + asly — asls) /dy,
( —agJ1 +a1Js + agJs —aszJy — asJs — asJs + arJ7 + ang)/dg.

Leta € R. ThenA := 11(a) is a multiple of the identity matrix and thus, in this ca$eA ) = R*** and the above
representation is not valid.

EXAMPLE 5.15. The centralize€’(A) has the property thaB € C(A) implies BT € C(A). See
Lemmab5.8 Let a representatioB = 25:1 a;lj ford; > 0orB := 25:1 B;J; for da > 0 be given.
One might be interested in finding the corresponding reptatien forBT. What is needed is a representation

I = Zle 7§k)lj ford; > 0andJ! = Zle 5§k)Jj for d, > 0. Both equations can be reduced to the linear
(8 x 8) systems

BIA® = rI® BJ§K) = rJ*),

where the two matriceBI, BJ and the 16 right hand sides are defined as follows:

)
BJ2(m—1)+n—1,k):=Jp(n,m); m=1,2,3,4n=23k=1,2,...,8;

rI® (2(m — 1) 4+ n) : n)
rJ®©20m—1)+n—1):

If we put all eight solutions column-wise in one matrxfor d; > 0 andd for do > 0 we find thatyd; =
IIBI, dd, = I1 BJ wherell is the same permutation matrix in all cases which has theviitlg effect: Row

1 and 8 ofBI and of BJ are unchanged, otherwise make the following permutati®esv2 — 5, row 3 — 2,
row4d — 6, row5 — 3, row6 — 7, row7 — 4. Then, the wanted solutions are in columns 1 to 8. Let us
return to our original problem of finding a representationBd , when a representation f is given. LetBT =
S et ford, >0, BT = Y5 grevJ; fordy > 0. Then,a™ = IIBla/di, 3*" = IIBJ B/d,.

6. The general equation.We now turn to the general equatichZ3), p. 5:
As(z) == ax +brc+axd=e, a,b,c,deeH.

It is not quite obvious how to find an explicit solution to teiguation in terms of quaternions and to find conditions
under which a unique solution exists. The cagés= 0 or bc = 0 reduce the above equation immediately to
Sylvester’s equation. Thus, we may assume dladag 0 andbc # 0.

It would be sufficient to reducegs to one form of Sylvester’s mapping. either in the originainio(3.22
A2(z) = e or an equivalent form\s(x) = E, defined in 4.30. But this seems to be impossible. Sylvester’s
equation was solved by applying the composite mappirg\, where, was essentially the inverse mapping of
Ao. See proof of Theorem. 1. However, we can not hope to guess the inversg;of

LEMMA 6.1.Letb, ¢, b, ¢ € H\R be given. Assume that it is possible to fifid¢” € H such that

(6.1) Ag(x) := bze+ bad = bz forall » € H.



18 Drahoslava Janovska & Gerhard Opfer

Then, eitheb andd’ are real multiples ob”, or c and¢’ are real multiples of”.

Proof: Multiply from the right byc¢”—!, then, the right hand sid'« is linear with respect to multiplication
from the right, butAy(x)c”’~! = bzec”’~! + b'zd'¢’—* would be linear in this sense only if both”~1, /¢’ ~!
would be real. By multiplication witth”—* from the left we would obtain that’—'b andb” 5’ must both be real.

0

COROLLARY 6.2. Letd, ¢, b/, ¢ € H\R and assume that both &’ are not real multiples of the same quater-
nion and that alsa;, ¢’ are not real multiples of the same but possibly another quaia. Then, an equation of
the form 6.1) is impossible.

Proof: Apply the previous lemma. O

Because of the previous results, we will first develop a methbich guarantees a unique solution under a
certain condition and which also includes an algorithm tpragimate this solution. The tool is Banach'’s fixed
point theorem.

6.1. Application of Banach'’s fixed point theorem. We repeat Banach’s fixed point thoerem for complete-
ness in a form which fits to our situation.

THEOREM 6.3. (Banach, 1932) LetX, || ||) be a real Banach space and lgt: X — X be a contractive
mapping, i. e. there is a constasnt< 1 such that

(6.2) 1f (@) = fF@WII < kllz —yl| forall 2,y € X.

