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Abstract. We analyse the dynamics of the classical optimal velocity model for the case of
inhomogeneous drivers and for the case of road works. We introduce a different viewpoint, the
so-called rotation solutions, which in case of an additional symmetry leads to the POM solutions.
This approach opens the possibility to analytical and numerical bifurcation studies, which show
a big variety in the possible dynamics of this very simple model. In addition we mimic different
measurement approaches and recover the inverse greek λ structure in the fundamental diagram.
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1. Introduction. In the last decades many authors have studied traffic models
for vehicular traffic. There are overview articles on this topic [Hel01, BM00, NWW03,
KW04]. The main purpose for these studies is to understand traffic flow phenomena
like congestion waves etc. A good understanding opens the possibility to influence or
even to control traffic flow.

There is a big variety of mathematical model for traffic flow. The most popular
approaches for a certain number of cars on a road are microscopic and macroscopic
models. On one side — in the microscopic world — single cars are described, and
on the other side — in the macroscopic approach — only spatio-temporal traffic flow
quantities like velocity and density are considered.

The two mentioned modelling approaches lead to completely different mathemat-
ical models. The microscopic models are represented by cellular automata [SS93], by
ordinary differential equations [BHN+95] or by delay differential equations [OWK04].
The macroscopic models are given by systems of nonlinear partial differential equa-
tions [LW55, AR00]. As a consequence the mathematical and also the numerical
methods used to study such models, may be completely different. However, there
are results on the relation between these two modelling appoaches [AKMR02]. In
some cases both approaches are used, one for the analysis, the other for the numerics
[Gre04].

The microscopic models based on ordinary differential equations or delay differ-
ential equations allow a profound understanding of the dynamics of the models. In
the last several years various authors have used tools from dynamical systems like bi-
furcation theory to analyse the global dynamics of such traffic flow models [GSW04].
These techniques were applied to the standard case of N cars on a circular road with
(deterministically) prescribed behaviour of each single car. In this case global bifur-
cation diagrams give the information about stationary or periodic behaviour (for the
headways and speeds) and about the corresponding stability of such solutions. Simi-
lar results are known for delay differential equation models [OWK04, OS06, OKW05].
These results were all done mainly for the homogeneous case (all cars are equal and
the circular road is homogeneous).

When studying non homogeneous cars or situations with road works the methods
used right now are limited. In this paper we present a new approach which on one side
allows to handle and to understand the global dynamics of models with road works
and with inhomogeneous cars, and on the other side throw new light on earlier results
in [GSW04]. This approach is based on certain periodic solutions on the circle which
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we call rotation solutions. In the special case of homogeneous cars these solutions
become solutions which — following [AGMP91] — are called Ponies-On-A-Merry-
Go-Round-solutions (POMs). In this context Poincaré-type maps gain importance
and the viewpoint is shifted to a dynamical system approach in terms of maps. This
approach opens not only new possibilities for the bifurcation analysis, but also for
the numerical treatment. Rotation solutions and POMs appear as fixed points of the
Poincaré maps which may loose their stability due to Neimark-Sacker bifurcations
where invariant curves bifurcate which correspond with so called quasi-POMs. If road
works are not present, the Neimark-Sacker bifurcation becomes the Hopf bifurcation
analysed in [GSW04], and quasi-POMs specialize to headway-periodic solutions. Our
type of Poincaré maps correspond with traffic measurements on fixed positions on the
road. This leads unavoidable to fundamental diagrams which typically are produced
by real measurements.

The paper is organized in the following way. In section 2 we recall the known
analysis for the homogeneous case with no road works. Section 3 contains the main
results of this paper in the presence of road works. We introduce the concept of
rotation solutions, POMs and Poincaré maps. In the latter case we exploit the cyclic
symmetry of our model which justifies a symmetry adapted reduced Poincaré map.
Several numerical simulations and figures, based on these maps, visualize the results.
Here also macroscopic interpretations in the framework of spatio-temporal traffic flow
quantities are givem. Section 4 is devoted to the fundamental diagrams for the very
simple traffic models under consideration in this paper.

2. Models and analysis without road works. As in [GSW04, GSSW07], we
will consider a microscopic car following model, where N cars are moving around a
circular road of length L. Each car is driven according to an optimal velocity function
Vj which may depend on j for individual drivers (see [BHN+95]):

ẍj =
1

τj
(Vj(xj+1 − xj)− ẋj), j = 1, ..., N, xN+1 = x1 + L. (2.1)

Mostly, the so-called homogeneous model is considered, where Vj and τj do not depend
on j. To model road works, our focus is on optimal velocity functions depending on
the position x of the circle.

