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A kinetic scheme for the Savage-Hutter equations

Christine Kaland ∗, Jens Struckmeier †

Abstract: The Savage-Hutter equations describe the motion of granular material under the influence

of friction. Based on the kinetic formulation of the Savage-Hutter equations we present a kinetic

scheme in one dimension, which describes the deformation of the mass profile and allows it to start

and to stop. Moreover the method is able to preserve the steady states of granular masses at rest.

The method is testet on several numerical examples.
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1 Introduction

Dense snow avalanches and landslides regularly entail enormous damage. Therefore it would

be extremely helpful if one could predict the dynamic behaviour of such granular masses,

particularly to predict the place, where the mass comes to rest.

Furthermore, industrial problems dealing with the dynamic behaviour of granular material

like the modeling of grain in silos are of great interest.

In [10] Savage and Hutter deduce a model based on the incompressible Euler equations to

describe the dynamic of such granular masses moving on a bottom topography, which is

constant in time and spatially only slowly varying. Under the additional assumption that the

internal friction angle equals the dynamic friction angle the Savage-Hutter equations read

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 + β
h2

2
) = g h ,

(1)

where

β = ε k cos ζ

and

g = g(u) = sin ζ − sgn (u) cos ζ tan δ for u 6= 0

in the unknowns h, hu : R× (0,∞) −→ R. Thereby h and u denote the height of the granular

material and its average velocity, respectively. Moreover ζ is referred to as the inclination
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angle of the basement topography against the horizontal, δ denotes the dynamic friction angle,

ε the ratio of characteristic height to characteristic lenght of the mass under consideration

and k is an earth pressure coefficient. The system is hyperbolic as long as the height stays

nonnegative. In [11] this model is extended to smoothly varying bottom topographies which

results in an additional x-dependence in the flux function. The effect of friction is modelled

in both equations by a simple Coulomb model. Other friction models that are not subject

to this paper are discussed in [5]. For simplification the Savage-Hutter equations are in the

following abbreviated by SH equations.

The source term g h on the right hand side of the second equation of (1) causes nonconstant

steady states, that actually do make sense physically. But in contrary to other models for

fluid dynamic processes like the shallow water equations, there are infinitly many of such

steady states, which are described by

∂th = 0 , u = 0 . (2)

If we insert (2) into the SH equations (1), we get the following relation between the spatial

derivative of h and the source term

β ∂xh = g .

Since we are interested in granular masses at rest, we have to consider static friction instead,

which is bounded by the dynamic friction because of the Coulomb model. Therefore the

source term and therewith the steady states are not uniquely defined for u = 0, but we can

give a simple criterion on ∂xh to decide whether the mass is in equilibrium or not. Height

profiles h, which satisfy that condition are named admissible profiles in the following. An

exact definition of admissible profiles is given in section 3.

The aim of this paper is to present a numerical scheme based on a kinetic Ansatz for the SH

equations, that preserves such steady states and is able to describe the beginning of sliding

and the stopping of more general solutions. Moreover we can apply a stability result from [8],

that ensures the nonegativity of the height under few conditions.

In the next section we present the (semi-)kinetic formulation of both the simplified SH equa-

tions with β = const and the generalized SH equations for smoothly varying chutes. For the

constuction of the kinetic formulations we use an Ansatz of Perthame and Simeoni presented

in [8]. The conservative and consistent scheme with the desired properties is constructed in

the third section. In the fourth section the method is tested on several examples. A conclusion

of the results and an outlook to possible extensions are given at the end of the paper.

2 The kinetic formulation

In this section we present a kinetic formulation for both the simlified SH equations with

constant inclination angle and the general equations describing the motion of granular

material down a smooth chute as explained in the introduction.
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2.1 The kinetic formulation for a constant inclination angle

Let us first consider a constant inclination angle ζ = const and therefore β = const. Similar

to the kinetic formulation of the Euler equations or the shallow water equations in [2], [7] and

[8], we are looking for a density of particles M(x, ξ, t) = M(h, ξ − u) satisfying






h

hu

hu2 + 1
2βh2




 =

∫

R






1

ξ

ξ2




M(h, ξ − u) dξ . (3)

In the following we proceed as Perthame and Simeoni in [8] for the shallow water equations

and define M by making the Ansatz

M(h, ξ − u) =
√

h χ
(ξ − u√

h

)

(4)

with a nonnegative function χ : R → R satisfying

χ(ω) = χ(−ω) ,
∫

R

χ(ω) dω = 1 ,

∫

R

ω2 χ(ω) dω =
β

2
.

(5)

It is easy to see, that every function M of the form (4) satisfies (3): because of the properties

(5) we obtain for the moments of M

∫

R

M(h, ξ − u) dξ =

∫

R

√
h χ
(ξ − u√

h

)

dξ

=

∫

R

√
h χ(ω)

√
h dω

= h

∫

R

χ(ω) dω

= h ,
∫

R

ξ M(h, ξ − u) dξ =

∫

R

ξ
√

h χ
(ξ − u√

h

)

dξ

=

∫

R

(
√

hω + u)
√

h χ(ω)
√

h dω

= h3/2

∫

R

ω χ(ω) dω + hu

∫

R

χ(ω) dω

= hu

∫

R

χ(ω) dω

= hu ,
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∫

R

ξ2 M(h, ξ − u) dξ =

∫

R

ξ2
√

h χ
(ξ − u√

h

)

dξ

=

∫

R

(
√

h ω + u)2
√

h χ(ω)
√

hdω

= h2

∫

R

ω2 χ(ω) dω + 2 h3/2u

∫

R

ω χ(ω) dω + hu2

∫

R

χ(ω) dω

= hu2 +
1

2
βh2 .