Theny has a unique fixed poigtdefined by := f(¢), and this fixed point can be approximated by the sequence
(6.3) zjy1 = f(x;); j=0,1,..., xo arbitrary

and there is the following error estimate which also shovesabnvergence speed:

rJ

(6.4) ey —€ll < 1=

llz1 —20l], J > 1.
K

Proof: [1, BANACH]. O

As we see, this theorem guarantees existence, uniquena$sed point, and it contains a method to approx-
imate that fixed point and also gives an error estimate foafigroximate solution. We apply this theorem to the

mapping
(6.5) fH—-H fx):=0b"—ax—azdc", bc#0,

wheref(x) = x is equivalent to the original equatidfx) := ax + baxc + xd = e. The mapping defined by has
the property that

(6.6) [f(@) = f)] < sl —yl, & :=(la] +[d])/(|bllc])-
Thus, Banach’s fixed point theorem can be applied4f 1. There is the following simple application.

COROLLARY 6.4. Let|a| < k,|d| < k,|b| > k, |c| > k for some positive constaktand otherwise arbitrary
quaternionsz, b, ¢, d. ThenAs(x) := ax + bxzc + xd is non singular ifk > 2. This conclusion is in general not
true if k = 2.

Proof: In this case we have := (|a| + |d|)/(|b||c|) < 2k/k?* = 2/k < 1 and Banach'’s fixed point theorem is
applicable. In order to show that= 2 does not necessarily yield non singular mappings we chdbs@aponents
of a, b, ¢, d to be+1, which impliesk = |a| = |b| = |¢| = |d| = 2. There ar&'® such cases and a computer search
reveals that 2560 of these cases are singular. Two of thess ese

a:= ( 11 17 11 1)7 b = ( 11 17 11_1)1
Ci= (_11 17 11 1)7 d = ( 11 17 _17 _1)7
a:= ( 17 17_17_1)7 b:= ( 17 17_17 1)7
ci=(=1,-1,-1, 1),d:=( 1, 1,—-1,-1).
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ExaMPLE 6.5. Define the following quantities:

a:=(1,-1,1,1), b:= (0,1,2,3),
Ci= (_17 17 _17 _1)7 d:= (17 17 17 1)5
e:=(16,-8,8,4),z := (1,2,2,1). Then

(6.7) As(z) = ax + brc+ xzd = e.

For the data of Examplé.5we havex ~ 0.5345. If we start withzy = 0, the iteraterss differs from the
solution¢ := z by at mos® - 10! in each component and the error estimatd)(yields

lz33 — £] < 2.2645- 107921 — 0| = 6.0522 - 107°.

Now, the conditiorx < 1 may not be valid. Then a common trick is to iterate the invenspping of 6.3),
i. . we switchj andj + 1. In our case we obtaim; := b~'(e — ax;y1 — z;41d)c™ !, which is equivalent to
arjy1 + vj41d = e —bxje, j =0,1,..., xo arbitrary. Thus, in each step Sylvester’'s equation has to be
solved. In the present case two new fixed point equationyevMm} applying the solution formulag @), (4.2),
namely

(6.8) Fy(z) == f; ' (e — bac+ a” ' (e — bzc)d),
(6.9) (e — bzc+a(e — bzc)d ") f, 7,

=
—~
&
N~—
i

wheref;, f, were already defined int(1), (4.2). Since the two formulasi(l), (4.2) define the same, we have
Fy(z) = F,.(x) for all xz. We find

[Fi(z) — Fl(y)| < milz —yl,  [Fr(z) = B (y)] < frlz =yl
where
o Ll + Ja=id]) _ [blle|(1 + [d~Hla]) _
| = = = Rp.
|fl| |fr|
The middle identity follows from4.40 of Lemma4.11 Let us put

(6.10)

K= K] = Kp.
Thus, Banach'’s fixed point theorem can be applied to the {icihfunctionsF;, F,. definedin 6.8), (6.9 if & < 1.
Let us use Examplé.5again. Then we finéd ~ 3.7417 and we cannot apply Banach'’s fixed point theorem. This
is no surprise, since the formeris x ~ 0.5345 and Banach'’s theorem works fd3.p).
Corollary6.4can be given the following qualitative form. Hix| +|d|. Then, sufficiently largé||c| guarantee
that\; is non singular. The opposite is true as well.

COROLLARY 6.6. Fix a,d € H\R. Then, a sufficiently small produié{|c| guarantees the non singularity of
As.

Proof: The conditions; < 1 (see 6.10) can be written a$b||c|(|a| + |d|) < |a||f;]- Now, a look at the
definition @.1) shows that f;| depends only on, d. O

We summarize our results.

THEOREM6.7. Leta,b,c,d € H\R and A\5(z) := ax + bxc + zd. Definex by (6.6) andz := x; = &,
by 6.10. If K < 1 orif & < 1then); is non singular. Ifx < 1 the unique solution of;(x) = e can be
approximated by forming ;.1 = f(x;), 7 = 0,1,..., zo arbitrary, where f is defined in §.5 and an error
estimate can be found i6 ). If & < 1, then the corresponding functions to be used for iteratieneither F; or
F,. defined in 6.8), (6.9 and for the error estimates(4) is again applied. For the product we hax& > 1 and it
depends only on andd.