We start with a short review of the results in [GSW04, GSSW07] for (2.1) which
can be written as a first order 2N -system:{

ẋj = vj

v̇j = 1
τj

(Vj(xj+1 − xj)− vj)

}
, j = 1, . . . , N, xN+1 = x1 + L. (2.2)

It is important to distinguish xj(t) ∈ IR measuring the distance of the road, that
has been covered by car j at time t and ξj(t) := xj(t)mod L, denoting the position
of car j on the circle. Then xj(t) contains the information about the number of the
rounds, car j has passed up to time t. Setting x := (x1, ..., xN , v1, ..., vN ), (2.2) can
shortly be described by ẋ = f(x), an autonomous system on IR2N . But it might be
useful to consider (2.2) as an ODE on the manifold (S1

L)N × IRN with the circle S1
L

of length L. Headways are denoted by yj := xj+1 − xj .
There exist quasi-stationary solutions of (2.1), x0

j (t), with velocities c, constant in
time, equal for all drivers, and headways dj(c), constant in time, but possibly different
for different drivers.

A stability analysis can be performed by replacing xj by xj − x0
j such that the

quasi-stationary solutions become equilibrium points. Linearizing the system it turns
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out that there always exists an algebraic simple eigenvalue λ = 0. Due to the quantity∑N
j=1 yj = L this eigenvalue can be eliminated by a reduction of Eq. (2.1) to a

(2N − 1)-dimensional system in N − 1 headways and N velocities. The stability of
the quasi-stationary solutions depends on the average density N

L ; as a variation of
N would lead to completely new systems, alternatively, the length L is chosen as
bifurcation parameter, and Hopf bifurcations can be numerically observed leading to
periodic solutions in headways and velocities.

Much more can be stated in the homogeneous case where the optimal velocity
function V and the relaxation parameter τ do not depend on j and x. Model (2.1)
reads now

ẍj(t) =
1

τ
(V (xj+1(t)− xj(t))− ẋj(t)), j = 1, ..., N, xN+1 = x1 + L (2.3)

This model is well understood, the quasi-stationary solutions are x0
j (t) = j ·L/N+

tV (L/N), j = 1, 2, ..., N , with headways L/N , velocities c := V (L/N) for all cars, for
all times.

A linear stability analysis shows that V ′(L/N) < 1
1+cos(2π/N) is the condition for

asymptotic stability.

Hopf bifurcation with wave number (mode) k occurs if

V ′(L/N) =
1

1 + cos(2π · k/N)
.

The corresponding Hopf-frequency is given by

ωN,k :=
sin(2π · k/N)

1 + cos(2π · k/N)
.

Bifurcation of solutions with periodic headways yj and periodic velocities vj = ẋj ,
having asymptotic period T := TN,k := 2π

ωN,k
is a consequence of the Hopf theorem.

By calculation of the first Lyapunov coefficient the quality of the Hopf bifurcation
(super-/subcritical) can be analyzed.

The ZN -symmetry of the ODE in the homogeneous case is characterized by the
traveling wave property

yj(t + kT/N) = yj+1(t), j = 1, 2, ..., N, vj(t + kT/N) = vj+1(t), j = 1, 2, ..., N.

The most important case is k = 1, when the quasi-stationary solutions loose stability.

3. Model with road works. In the case of road works the optimal velocity
function additionally depends on the position x ∈ S1

L. We introduce a real parameter
ε ≥ 0 which measures the strength of the road works. In our model, the maximal
speed of car j decreases with ε and depends on position x (Fig. 3.1). The optimal
velocity Vj in (2.1) and (2.2) is replaced by Vj,ε defined as

Vj,ε(x, y) =
(
1− εe−(x−L

2
)2

)
Vj(y) (3.1)

Our aim is to perform a bifurcation analysis with respect to L and ε.
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ε Vj,ε,max

xj

Fig. 3.1. A region of reduced maximal optimal velocity modelling road works.

3.1. Inhomogeneous drivers. Though most of our numerical results are per-
formed for the homogeneous case of equal cars, part of the analysis is valid for the
inhomogeneous case as well. The model (compared to (2.1)) is

ẍj =
1

τj
(Vj,ε(xj , xj+1 − xj)− ẋj), j = 1, ....N, xN+1 = x1 + L, (3.2)

respectively as a first order system

{
ẋj = vj

v̇j = 1
τj

(Vj,ε(xj , xj+1 − xj)− vj)

}
, j = 1, . . . , N, xN+1 = x1 + L. (3.3)

The main question is as follows: what kinds of solutions the quasi-stationary so-
lutions are perturbed to by variation of the road works parameter ε from the situation
without road works (ε = 0) to ε > 0?