These relations lead to the following theorem, the same theorem as Perthame and Simeoni

formulate in [8] for the shallow water equations.

Theorem 1 The pair (h, hu) is a solution of the equation (1), if and only if M(h, ξ − u) of

the form (4) solves the kinetic equation

∂tM(h, ξ − u) + ξ ∂xM(h, ξ − u) + g(u) ∂ξM(h, ξ − u) =: Q(t, x, ξ) (6)

with Q(t, x, ξ) satisfying

∫

R

Qdξ = 0 und

∫

R

ξ Qdξ = 0 (7)

Proof. If (h, hu) is a solution of (1) and M of the form (4), equation (6) is satisfied by

definition. Because of the properties (3) it is easy to see that the collision operator Q meets

the conditions (7).

Let now be M of the form (4) and (h, hu) such that M(h, ξ − u) solves the equation (6) with

Q satisfying (7). We then integrate (6) with respect to ξ and use again the properties (3) to

see that (h, hu) solves equation (1). �

Remark 1 Note that there are still macroscopic values in the kinetic equation (6). Therefore

the Vlasov type equation (6) is often called a kinetic representation or semi-kinetic formulation

instead of kinetic formulation (see [7]).

Remark 2 The only nonlinearity of equation (6) is caused by the collision operator Q. There-

fore (6) is a lot easier to handle than the original system.

Now we have to choose the function χ. In contrast to the shallow water equations, where

friction is neglected and the only physical staedy states are those of a ”lake at rest”, the SH

equations admit infinitly many steady states of granular masses at rest. It is clear that the

height profile of such a granular mass is not uniquely defined, moreover the gradient of the

profile has to be somehow bounded to avoid the moving of the material. But if one inserts the

criterion ∂th = 0 and u = 0 for a mass at rest into the SH equations, one finds the following

relation between the height h and the function g

β ∂xh = g . (8)
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Note that g is not yet defined for u = 0, as described in the introduction. Nevertheless, for

u = 0 the values of g do not exceed certain bounds because g is defined as the sum of a

gravitational force term

g1 := sin ζ

and a second term, which expresses the Coulomb friction

g2 := − u

|u| cos ζ tan δ for u 6= 0 .

In a simple Coulomb friction model the static friction does not exceed the dynamic friction

and therefore

− cos ζ tan δ ≤ g2 ≤ cos ζ tan δ for u = 0 .

Moreover we demand the collision operator Q to vanish in equilibrium. This condition does

make sense in analogy to classical gas dynamics since up to here the only constraint on Q is

the vanishing of the first two moments.

Therefore for steady states of the form ∂th = 0 and u = 0 equation (6) becomes

ξ ∂xM(h, ξ) + g ∂ξM(h, ξ) = 0 . (9)

As described in [8] one can convert this equation into an ordinary differential equation for χ

using (8) and the substitution ω = ξ/
√

h:

∂xh
2

[
ξ√
h
χ
(

ξ√
h

)

− ξ2

h χ
′
(

ξ√
h

)

+ g 2
∂xhχ

′
(

ξ√
h

)]

= 0

⇔ ∂xh
2

[

ωχ(ω) − ω2χ
′
(ω) + 2βχ

′
(ω)
]

= 0

⇔
[

ωχ(ω) + (2β − ω2)χ
′
(ω)
]

= 0 (10)

Under the conditions (5) equation (10) admits the unique solution

χ(ω) = C
√(

2β − ω2
)

+
where C =

1

πβ
. (11)

Finally the microscopic equilibrium density for a constant inclination angle is specified by

M(h, ξ − u) =
√

h χ
(ξ − u√

h

)

=

√
2h

π
√

β

√

(
1 − (ξ − u)2

2βh

)

+
.

(12)

Of course, this is the same result as in [8] for the shallow water equations.

To preserve the steady states numerically, the discretisation of the kinetic equation and partic-

ularly that of the source term are extremely important. In [8] the authors construct a scheme

with reflections following the concept of upwinding the sources at interfaces as described in

[3] and [9]. In this paper we do not follow this concept since friction is a volumic force rather

than an interface force and the interpretation as a surface effect is not evident. But away

from physical meaning there are ideas to treat friction as a bottom topography (see [4]). The

discretization for equation (6) is elaborated in section 3, but first we want to give the kinetic

formulation for the more general case of smoothly varying chutes.

5



2.2 The kinetic formulation for smooth chutes

In this section we consider the general SH equations for smoothly varying inclination angles

ζ(x)

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 + β
h2

2
) = gh ,

(13)

where

β = β(x) = ε k cos ζ(x)

and

g = g(u, x) = sin ζ(x) − sgn(u) tan δ (cos ζ(x) + ηκ(x)u2) for u 6= 0 .

Here the quantity κ denotes the curvature of the chute and η = L
R is known as the character-

istic curvature where R denotes the radius of curvature of the chute. For simplicity we made

again the assumption that the internal friction angle equals the dynamic friction angle. To

get a kinetic formulation with a preferably simple function χ, we first transform the system

(13) such that the only dependence of the spatial variable x occurs on the right hand side

(see [1]).

Presuming that β is differentiable and γ := β
′
/β exists the system reads in the new variables

ρ := βh and m := βhu

∂tv + ∂xF (v) = G(v, x) , (14)

where

v =

(

ρ

m

)

,

F (v) =

(

m

m2/ρ + ρ2/2

)

and

G(v, x) =

(

γ m

γ (m2/ρ + ρ2/2) + ρ g

)

.