Proof: Apart fromsk > 1 everything has been shown already. Now,

r— lal+1d] Plle|(t +[a”Hd) _ (Jal+d)?
[b]c] |fil |all fil
Sincelal|fi] = [2aRd + a® + |d|?| < 2]a||Rd| + |a]* + |d|* < (Ja| + |d])* (because ofRd| < |d|) the proof is
complete. O
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FIGURE 6.8. Values o andk for Example6.5with d = A(1,1,1,1), A € [1, 6]

We have developed two fixed point equations with two diffécamtraction constants, ~ for the same fixed
point. It would be very favorable if at least one of the two wantion constants would be less than one. But this
is not the case. We take the given examplel@.and varyd in the form\d with positive\. The result is shown
in Figure6.8. The ascending, straight line representas a function ovep, the other, curved line represents
over\. For\ < Ao = 2.74 we havex < 1, for A > \; ~ 4.14 we haver < 1, but for\ € [\, A\1] we have
k > 1,k > 1. Thus, there is no hope that all equations of the considgms®.23 can be solved by Banach'’s
fixed point theorem. In additiom:x > 1 implies, that it is impossible that simultaneouslyx 1 ands < 1.

7. Some further problems and observations.We mention some problems in connection with the general
form of the linear mapping,,,. If we look at Theorend.8then it appears likely that this theorem is only a sample
of a more general theorem.

CONJECTURE7.1. Let )\, be defined as in3 1), p. 2 and let\,, be non singular. Then there atan
quaternion§>;-, c;-,j =1,2,...,msuch that the inverse of,, has the representation

M) = Zb;xc;-,
j=1
and the inverse of the matrixI, defined in 8.19, can be written as
M_l = Z |1(b;-)|2(03-),
Jj=1

where the mappingsi» are defined in the beginning, B, by 3.3, (3.4).

Itis clear that the two statements in the above conjectwequivalent.

Since )\, is defined by2m quaternions one might ask whether interpolation problemséz;) = vy, k =
1,2,...,2m with arbitrary quaterniong; and pairwise distinct quaterniong have a solution.

Another, connected question is the following: Givep, can one recover the definirg: constants by func-
tion evaluations with arbitrary, but finitely many samplest us treat two simple examples.

The first example is Sylvester's equatids(z) = ax + xd where none of the two constantsd is real. The
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interpolation problem for two points has the form

{:m—l—ay:A,

(7.1) xb+ by = B,

wherea,b € H\{0} anda # b, and A, B arbitrary. We have changed the notation, named the unknawns
now x, y and the two points which replace the formeby «, b. If we apply the former matrix technique, this is
equivalent to th€8 x 8) matrix equation

o) (8 2)()-(5)

whereA :=1,(a), A := I5(a), B := 1,(b), B := I5(b). However, this matrix does not have full rank. The first and
the fifth column are the same. Actually, the rank is even 6s tthe interpolation problem has solutions only for
very specifically chosed, B.

As a second example let us takg(x) := bxzc. The interpolation problem for two points with the same d®n
of notation as above reads

ray = A,
(7.3) { xby = B.

This is a non linear equation which in matrix terms reads

XYa=A XYb=B, X:=i1(2),Y:=Ily).

This problem will in general have no solution.

Now let us treat the recovery problem. We compuite= Ay (W) = aw/; +#;d, j = 1,2,3,4. If we have a
look at formulas 8.3), (3.4), we deduce from the first three samples that we can recoedashthree components
of a and ofd. But all four samples are not enough to recover the real faremdd. We only find its sum.

The recovery problem also suffers from the non linearityhia toefficients. If we computg := A\ (#;) =
bav;c we obtain sums of products which are, however, not suffidiefind the coefficients, c.

8. Appendix 1: The centralizer of A:= I3(a). The same techniques which were used to determine the
centralizerC(A) of A :=1;(a) (Theorenb.13 can be used for determining the centraliz&A ) of A := 12(a).
See B8.4) on p.3 for 15 and Definition5.10on p.11 for centralizer.

THEOREMS8.1.Leta = (ay, a9, as,as) € H\R be given. Define
dy = ag + ai, dy = a% + a%,
A = asay, B := agas, C := a%, D :=asay, E := ai, F = a%.

The centralizeiC'(12(a)) has dimension eight and a basis is given below: fifas integer entries, than all given
basis elements have also integer entries.