For this aim we introduce rotation solutions. These are special T -periodic solu-
tions of (3.2) being understood as a 2N -system on the manifold (S1

L × IR)N .
Numerically and analytically we prefer to treat (3.3) as a 2N -system on IR2N . In

this context a rotation solution with orbital period T and rotation number k is defined
by

xj(t + T ) = xj(t) + kL, vj(t + T ) = vj(t), j = 1, 2, ..., N,

where T and k are assumed to be minimal. We will restrict to the special, but most
important case k = 1.

Setting Λ := (L, ..., L, 0, ..., 0), rotation solutions are defined by

x(t + T ) = x(t) + Λ for all t.

We see immediately that our quasi-stationary solutions for ε = 0 are rotation
solutions with orbital period T := L/c, where c is the common velocity of the drivers.
But observe that the headway-T-periodic solutions we get by Hopf bifurcations in
general are not rotation solutions with orbital period T . But they always satisfy

xj(t + T ) = xj(t) + Lp, j = 1, 2, ..., N

with an orbital length Lp. If Lp and L are commensurable, formally the headway-T-
periodic solutions are rotation solutions with possibly large periods mT and rotation
numbers k.

From the stability theory for periodic orbits of autonomous systems we know
that each rotation solution possesses 2N Floquet multipliers μk, k = 1, 2, ..., 2N one
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of which is always one due to the autonomicity of the system. The Floquet multipliers
are the eigenvalues of the linearization DΦT (x(t)) of the time-T -map ΦT at any point
x(t) of the periodic orbit. Observe that ΦT (x(t)) = x(t) + Λ and that x(t) is fixed
point of the map Q, defined by Q(x) := ΦT (x)−Λ.

The trivial Floquet multiplier μ1 = 1 can be eliminated by introducing a Poincaré
map Π wrt to a transversal section in the state space, see sec. 3.3. Then a rotation
solution corresponds to a fixed point ξ0 of Π, and the possibly non-trivial Floquet mul-
tipliers are the 2N−1 eigenvalues of DΠ(ξ) which determine the orbital (asymptotic)
stability of the rotation solution and possible bifurcations.

Recall, that the quasi-stationary solutions for ε = 0 can be considered as equi-
librium points in a 2N -system ẇ = f(w) with 2N eigenvalues λk of Df(0), k =
1, 2, ..., 2N . The relation of these eigenvalues to the Floquet multipliers μk, k =
1, 2, ..., 2N, of the quasi-stationary solutions considered as rotation solutions simply
is μk = eλkT , k = 1, 2, ..., 2N . The trivial eigenvalue λ1 = 0 corresponds to the trivial
Floquet multiplier μ1 = 1.

A Hopf bifurcation, being observed in the (2N − 1)-system of headways and
velocities, appears now as a torus bifurcation where rotation solutions bifurcate to
so-called quasi-rotation solutions. Here we follow the notion of quasi-periodic. In
the context of Poincaré maps we encounter Neimark-Sacker bifurcations where fixed
points bifurcate into invariant curves.

What happens to those solutions introducing road works (ε > 0)? Since, for
ε = 0, λ = 0 is always an algebraically simple eigenvalue of Df(0), the trivial Floquet
multiplier μ = 1 is algebraically simple, the nonlinear equation Π(ξ) − ξ = 0 has an
isolated solution ξ0, and by the Implicit Function Theorem we have fixed points ξ(ε)
of Π which correspond to rotation solutions with orbital period T (ε). We state:

Theorem 3.1. For fixed L, there is an ε0 > 0 such that (3.2) admits rotation
solutions x(ε, t) for 0 ≤ ε < ε0 with orbital period T (ε) which coincide for ε = 0 with
the quasi-stationary solution (x(0, t) = x0(t)) and depend smoothly on ε.

If the quasi-stationary solution x0 is asymptotically stable (unstable), the rotation
solutions are orbital asymptotically stable (unstable).