In analogy to the previous section we are looking for a density M(ρ, ξ−m/ρ) =
√

ρχ( ξ−m/ρ√
ρ ),

that satisfies

∫

R






1

ξ

ξ2




M(ρ, ξ − m/ρ) dξ =






ρ

m

m2/ρ + ρ2/2




 . (15)

Choosing χ as a nonnegative function, that meets the conditions

6



χ(ω) = χ(−ω) ,
∫

R

χ(ω) dω = 1 ,

∫

R

ω2 χ(ω) dω =
1

2
,

(16)

the conditions (15) are always satisfied. For the new variables ρ and m we get the following

theorem.

Theorem 2 The pair (ρ,m) is a solution of the equation (14), if and only if M(ρ, ξ−m/ρ) =√
ρχ( ξ−m/ρ√

ρ ), where χ fulfills (16), solves the kinetic equation

∂tM + ξ ∂xM +
[γ

2

(

ξ2 −
(m2

ρ2
+

ρ

2

))

+ g
]

∂ξM = Q (17)

with Q(t, x, ξ) satisfying
∫

R

Qdξ = 0 and

∫

R

ξ Qdξ = 0 .

Proof. The equations (6) and (17) differ only in the coefficient

F (x, ξ, t) =
γ

2

(

ξ2 −
(m2

ρ2
+

ρ

2

))

+ g

in front of ∂ξM . This force term has to satisfy

∫

R

(

1

ξ

)

F (x, ξ, t) ∂ξM(ρ, ξ − m/ρ) dξ = −
(

γ m

γ (m2/ρ + ρ2/2) + ρ g

)

.

Because of the compact support of M we obtain

∫

R

F ∂ξM dξ =
γ

2

∫

R

ξ2 ∂ξM dξ +
(

g − γ

2

(m2

ρ2
+

ρ

2

))∫

R

∂ξM dξ

= −γ

2

∫

R

2 ξ M dξ

= −γ m

and
∫

R

ξ F ∂ξM dξ =
γ

2

∫

R

ξ3 ∂ξM dξ +
[

g − γ

2

(m2

ρ2
+

ρ

2

)] ∫

R

ξ ∂ξM dξ

= −γ

2

∫

R

3 ξ2 M dξ +
[γ

2

(m2

ρ2
+

ρ

2

)

− g
] ∫

R

M dξ

= −3

2
γ
(m2

ρ
+

ρ2

2

)

+
γ

2

(m2

ρ2
+

ρ

2

)

ρ − ρg

= −γ
(m2

ρ
+

ρ2

2

)

− ρ g . �
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Unfortunately for equation (17) it is not as easy as before to specify an equilibrium density

M . In equation (6) we were able to eliminate the disturbing macroscopic values to fix the

function χ. The method presented in the next section is based only on the results for a

constant inclination angle. Therefore in the following the density M is assumed to be of the

special form (12). Some ideas to handle smoothly varying bottom topographies are given in

section 5.

3 A quasi-balanced scheme in 1D

In this section we present a finite volume scheme in one dimension for the SH equations (1)

based on the kinetic formulation, i.e. a numerical method that preserves the steady states of

a granular mass at rest. Furthermore it can be shown easily that the scheme preserves the

nonnegativity of the materials’ height at least in regions of large deformations.

For the construction of the scheme we proceed as follows: at first we present a microscopic

finite volume scheme in one dimension for the kinetic formulation of the SH equations. In-

tegration of the method leads to a consistent macroscopic scheme, which is conservative and

in some sense stable in the first component (scheme 1). This method is not able to preserve

the steady states, but with little modifications of the microscopic flux function and the dis-

cretization of the source term we obtain a scheme with the desired property. Successively this

method will be modified so that the resulting scheme is able to describe the stopping of the

mass, too (scheme 2). Unfortunately the corrected method generates oscillations for highly

inadmissible initial profiles like Riemann data. Since the second scheme was only constructed

to describe the starting and stopping of the granular mass, we combine the two schemes and

use the second one for the starting and stopping process and the first one otherwise.

3.1 A first microscopic scheme

First we want to discretize equation (6). Therefore we consider an equidistant mesh of R ×
(0,∞) with points (xi, tn) = (i∆x, n∆t), i ∈ Z, n ∈ N. The cell Ci is defined as Ci =

[xi−1/2, xi+1/2], where the interfaces are xi+1/2 = (xi + xi+1)/2. The length of such a control

volume is denoted by ∆x, the time step by ∆t. In each point (xi, tn) we denote by the

approximations (hn
i , qn

i = (hu)ni ) the cell averages over the cell Ci.

Moreover we define

un
i =

qn
i

hn
i

and

Un
i =

(

hn
i

qn
i

)

.

With these quantities the discrete density of particles Mn
i (ξ) is given by
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Mn
i (ξ) = M(hn

i , ξ − un
i )

In order to discretize equation (6) we firstly neglect the collision operator Q and get

fn+1
i (ξ) − Mn

i (ξ) + λξ
(
Mn

i+1/2(ξ) − Mn
i−1/2(ξ)

)
+ ∆t gn

i (Mξ)
n
i (ξ) = 0 (18)

where λ = ∆t/∆x and the microscopic fluxes Mn
i+1/2 are defined by the Upwind formula

Mn
i+1/2 =

{

Mn
i (ξ) für ξ ≥ 0,

Mn
i+1(ξ) für ξ < 0.