Case 1:d; > 0:

di 0 —-A B 0 0 —-B —-A
[ 0 0 B A | @ 0 —A B
L= o 0 ¢ DJ| 2T 0O 0 —-D —-E|°

0 0 D E 0O 0 C D

0 0 —-C -D 0 0 —-D -E
. 0O 0 D E P 0 0 —-C -D
3 4 0 —A B> 4T 0 0 B Al

0 0 -B -A d; 0 —-A B

0 d -B —-A 0 0 A -B
A 0 0 —-A B A 0 d -B -—-A
5o 0 o -D C|> ¢ 0 0 E -D|°

0 0 —-E D 0O 0 -D C

0O 0 D -C 0O 0 E -D
A 0 0 —E D jan 0O 0 D -C
T 0 d -B —-A]|> & 0 0 —A B

0 0 A -B 0 d -B -—-A
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Case 2:dy > 0:
D do 0 A F 0 0 -B
7 -F 0 0 B s D dy 0 A
'Yt -B 0o o c]| 7T A 0 0 -DJ|°
~A 0 0 D -B 0 0 C
B 0 0 -C A 0 0 -D
.| -4 o o0 D g B 0 0 -C
3 D dy o A | -F 0 0 B’
F 0 0 -B D dy 0 A
~A 0 d» D B 0 0 F
i._|-B 0 0 -F j._|-A 0 d& D
>~ -c 0 0 -B]|> "¢ D 0 0 Al
-D 0 0 -A -Cc 0 0 -B
cC 0 0 B D 0 0 A
i ._|-p 0o 0 -4 s c 0 0 B
T -A 0 do D] 87| -B 0 0 —F
B 0 0 F -A 0 dy D

9. Appendix 2: A list of singular cases for\z(x) := ax + bxc + xd. According to Theoren3.3, for-

mula 3.19 A;(z) has the matrix equivalent

/\3(1‘) = (|1(a) + |1(b)|2(0) + |2(d))X =: Mx.

We list some cases where the mafhikis singular. We found these examples by searching randomee@ans
a, b, c, d with integer entries uniformly distributed ir-10, 10]. There was about one examplelio® cases. We

used the random number generatand of mat | ab version7. 2. 0. 283.

1. a=(-9,4,10,-2),b= (-2,-2,-2,1),c = (0,—-3,-2,1),d = (0,2,3, 4);
2. a=(4,7,10,9),b = (-2,2,-3,5),c = (1,0,0,—2),d = (2,3,8,5);

3. a=(-7,3,-10,-3),b=(1,2,1,—7),c = (1,0,1,-2),d = (—6,2, —4, —7);
4. a=(4,6,1,2),b=—(1,1,1, 1), =(-1,-1,3,2),d = (—=5,—7,—4,3);

5. a=(—3,-2 -3, 10)7b:( 1, -4, 3) =(2,0,1,-2),d = (0,8,3, —8);
6. a=—(6,8,8,3),b=(-2—-1,1,-1),c= —(3,2,4,3),d = (-7, —4,1, —3);
7. a=(-8,2,5-9),b=(5,—2,—2, —4),c (1,-1,2,2),d = (=7,5,-7,7);
8. a=(8,-6,7,-10),b = (—3,-4,1,3),c = (0,2,3,-2),d = (7,5,8,0);

9. a=(2,4,-2,3),b=(—4,-3,0,3),c = (1,0,3,0),d = (5,7,9, —4);

10. a = (10,9,6,5),b = (—2,2,2, —2),c = (0,0,1,5),d = (2, —3,6, —1);

11. a = (=6,7,-5,—4),b = (5,1,—6,5),c = (0,0,1,—1),d = (—1,4, =5, 8);
12. a = (8,2,1,-9),b = (3,—4,—7,2),c = (0,1,0,2),d = (2, -1, —8, —5);

13. a = (7,0,5,0),b = (=5,—-2,—1,3),c = (0,1, —1,0),d = (—10,4, —5, —1);
14. a = (4,4,5,—6),b = (0,0,—1,1),c = (7,4, —2,6),d = (4,0,6,3);

15. a = (0,6,4, —3),b = (0,3,-2,0),c = (1, —1,—1,4),d = (10,1, —8, 1);

16. a = (—5,—4,-5,5),b = (—1,10,—1,0),c = (1,—1,—1,1),d = —(5,5,8, 3).

In the non singular cases, the determinant is usually ldBgé within the many investigated cases we found

one case where the determinant is equal to one. This is

a=(6,—3,—4,-7),b=(—4,4,-1,5),c = (1,—1,-2,—1),d = (7, -4, -9, 7).
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