Remark 1. For ε = 0 two Hopf-points (for certain critical L) may separate stable
and unstable quasi-stationary solutions. Hence it can be expected that an analogue
situation holds for the rotation solutions. With more sophisticated methods using
regular defining equations for Neimark-Sacker bifurcation points (see [Kuz98]) the
following holds:

If the quasi-stationary solution is non-hyperbolic due to a Hopf bifurcation (wrt
L) in the (L, ε)-plane there is a curve of Neimark-Sacker bifurcation points emanating
in the Hopf point for ε = 0.

More precisely: For small ε > 0, there is an L = L(ε) such that (3.2) admits a
non-hyperbolic rotation solution, and there are L close to L(ε) such that there exist
(bifurcate) closed invariant curves of the Poincaré map Π which correspond with quasi-
rotation solutions.

Thm. 3.1 and the succeeding Remark 1 are in analogy to an autonomous system
with Hopf bifurcation and a periodical forcing with strength ε, see [KMR92]. Here
hyperbolic equilibria are perturbed to periodic solutions, and periodic solutions of
the autonomous system are perturbed to quasi-periodic solutions. A Hopf bifurcation
point is perturbed into a curve of torus bifurcation points in the (L, ε)-plane.

3.2. Homogeneous drivers. Now we consider the road works model where the
drivers of the cars obey the same velocity law. We will make Thm. 3.1 more detailed
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wrt the underlying ZN -symmetry. The ODE system is given by
{

ẋj = vj

v̇j = 1
τ (Vε(xj , xj+1 − xj)− vj)

}
, j = 1, . . . , N, xN+1 = x1 + L. (3.4)

We will show that the rotation solutions we obtain by Thm. 3.1 have a special
ZN -symmetry, defined by

Definition: A rotation solution with orbital period T (defined by x(t + T ) =
x(t) + Λ) is called a Ponies-On-A-Merry-Go-Round-solution (see [AGMP91], shortly
called a POM ), if

xj(t + T/N) = xj+1(t) for all t, j = 1, 2, ..., N.

This corresponds with the ZN -symmetry of the Hopf-periodic solutions for ε = 0,
mentioned in the Introduction.

Now we are going to exploit this symmetry in more details:
Let

S+(x1, ..., xN , v1, ..., vN ) := (x2, x3, ..., xN , x1 + L, v2, v3, ...., vN , v1)

be the forward shift of the car constellation on the circle. S+ is affine
linear. Calling the linear part C+, we have C+(ξ1, ..., ξN , v1, ..., vN ) :=
(ξ2, ξ3, ..., ξN , ξ1, v2, v3, ...., vN , v1).

It can be easily shown that the flow Φt of (3.4) is S+-equivariant, since S+ ◦Φt =
Φt ◦ S+ for all t.

This can be understood as follows: Starting the dynamics with state x and per-
forming a forward shift after time t or changing the initial state x by a forward shift
and letting t time units pass — the final state is the same.

The equivariance of the vector field f of (3.4) can be described as

f ◦ S+ = DS+ ◦ f,

where the differential DS+ = C+ is the linear part of S+.
C+ generates the cyclic group ZN since CN

+ = I or SN
+ (x) = x + Λ (where

Λ = (L, ..., L, 0, ..., 0)). Now it turns out that a POM is ZN -invariant in the sense
that S+(x(t)) = x(t + T/N) for all t.

Having POMs x(t) with orbital period T we consider the (reduced) time-T/N -
map Φα with α := T/N and define

P (x) := S−(Φα(x))

with the backward shift S− := (S+)−1 or equivalently by

P (x) := C−(Φα(x)) − (L, 0, . . . , 0),

where C− is the inverse of C+.
Then every x0 = x(t) is a fixed point of P since S+(x0) = Φα(x0) holds. Obvi-

ously the following holds: SN
−

(x) = x−Λ for all x, P N = Q, where Q(x) = ΦT (x)−Λ,
x0 is fixed point of Q, and the eigenvalues of DQ(x0) are the Floquet multipliers of
the POM. These can be obtained by the eigenvalues of DP (x0) taken to the Nth
power.

Remark 2. Treating (3.4) as an ODE on the manifold (S1
L)N × IRN (an

N -dimensional cylinder), the ZN -equivariance properties can simply described by
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C+(f(x)) = f(C+(x)) for the vectorfield and C+ ◦ Φ = Φ ◦ C+ for the flow Φ, since
CN

+ = I. In this setting, POMs with orbital period T are T -periodic solutions with
orbital ZN -symmetrie.

In the following Sec. 3.3 we will present a corresponding construction, replacing Q
by a Poincaré-map and P by a reduced Poincaré-map to eliminate the trivial Floquet
multiplier μ := 1 of a POM.