(19)

Because neglecting the collision operator the density fn+1
i (ξ) is no longer an equilibrium

density, i.e. it satisfies no longer the conditions (3). Therefore the resulting density is denoted

by fn+1
i (ξ) instead of Mn+1

i , but can be projected back to the class of equilibrium densities

via

Un+1
i :=

∫

R

(

1

ξ

)

fn+1
i (ξ) dξ (20)

This procedure is a common practice in constructing kinetic schemes (see [7], [8]).

The microscopic density Mn+1
i (ξ) is obtained from the data at time level tn as follows:

1. receive fn+1
i (ξ) from equation (18),

2. compute the macroscopic quantity Un+1
i =

(
hn+1

i , qn+1
i

)T
via (20),

3. the density Mn+1
i (ξ) = M(hn+1

i , ξ−un+1
i ) is an equilibrium density again, i.e. it satisfies

(3).

To discretize the source term we simply choose gn
i = g(un

i ) for un
i 6= 0. For u = 0 the function

g(u) is not defined, but is in relation to the spatial derivative via β ∂xh = g. Therefore, for

u = 0, the source term should be discretized as

gn
i = β

(hn
i+1 − hn

i−1

2∆x

)

. (21)

Additionally we know that static friction is bounded by dynamic friction. These facts motivate

the following definition.

Definition 1 (admissible profile) A mass profile h is said to be admissible, if its spatial

derivative ∂xh satisfies

min
[
sin ζ + R, max

(
β ∂xh, sin ζ − R

)]
= β ∂xh

where ±R denotes the force term resulting from friction and

R = cos ζ tan δ .
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The discretized version of that definition can be chosen as:

min
[

sin ζ + R, max
(

β
(
(hn

i+1 − hn
i−1)/2∆x

)
, sin ζ − R

)]

= β
(
(hn

i+1 − hn
i−1)/2∆x

)
. (22)

If relation (22) does not hold, the mass profile is not considered to be in equilibrium. In this

case gn
i should be set to one of the bounds. Overall we obtain for gn

i

gn
i =

{

g̃n
i if un

i = 0

g(un
i ) otherwise

where

g̃n
i = min

[

sin ζ + R, max
(

β
(
(hn

i+1 − hn
i−1)/2∆x

)
, sin ζ − R

)]

.

Instead of (18) we will use the microscopic scheme

fn+1
i (ξ + ∆tgn

i ) − Mn
i (ξ) + λξ

(
Mn

i+1/2(ξ) − Mn
i−1/2(ξ)

)
= 0 (23)

in further considerations.

3.2 A macroscopic scheme

We now get a macroscopic scheme by computing the first two moments of (23). Because of

∫

R

ξ fn+1
i (ξ + ∆t gn

i ) dξ =

∫

R

(ξ − ∆t gn
i ) fn+1

i (ξ) dξ = (hu)n+1
i − ∆t gn

i hn+1
i

we obtain

Un+1
i = Un

i − λ
(
Fn

i+1/2 − Fn
i−1/2

)
+ ∆t Sn

i

mit Sn
i =

(

0

gn
i hn+1

i

)

.
(24)

Thereby the macroscopic fluxes are given by

Fn
i+1/2 = F (Un

i , Un
i+1)

=

∫

ξ≥0
ξ

(

1

ξ

)

Mn
i (ξ) dξ +

∫

ξ<0
ξ

(

1

ξ

)

Mn
i+1(ξ) dξ .

After some easy calculation we obtain for the first component of Fn
i+1/2

10



(Fn
i+1/2)

1 =

∫

ξ≥0
ξ Mn

i (ξ) dξ +

∫

ξ<0
ξ Mn

i+1(ξ) dξ

=

∫

ξ≥0
ξ M(hn

i , ξ − un
i ) dξ

︸ ︷︷ ︸

I1

+

∫

ξ<0
ξ M(hn

i+1, ξ − un
i+1) dξ

︸ ︷︷ ︸

I2

where

I1 =

∫

ξ≥0
ξ
√

hn
i χ
(ξ − un

i
√

hn
i

)

dξ

=
√

hn
i

√
2

π
√

β

∫

ξ≥0
ξ

(

1 −
(

ξ − un
i

√
2βhn

i

)2)1/2

+

dξ

=







(hu)ni if a1 ≤ −1

2
3π

√
2β (hn

i )3/2 cos3(arcsin(a1))

+ 2
π (hu)ni

(
π
4 − 1

2 arcsin(a1) − 1
4 sin(2 arcsin(a1))

)

if − 1 < a1 < 1

0 if a1 ≥ 1

and

I2 =

∫

ξ<0
ξ
√

hn
i+1 χ

(
ξ − un

i+1
√

hn
i+1

)

dξ

=
√

hn
i+1

√
2

π
√

β

∫

ξ<0
ξ

(

1 −
(

ξ − un
i+1

√
2βhn

i+1

)2)1/2

+

dξ

=







0 if a2 ≤ −1

− 2
3π

√
2β (hn

i+1)
3/2 cos3(arcsin(a2))

+ 2
π (hu)ni+1

(
π
4 + 1

2 arcsin(a2) + 1
4 sin(2 arcsin(a2))

)

if − 1 < a2 < 1

(hu)ni+1 if a2 ≥ 1

using a1 := −un
i /
√

2βhn
i and a2 := −un

i+1/
√

2βhn
i+1.