3.3. Poincaré maps. We assume that we have a rotation solution x(t). A
suitable Poincaré-section is given by Σ := {x : x1 mod L = 0} which (in the state space
IR2N ) consists of an infinite number of parallel sections Σn := {x : x1 = nL}, n ∈ ZZ

. Assume that x0 := x(0) ∈ Σ. Then x(nT ) ∈ Σ for all n ∈ IN. There is a map
Π̂ from Σn to Σn+1. More precisely, Π̂ maps a neighborhood of x(nT ) ∈ Σn into
a neighborhood of x((n + 1)T ) ∈ Σn+1. The Poincaré map is defined by Π(x) :=
Π̂(x) −Λ, where Π maps Σ0 into itself, and it may be assumed that x0 := x(0) ∈ Σ
is a fixed point of Π. The return time of x0 wrt Π is the orbital period T .

Now let x(t) be a POM. There is a powerful way to reduce the complexity due
to the ZN -symmetry by introducing a reduced Poincaré map π: For this end we set
Σ′ := {x : xN mod L = 0}. Then there is a map π̂ which maps a neighborhood of
x(0) ∈ Σ to a neighborhood of x(T/N) ∈ Σ′. The transfer time is the time passed
between the state x(0) where car 1 is located in x1 = 0 and the state where car N
behind has reached the same position as car 1 before. We define the reduced Poincaré
map π by π̂ followed by a backward shift,

π(x) := S−(π̂(x)) = C−(π̂(x))− 
.

Then x(0) = x0 is a fixed point of π with return time T/N . Observe that this
construction is in full analogy to that of the time T -map Q and of the reduced map
P in the section before. Again we have πN = Π. The eigenvalues of DΠ(x0) are the
(2N − 1) Floquet multipliers of the POM except μ = 1. These can be obtained by
the eigenvalues of Dπ(x0) taken to the Nth power.

Based on the reduced Poincaré map π instead of the Poincaré map Π, Thm. 3.1
can be refined and stated as follows.

Theorem 3.2. For fixed L, there is an ε0 > 0 such that (3.4) admits POMs
x(ε, t) for 0 ≤ ε < ε0 with orbital period T (ε) which coincide for ε = 0 with the
quasi-stationary solution x0 and depend smoothly on ε.

If the quasi-stationary solution is asymptotically stable (unstable), the POMs are
orbital asymptotically stable (unstable).

Remark 3. As in Remark 1 it can be shown:
If the quasi-stationary solution is non-hyperbolic due to a Hopf bifurcation (wrt L),

in the (L, ε)-plane, there is a curve of Neimark-Sacker bifurcation points emanating
in the Hopf point for ε = 0.

More precisely: For small ε > 0, there is an L = L(ε) such that (3.4) admits a
non-hyperbolic POM, and there are L close to L(ε) such that there exist (bifurcate)
closed invariant curves of the reduced Poincaré map π (see Fig. 3.2). These corre-
spond with closed invariant curves of the Poicaré map Π. We call the quasi-rotations
mentioned in Remark 1 quasi-POMs. If the Hopf bifurcation point for ε = 0 is super-
critical we expect the same for the Neimark-Sacker bifurcation points for small ε > 0.
In this case we will encounter stable quasi-POMs.

3.4. Numerics. The presented approach via Poincaré maps or reduced Poincaré
maps can be used immediately as a numerical tool to calculate the solutions. Espe-
cially in the homogeneous case there is an efficient way to compute POMs by solving
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Fig. 3.2. Two closed invariant curves of the reduced Poincaré map π. On the left also the
optimal velocity function V0 is given in gray.
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Fig. 3.3. An unstable POM with corresponding Floquet multipliers (left) for N = 10, L =
10, Vmax = 1, ε = 0.1.

the fixed point equation ξ = π(ξ) for the reduced Poincaré map π. Remember that
the corresponding Floquet multipliers are just the eigenvalues of Dπ(ξ) taken to the
power N . Hence, for the stability analysis, it is sufficient to compute these eigenval-
ues, particularely, since they are better separated than the Floquet multipliers. We
call them reduced Floquet multipliers.

In this section we choose the optimal velocity function

V (x) =
tanh 2(x− 1) + tanh 2

1 + tanh2
, (3.5)

suggested by [BHN+95], and we set the driver’s reaction time to τ = 1.
Fig. 3.3 (left) shows the reduced Floquet multipliers for special parameters with

a corresponding unstable POM. On the right side a simulation is shown starting close
to an unstable POM and converging to a quasi-POM.

For each fixed ε > 0, it is a classical task to perform a numerical continuation of
the POMs wrt the bifurcation parameter L, based on the reduced Poincaré map π.
As a by-product we obtain the reduced Floquet multipliers and are able to localize
Neimark-Sacker bifurcations for L = L(ε) characterized by a pair of complex conjugate
reduced Floquet multipliers of modulus one. By this we get a numerical approximation
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Fig. 3.4. A curve of Neimark-Sacker bifurcations in the (L, ε)-plane for N = 5.

ε I II

0 trivial POM x0 Hopf periodic solution
> 0 POM xε quasi-POM

Table 3.1

Four different attractors.

of the Neimark-Sacker curve, mentioned in Remark 3, exemplarily shown for the case
N = 5 in Fig. 3.4. The bifurcation takes place for decreasing L, hence on its right
(region I) there are stable, on the left (region II) unstable POMs and stable quasi-
POMs (assuming that the Hopf bifurcation for ε = 0 is supercritical). The curve
starts for ε = 0 in a supercritical Hopf point (L ≈ 6.37).

In the following we discuss four different showcase scenarios in the (L, ε)-
parameter plane; using the same I-II-notation as in Fig. 3.4, Table 3.1 explains the
character of the attractive solutions presented in Figs. 3.5 and 3.6.

The POMs have a simple structure from the traffic point of view. The main
influence for each car is given by the road works, not by the cars in front. The
velocity of each car depends only on its position on the circle. Fig. 3.5(c) shows a
typical picture of an attractive POM in relation to the maximal velocity Vε,max (grey).
In comparison see Fig. 3.5(a) for the trivial POM x0.

It is much more difficult to reveal the traffic structure of quasi-POMs. To study
the influnece of the average density N/L on the dynamics we reduce L to reach the
unstable region (II) behind the Neimarck-Sacker bifurcation (for N = 10 the critical
length is LH ≈ 14.12). Fig. 3.5(d) shows a typical phase curve of a car (here car
No.1). Small velocities (peaks down) can be interpreted as traffic jams. Two periods
seem to be present. From the scenario without road works (Fig. 3.5(b)) we guess that
the small period is due to the Hopf-periodic rotating wave dynamics for ε = 0 and
that the large period is caused by the road works. The smallest velocities occur when
road works and traffic jam of the rotating wave coincide.

We can define macroscopical functions like velocity v(ξ, t), density �(ξ, t), and
flow q(ξ, t) := v(ξ, t) · �(ξ, t) for such (ξ, t) for which there is a car (of number j)
with ξ = xj(t)mod L. For density we take the inverse of the headway. Colorizing the
trajectories {(xj(t)mod L, t), t ≥ 0} according to the macroscopic values we optain
pictures as in Fig. 3.6(a)-3.6(d).
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Fig. 3.5. Four different scenarios according to Fig. 3.4 and Table 3.1.

Mathematically, it is fascinating to visualize quasi-POMs by invariant (closed)
curves in the Poincaré section. These curves can be interpreted as follows: At a
fixed position on the circle, each time, when a car passes this position, there is a
stroboscopic view on the whole traffic. For the case of an unstable fixed point of π see
Fig. 3.7 where the quasi-POM is represented by five closed limit curves. Recognize the
lightblue (1-dimensional) closed invariant line on the left marking the fixed position
on the circle, where stroboscope is switched on by the passing cars.
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(b) N = 10, L = 12, ε = 0
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(c) N = 10, L = 16, ε = 0.2
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(d) N = 10, L = 12, ε = 0.2

Fig. 3.6. Macroscopic perspectives of a microscopic modell according to Fig. 3.5.

Fig. 3.7. A real world point of view on the reduced Poincaré map π for N = 5, ε = 0.
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4. Fundamental diagrams. In the previous section we have seen various nu-
merical simulation on the complex dynamical behaviour of the cars in the (very simple)
traffic flow model with and without road works. The model gives the full information
on the dynamics. In this section we go further with numerical simulations. We plan
to bridge the gap between numerical simulations and real world traffic behaviour.

It is our aim to compare the dynamics of the previous section to real world
traffic data. Real world data are obtained by measurements and can be found in the
literature. There is a big variety of methods of measurement, from simple counting
to fixed electronic measurement devices on the roads. However, from the literature
it is not always clear how precisely the measurement was performed. E.g., in view of
oscillating behaviour it would be important to know about the length of the counting
intervals etc. In addition not the complete set of datas are presented. The presented
traffic datas or curves are already an elaboration with respect to a certain theory, a
model or a conjecture.