For the second component we get

(Fn
i+1/2)

2 =

∫

ξ≥0
ξ2 Mn

i (ξ) dξ +

∫

ξ<0
ξ2 Mn

i+1(ξ) dξ

=

∫

ξ≥0
ξ2 M(hn

i , ξ − un
i ) dξ

︸ ︷︷ ︸

I3

+

∫

ξ<0
ξ2 M(hn

i+1, ξ − un
i+1) dξ

︸ ︷︷ ︸

I4

.
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And the integrals I3 and I4 are

I3 =







hn
i (un

i )2 + 1
2β(hn

i )2 if a1 ≤ −1

4
π β (hn

i )2
(

π
16 − 1

8 arcsin(a1) + 1
32 sin(a1)

)

− 4
3π

√
2β (hu)ni

√
hn

i cos3(arcsin(a1))

+ 2
π hn

i (un
i )2
(

π
4 − 1

2 arcsin(a1) − 1
4 sin(2 arcsin(a1))

)

if − 1 < a1 < 1

0 if a1 ≥ 1

I4 =







0 if a2 ≤ −1

4
π β (hn

i+1)
2
(

1
8 arcsin(a2) + π

16 − 1
32 sin(4 arcsin(a2))

)

− 4
3π

√
2β (hu)ni+1

√
hn

i+1 cos3(arcsin(a2))

+ 2
π hn

i+1(u
n
i+1)

2
(

π
4 + 1

2 arcsin(a2) + 1
4 sin(2 arcsin(a2))

)

if − 1 < a2 < 1

hn
i+1(u

n
i )2 + 1

2β (hn
i+1)

2 if a2 ≥ 1

With these informations our first scheme reads:

Scheme 1

Un+1
i = Un

i − λ
(
Fn

i+1/2 − Fn
i−1/2

)
+ ∆t Sn

i

where

Fn
i+1/2 =

(
(Fn

i+1/2)
1, (Fn

i+1/2)
2
)T

=
(
I1 + I2, I3 + I4

)T
,

Sn
i =







(

0

g̃n
i hn+1

i

)

if un
i = 0

(

0

g(un
i )hn+1

i

)

if un
i 6= 0 ,

g̃n
i = min

[

sin ζ + R, max
(

β
(
(hn

i+1 − hn
i−1)/2∆x

)
, sin ζ − R

)]

and

R = cos ζ tan δ .

12



Obviously the scheme is conservative in the first component and consistent since we can write

for the numerical flux function

Fn
i+1/2 = F (Un

i , Un
i+1)

where

F (U, V ) =

∫

ξ≥0

(

1

ξ

)

ξ M
(
U1, ξ − U2

U1

)
dξ +

∫

ξ<0

(

1

ξ

)

ξ M
(
V1, ξ − V2

V1

)
dξ ,

with U , V ∈ R
2 and the indices denote the first and second component, respectively. Therefore

we get for U = (h, hu)T

F (U,U) =

∫

R

(

1

ξ

)

ξ M(h, ξ − u) dξ

=

(

hu

hu2 + 1
2βh2

)

.

If we now consider an admissible profile h at time tn and insert un
i = 0 into the method, we

get

hn+1
i = hn

i − λ
[

(Fn
i+1/2)

1 − (Fn
i−1/2)

1
]

= hn
i − λ

[ 2

3π

√

2β
(

(hn
i )3/2 − (hn

i+1)
3/2
)

− 2

3π

√

2β
(

(hn
i−1)

3/2 − (hn
i )3/2

)]

= hn
i + λ

[ 2

3π

√

2β
(

(hn
i+1)

3/2 − 2(hn
i )3/2 + (hn

i−1)
3/2
)]

.

Since the second term on the right hand side does not vanish in general, we get hn+1
i 6= hn

i .

So this simple scheme does not preserve the desired steady states. Note that the verification

whether a profile is admissible takes place in the discretized source term, which influences

only the second component. We are looking for a method, that ensures

un
i = 0 ∀i ∈ Z =⇒ hn+1

i = hn
i ∀i ∈ Z ,

i.e. that changes inadmissible profiles via the velocity. In addition we want

un
i = 0 ∀i ∈ Z =⇒ un+1

i = 0 ∀i ∈ Z .

for admissible profiles.

This can be reached by little modifications in the microscopic flux function and the discretiza-

tion of the source term. As new microscopic fluxes we choose

13



M̃n
i+1/2 =







M
(hn

i
+hn

i+1

2 , ξ − un
i

)
für ξ ≥ 0

M
(hn

i
+hn

i+1

2 , ξ − un
i+1

)
für ξ < 0

=







√
hn

i
+hn

i+1

2 χ
(

ξ−un

i√
(hn

i
+hn

i+1
)/2

)

für ξ ≥ 0

√
hn

i
+hn

i+1

2 χ
(

ξ−un

i+1√
(hn

i
+hn

i+1
)/2

)

für ξ < 0 .

(25)

That means that the actual upwinding takes place only in the velocity u and no longer in the

height h. With (25) the new macroscopic fluxes F̃n
i+1/2 =

(
(F̃n

i+1/2)
1, (F̃n

i+1/2)
2
)T

read

(F̃n
i+1/2)

1 =

∫

R

ξ Mn
i+1/2(ξ) dξ

=

∫

ξ≥0
ξ

√

hn
i + hn

i+1

2
χ

(

ξ − un
i

√

(hn
i + hn

i+1)/2

)

dξ

︸ ︷︷ ︸

Ĩ1

+

∫

ξ<0
ξ

√

hn
i + hn

i+1

2
χ

(

ξ − un
i+1

√

(hn
i + hn

i+1)/2

)

dξ

︸ ︷︷ ︸

Ĩ2

and

(F̃n
i+1/2)

2 =

∫

R

ξ2 Mn
i+1/2(ξ) dξ

=

∫

ξ≥0
ξ2

√

hn
i + hn

i+1

2
χ

(

ξ − un
i

√

(hn
i + hn

i+1)/2

)

dξ

︸ ︷︷ ︸

Ĩ3

+

∫

ξ<0
ξ2

√

hn
i + hn

i+1

2
χ

(

ξ − un
i+1

√

(hn
i + hn

i+1)/2

)

dξ

︸ ︷︷ ︸

Ĩ4

.