A very common presentation of traffic flow behaviour are fundamental diagrams.
A fundamental diagram is a traffic density versus traffic flow diagram. In the very
simple case of stationary traffic the flow is known to be a function of the density.
At vanishing density and at maximum density the velocity (and therefore the flow)
vanishes. Between these two density values there is one density value with maximal
flow. For general traffic flow there cannot be expected a functional relation between
flow and density. However, for low density a functional (monoton increasing) flow-
density relation is known. For higher density the flow splits into two branches such
that the flow-density relation takes the form of an inverted greek λ. In some cases
the flow values in between these two flow branches seem also to be assumed (at least
partially). At this point we remember the difficulty described above that for many
fundamental diagrams in the literature we do not exactly know which data where
used and how the data where put into the diagram.

The mentioned problems give rise to an (somehow inverted) alternative approach
to fundamental diagrams. We try to understand which fundamental diagrams can be
obtained from the (very simple) model of this paper. Therefore we use the models
and the results from above and mimic different measurement methods by evaluating
the reduced Poincarè map π or by following one car at equidistant time steps. For
these different methods we show the corresponding fundamental diagram. As far as
Hopf periodic solutions (ε = 1) or quasi-POMs (ε > 0) occur we encounter closed
invariant curves. Measuring at a fixed position xm means (the superscript m stays
for measurement) that whenever a car passes position xm we get a density and a
flow value, i.e. we get a sequence of times tmj , j = 1, ..., l with xi(t

m
j ) = xm for some

i = 1, ..., n. We define - as in the previous section - the density value as the inverse of
the distance to the car in front. The flow value is defined as the product of density
and the velocity of the car.

�j = �(xm, tmj ) =
1

xi+1(tmj )− xm
, qj = q(xm, tmj ) = �(xm, tmj )ẋi(t

m
j ), j = 1, ..., l.

(4.1)
This definition is one possible choice. However we believe that in a “continuum limit”
(say for a fixed average density N

L and number of cars N → ∞) we obtain (what in
the macroscopic traffic flow modelling world is called) a traffic density and a traffic
flow, i.e. two functions in space and in time.

Note that we should distinguish in our fundamental diagram considerations be-
tween the “classical” case with no roadwork and the non standard case with roadwork.
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Fig. 4.1. Fundamental diagram for N = 10, L = 12 measuring at a fixed point. As a reference
the trivial fundamental diagram for equilibrium solutions in gray.

The first case reflects the perfect setting for a measurement whereas the second case
stays for a situation with more (known or unkonwn) influences. It makes sense to
consider both cases since in real world measurement one has to face both optimal
and less optimal measurement settings, positions and conditions. However, in the
following we will mainly focus on the case with no road works. At the end we discuss
shortly the case with road works.

We start measuring in the most intutitive way. We measure the traffic flow at
one fixed position on the circular road. For the case N = 10, L = 12 we show
the sequence of values (�j , qj), j = 1, .., 150 for the case of a Hopf periodic solution
(Fig. 4.1). The left side is the fundamental diagram. In the background we see the
fundamental diagram for the quasi-stationary solution (which is unstable—dotted—
in this parameter regime and will not be approached). This background diagram is
the most trivial fundamental diagram corresponding to the quasi-stationary solution
where all cars drive (allways) with the (desired) equilibrium velocity. The right side
presents the same data but in a headway versus velocity diagram.

In reality we expect different density regimes over a measurement period. There-
fore, as an experiment we mix up different diagrams for a large density interval
(N = 10, L = 50, ..., 4) and obtain in the “sum” Fig. 4.2. The upper left figure
ist the fundamental diagram, the upper right figure a blow up of the interesting part
in the fundamental diagram and the lower figure is again the corresponding headway
versus velocity diagram. Now the inverse lambda structure is obvious. Note that
there ist no trivial fundamental diagram depicted in the background. The unstable
regime of the quasi-stationary solutions lies between

L1
H ≈ 14.1 > L > 5.9 ≈ L2

H ,

where the subscript H is due to the critical size of L in the Hopf bifurcation. In
this regime we encounter stable periodic solutions. In the low density area (below
� = 10

14.1 ≈ 0.71) the quasi-stationary solutions are stable and the corresponding
points in the density-flow diagram lie on the (trivial) density-flow curve. Same holds
for high densities (above � = 10

5.9 ≈ 1.69). For L1
H > L > L2

H the (stable) periodic
solutions cover a bigger density regime. Clearly they assume also density values below
� = 10

L1

H

and above � = 10
L2

H

. What is surprising is the good correspondence of the

periodic solutions for different average densities N
L especially in the low density part
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Fig. 4.2. Overlapped fundamental diagrams for N = 10, L = 50, ..., 4 measuring at a fixed point.

where the two branches start to coincide. There the striking part of the inverse lambda
structure is formed. It seems that this type of fundamental diagrams is very robust
with respect to changes in density. At the moment we have no particular explanation
for this phenomenon.

We would like to mention a third method for representing traffic data in fun-
damental diagrams. Suppose we only count at a fixed point and that the counting
interval is large. Then we obtain for every L one single (averaged) flow value. Re-
peating this for a large range in L (say from L = 50, ..., 4) we obtain a fundamental
diagram. This represents time-averaged flow versus average density N

L . Note that the

average density N
L is in general not equal to the mean density over a period of the

periodic solution. By simply counting the cars over a certain time period we are not
able to obtain this mean density over a period in case of the periodic solution. How-
ever, the result of this third method to measure is shown in Fig. 4.3. The right figure
is a blow up of the interesting detail in the left figure. Note that this is a bifurcation
diagram. In the region of stable quasi-stationary solutions we have the known curve.
In addition we have stable periodic solutions not only in the region where the quasi-
stationary solutions are unstable. In this measuring procedure these stable periodic
solutions are represented by a single value. It is very interesting to note that there is
a region in N

L (around N
L = 1.5) where the averaged flow of the periodic solutions is

higher then the flow corresponding to the (unstable) quasi-stationary flow.

Let us mention an additional way of looking at the data. Sometimes in literature
measurements at different points of the circular road are mixed up (see e.g. [SM06]).
This leads to the idea of observing the data from the viewpoint of a single car: we
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Fig. 4.4. Fundamental diagram for N = 10, L = 12 from the viewpoint of a single car. Note
the difference to figure 4.1

take the density and the flow value of a certain fixed car by equidistant timesteps.
Having a look at the corresponding fundamental diagram (see Fig. 4.4) we realise
that this is almost identical to Fig. 4.1. The difference lies in how dense the points
are located on the same underlying invariant curve. For this consideration the right
pictures (velocity over headway) in the two figures are more adequate. At a fixed
measuring point almost two-thirds of the cars are passing with low density and high
velocities (Fig. 4.1, right). On the other hand, from the viewpoint of a single car the
situation is different. In the right side of Fig. 4.4 we see that a single car “lives” most
of the time in two extrem density-flow situation: low density with high velocities or
high density with low velocities. If we define this last situation on the invariant curve
as traffic jam, then the measurement corresponding to Fig. 4.4 is more suitable to
recognize traffic jams.

Finally we switch to the case with road works. A main question we are interested
in is the behavior of the inverted λ structure with respect to changes in ε. For this
purpose we redo the simulations corresponding to Fig. 4.2 (upper left picture) for
ε = 0.1. The result is given in Fig. 4.5. It is interesting to note, that the main
phenomena are preserved. Even in the case of road works the basic inverse lambda
structure remains the dominant picture.

Regarding the solutions itselves note that the curve in Fig. 4.4 (right) becomes a
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(a) N = 10, L = 12, ε = 0
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(b) N = 10, L = 12, ε = 0.1
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(c) N = 10, L = 12, ε = 0.2

Fig. 4.6. Fundamental diagrams from the viewpoint of a single car with equidistant (very small)
timesteps with and without road works. Compare to 4.4 (right).

limit cycle when time runs continuously (Fig. 4.6(a)). Introducing roadworks (ε > 0)
this limit cycle (ε = 0) is smeared out to phase curves shown in Fig. 4.6(b) and
Fig. 4.6(c). In the latter case the structure of quasi-POM’s is not visible. This is in
contrast to the stroboscopic Poincaré-view in Fig. 3.2(b) showing (a projection of)
the invariant curve.
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5. Conclusions. We analyse the dynamics of the classical optimal velocity
model for the case of inhomogeneous drivers and for the case of road works using
a new viewpoint. We believe that this viewpoint based on the study of the underlying
Poincaré maps offers a powerful tool to study such non-homogeneous traffic models
both analytically and numerically. In addition this approach has the advantage that
it is very close to what we define as a measurement. Therefore fundamental daigrams
etc. are obtained with almost no additional effort.
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