By defining ã1 := −un
i /
√

β(hn
i + hn

i+1) and ã2 := −un
i+1/

√

β(hn
i + hn

i+1) and after some easy

computations we get
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Ĩ1 =







(
hn

i
+hn

i+1

2

)

un
i if ã1 ≤ −1

2
3π

√
2β
(

hn

i
+hn

i+1

2

)3/2
cos3(arcsin(ã1))

+ 2
π

(
hn

i
+hn

i+1

2

)

un
i

(
π
4 − 1

2 arcsin(ã1)

−1
4 sin(2 arcsin(ã1))

)

if − 1 < ã1 < 1

0 if ã1 ≥ 1 ,

Ĩ2 =







0 if ã2 ≤ −1

− 2
3π

√
2β
(

hn

i
+hn

i+1

2

)3/2
cos3(arcsin(ã2))

+ 2
π

(
hn

i
+hn

i+1

2

)

un
i+1

(
π
4 + 1

2 arcsin(ã2)

+1
4 sin(2 arcsin(ã2))

)

if − 1 < ã2 < 1

(
hn

i
+hn

i+1

2

)

un
i+1 if ã2 ≥ 1 ,

Ĩ3 =







(
hn

i
+hn

i+1

2

)

(un
i )2 + 1

2β
(

hn

i
+hn

i+1

2

)2
if ã1 ≤ −1

4
πβ
(

hn

i
+hn

i+1

2

)2(
π
16 − 1

8 arcsin(ã1) + 1
32 sin(4 arcsin(ã1))

)

+ 4
3π

√
2β
(

hn

i
+hn

i+1

2

)3/2
un

i cos3(arcsin(ã1))

+ 2
π

(
hn

i
+hn

i+1

2

)

(un
i )2
(

π
4 − 1

2 arcsin(ã1) − 1
4 sin(2 arcsin(ã1))

)

if − 1 < ã1 < 1

0 if ã1 ≥ 1

and

Ĩ4 =







0 if ã2 ≤ −1

4
πβ
(

hn

i
+hn

i+1

2

)2(
π
16 + 1

8 arcsin(ã2) − 1
32 sin(4 arcsin(ã2))

)

− 4
3π

√
2β
(

hn

i
+hn

i+1

2

)3/2
un

i+1 cos3(arcsin(ã2))

+ 2
π

(
hn

i
+hn

i+1

2

)

(un
i+1)

2
(

π
4 + 1

2 arcsin(ã2) + 1
4 sin(2 arcsin(ã2))

)

if − 1 < ã2 < 1

(
hn

i
+hn

i+1

2

)

(un
i+1)

2 + 1
2β
(

hn

i
+hn

i+1

2

)2
if ã2 ≥ .

If we now assume un
i = 0 ∀i ∈ Z we get for the first component of the modified flux
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(F̃n
i+1/2)

1 = Ĩ1 + Ĩ2

=
2

3π

√

2β
(hn

i + hn
i+1

2

)3/2
− 2

3π

√

2β
(hn

i + hn
i+1

2

)3/2

= 0 ∀i ∈ Z

and therefore

hn+1
i = hn

i − λ
[

(F̃n
i+1/2)

1 − (F̃n
i−1/2)

1
]

= hn
i ∀i ∈ Z .

As desired the height profile does not change for vanishing velocities. Now we want to change

the discretization of the source term for un
i = 0 such that we get un+1

i = 0 for admissible

profiles. In that case the second component of the modified flux reads

(F̃n
i+1/2)

2 =
4

π
β
(hn

i + hn
i+1

2

)2( π

16

)

+
4

π
β
(hn

i + hn
i+1

2

)2( π

16

)

=
β

2

(hn
i + hn

i+1

2

)2
.

Inserting that into the method the moment becomes to

(hu)n+1
i = (hu)ni − λ

[

(F̃n
i+1/2)

2 − (F̃n
i−1/2)

2
]

+ ∆t g̃n
i hn+1

i

= −λ
β

2

[(hn
i + hn

i+1

2

)2
−
(hn

i−1 + hn
i

2

)2]

+ ∆t g̃n
i hn+1

i

= −∆t β
(hn

i+1 − hn
i−1

2∆x

)(hn
i+1 + 2hn

i + hn
i−1

4

)

+ ∆t β
(hn

i+1 − hn
i−1

2∆x

)

hn+1
i .

(26)

So if we approximate

hn+1
i ≈

(hn
i+1 + 2hn

i + hn
i−1

4

)

, (27)

we get for admissible profiles un+1
i = un

i ∀i ∈ Z. Note that if we have an inadmissible mass

at rest the height remains unchanged in the following step, but will change in the next step

due to the velocity, so that the approximation made above for hn+1
i makes sense.

Now we want to check whether the method is able to pass into the state of an equilibrium for

descending height gradients and small velocities. For small velocities u the moments equation

reads

qn+1
i = qn

i − λ
[
(F̃n

i+1/2)
2 − (F̃n

i−1/2)
2
]
+ ∆t g(un

i )hn+1
i .

Usually the first expressions on the right hand side will be small, but the last one can be

significantly large to avoid the decay of the moment. Since we have gn
i = g(un

i ) for un
i 6= 0,

where
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g(u) = sin ζ − sgn(u)R = sin ζ − sgn(u) cos ζ tan δ ,

gn
i always has opposite sign to un

i for tan ζ < tan δ. For small moments qn
i the contribution of

gn
i will cause a change of sign at least after some time steps. That means that friction would

be able to change the sign of the velocity, what does not make sense from a physical point of

view. Of course we could set qn+1
i = 0 for sufficiently small qn

i , but then our method would

not be able to start sliding. So to enable the scheme to stop a sliding granular mass we take

the approximation (27) not only for u = 0 but for all |qn
i | = |(hu)ni | < |∆t g(un

i )hn+1
i |.

Moreover we can extent the scheme in using a convex combination in the case of |qn
i | <

|∆t g(qn
i )hn+1

i | of the two discretizations of the source term

∆t g̃n
i

(
(hn

i+1 + 2hn
i + hn

i−1)/4
)

and

∆t g(qn
i )hn+1

i

with the coefficients

(1 − µ) =
(
1 + qn

i /∆t g(qn
i )hn+1

i

)

and

µ = −qn
i /∆t g(qn

i )hn+1
i ,

respectively. The smaller the velocity the more we use the discretized source term for un
i = 0

whereas the influence of the source term for moving masses decreases. For simplification we

write the resulting method in its two components.

Scheme 2

hn+1
i = hn

i − λ
(
(F̃n

i+1/2)
1 − (F̃n

i−1/2)
1
)

,

qn+1
i =







−λ
(
(F̃n

i+1/2)
2 − (F̃n

i−1/2)
2
)

+(1 − µ)∆t g̃n
i

(
(hn

i+1 + 2hn
i + hn

i−1)/4
)

if |qn
i | < |∆t g(qn

i )hn+1
i |

qn
i − λ

(
(F̃n

i+1/2)
2 − (F̃n

i−1/2)
2
)

+ ∆t g(qn
i )hn+1

i if |qn
i | ≥ |∆t g(qn

i )hn+1
i |

where

g̃n
i = min

[

sin ζ + R, max
(

β
(
(hn

i+1 − hn
i−1)/2∆x

)
, sin ζ − R

)]

.

The numerical fluxes are given by

F̃n
i+1/2 =

(
(F̃n

i+1/2)
1, (F̃n

i+1/2)
2
)T

=
(
Ĩ1 + Ĩ2, Ĩ3 + Ĩ4

)T

and Ĩ1–Ĩ4 computed above.
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3.3 The coupled method

Unfortunately the last method causes oscillations in the case of strongly inadmissible initial

profiles as Riemann problems. These oscillations are quite small and seem to be stable, but do

not decay in time. Perhaps the use of mean values for h in the microscopic numerical fluxes is

responsible for that oscillations. To get rid of this drawback we modify our last scheme once

more. In the next section we compare the numerical results for the classical Riemann problem

with the exact solution. The oscillations caused by scheme 2 are distinguished clearly.

But the modification of our first method was reasoned only by the request to preserve the

steady states and to simulate the starting and stopping of a granular mass. Masses at high

rates are obviously far away from stopping or passing into an equilibrium. Therefore the use

of the modificated scheme is not necessary in that case. This leads us to a combination of

the both schemes, the first one for masses in rapid flows and the modificated scheme for the

simulation of starting or stopping masses or those in an equilibrium. The coupled method

reads

Scheme 3

hn+1
i = hn

i − λ
(
(F̃n

i+1/2)
1 − (F̃n

i−1/2)
1
)

qn+1
i = −λ

(
(F̃n

i+1/2)
2 − (F̃n

i−1/2)
2
)

+(1 − µ)∆t g̃n
i

(
(hn

i+1 + 2hn
i + hn

i−1)/4
)







if |qn
i | < |∆t g(qn

i )hn+1
i | ,

hn+1
i = hn

i − λ
(
(Fn

i+1/2)
1 − (Fn

i−1/2)
1
)

qn+1
i = qn

i − λ
(
(Fn

i+1/2)
2 − (Fn

i−1/2)
2
)

+ ∆t g(qn
i )hn+1

i







if |qn
i | ≥ |∆t g(qn

i )hn+1
i |

where

g̃n
i = min

[

sin ζ + R, max
(

β
(
(hn

i+1 − hn
i−1)/2∆x

)
, sin ζ − R

)]

,

F̃n
i+1/2 =

(
(F̃n

i+1/2)
1, (F̃n

i+1/2)
2
)T

=
(
Ĩ1 + Ĩ2, Ĩ3 + Ĩ4

)T

and

Fn
i+1/2 =

(
(Fn

i+1/2)
1, (Fn

i+1/2)
2
)T

=
(
I1 + I2, I3 + I4

)T
.

In [8] the authors formulate a theorem for their kinetic method solving the shallow water

equations with a source, that ensures nonnegativity of the height h. Because our first method

was constructed following the Ansatz made in [8], we can easily apply that theorem to the

coupled method in the case of rapid flows.
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Theorem 3 Under the CFL condition

max
i∈Z

(
|un

i | +
√

2βhn
i

)
≤ ∆x

∆t
=

1

λ
and |qn

i | ≥ |∆t g(qn
i )hn+1

i | (28)

the coupled scheme 3 keeps the height h of the granular mass nonnegative, that means we have

hn
i ≥ 0 ∀i ∈ Z ∀n ∈ N, if h0

i ≥ 0 ∀i ∈ Z.

Otherwise the considered mass is only moving very slowly or not at all, so we can expect that

the height is kept nonnegative, too. Several numerical tests of the method can be found in

the next section.

4 Numerical tests

In this section we want to test the scheme numerically. Thereby the emphasis lies on the

preservation of the steady states of granular masses at rest as well as the starting of inad-

missible profiles and the stopping of the masses after deformation. Throughout the tests we

choose ε = 0.4, ∆x = 0.05 and ∆t = 0.001 as long as we do not give other values.

• We start with the classical Riemann problem for the SH equations without a source,

i.e. ζ = δ = 0, and the initial data

h(0, x) =

{

hl if x ≤ x0

hr if x > x0

u(0, x) = 0,

where hl = 1 and hr = 0.5. The exact solution for this problem is given by

h(x, t) =







hl if x ≤ λ1
l t + x0

1
9β

[(
ul + 2

√
βhl

)
−
(

x−x0

t

)]2
if λ1

l t + x0 < x ≤ λ1
m t + x0

hm if λ1
m t + x0 < x ≤ s t + x0

hr if x > s t + x0 ,

u(x, t) =







ul if x ≤ λ1
l t + x0

2
3

[(
x−x0

t

)
+

√
βhl − 1

2ul

]

if λ1
l t + x0 < x ≤ λ1

m t + x0

um if λ1
m t + x0 < x ≤ s t + x0

ur if x > s t + x0

and λ1
l , λ1

m and λ1
r are defined as

λ1
l = λ1(hl, ul) , λ1

m = λ1(hm, um) , λ1
r = λ1(hr, ur) ,

where λ1(h, u) = u −
√

βh denotes the first eigenvalue of the SH equations (1) in

quasilinear form and s = hmum−hrur

hm−hr
denotes the shock speed. For 5000 time steps the

results computed with scheme 3 are compared with the exact solution in Fig. 1.
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• The next test problem can be seen as a one dimensional breaking grain silo. The initial

data for this Riemann problem are given as

h(0, x) =







hl if x ≤ x1

hm if x1 < x ≤ x2

hr if x > x2

u(0, x) = 0,

where hl = hr = 0.3 and hm = 2.3. Moreover we choose ζ = 0, δ = π/10 and consider

10000 time steps. We expect the mass to move symmetrically until the gradients of

the height profile are sufficiently small to be recognized by the method as gradients of

an equilibrium. That means the grain begins to move, but has to stop after a while

because of the friction. The results can be seen for different times in figure 2, the time

evolution is given in Fig. 3.

• Next we consider the previous Riemann problem over an incline with inclination and

friction angle of ζ = π/15 and δ = π/5. Now we expect the mass no longer to move

symmetrically, but more to the right. For 8000 time steps the results are shown in

figure 4 in a three dimensional view.

• As a fourth example we consider the parabolic initial data

h(0, x) = max
(
K/10, K − l (x − x0)

2
)

u(0, x) = 0

where

K = 1 , l = 4 ,

There is no inclination, that means ζ = 0, and as a friction angle we fix δ = π/15. The

results for 6000 time steps can be seen in figure 5 in a threedimensional view. Like the

profile in the second example the mass is moving symmetrically and stops after a while.

• Finally we want to compare the results for the initial data

h0(x) =

{

max
(
0.9 sin[π(x − 0.6)] − 0.3 sin[2π(x − 0.6)], 0.1

)
if 0.6 < x < 1.6

0.1 otherwise

u(0, x) = 0

where ε = 0.3218, ζ = π/6 = 30◦ and δ = π/18 = 10◦ with the results in [10] for nearly

the same problem. Because of ζ > δ the mass starts moving, but, in contrary to the

previous examples, does not stop and accelerates roughly constantly. The results for
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4000 time steps are shown in figure 6 and are very similar to the computations in [10],

where the authors apply a finite difference scheme of MacCormack. The fragmentation

of the initial profile into two smaller and spreading profiles seems to be typical for such

problems and occurs for the presented method applied to other initial data of the above

type, too. Nevertheless the authors in [10] are doubtful concerning the accuracy of the

results.

0 100 200 300 400
0.5

0.6
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0.8

0.9

1

0 100 200 300 400
0

0.04
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0.2

Figure 1: Comparison of exact (solid line) and numerical solution (dotted line) computed by

scheme 3 for Riemann problem with ζ = δ = 0.
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Figure 2: Initial height profile (solid line), height profile after 1100 time steps (dotted line)

and final height profile (dashed line).
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Figure 3: Time evolution of the height h.
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Figure 4: Time evolution of the height h for the Riemann problem over an incline.
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Figure 5: Time evolution of the height h for a parabolic initial profile.
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Figure 6: Spreading and constant acceleration of the height h for a sinosoidal initial profile.

5 Conclusion

In this paper we presented a numerical method for the SH equations for constant inclination

angles based on the kinetic formulation of these equations. Moreover we were able to give a

kinetic formulation for the general SH equations describing the motion of granular material

over smoothly varying chutes. For the construction of the scheme we followed an Ansatz

of Perthame and Simeoni ([8]). The resulting method is able to preserve the steady states

of granular masses at rest and to describe the beginning and stopping of the motion of

other solutions. Moreover we could adopt a theorem of Perthame and Simeoni ([8]), which

ensures the nonnegativity of the height of the granular material at least in regions of large

deformations. The method was testet on several examples.

Improvements and generalizations of the method are possible: a generalization to the two
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dimensional case, for example, as well as the construction of a higher order method and, with

regard to the last example, the integration of a suitable entropy criteria. Furthermore, one

could use other, more sophisticated friction models than the Coulomb friction model as done

in [5] for the shallow water equations.
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