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Abstract: This paper contains a stability analysis of the plane-wave Riemann
problem for the two-dimensional compressible Euler equation. It is proved that
the two-dimensional contact discontinuity in the plane-wave Riemann problem is
unstable under small perturbations. The implication for Godunov´s and Roe´s
scheme are discussed and it is shown that numerical post shock noise can set
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1 Introduction
Consider the two dimensional compressible Euler equation in conservation form

�

�t
u(x, y, t) +

�

�x
f(u(x, y, t) +

�

�y
g(u(x,y, t) = 0 (1)

where the conserved variable and flux functions are given by

u =

⎛
⎜⎜⎝

ρ
ρu
ρv
E

⎞
⎟⎟⎠ f(u) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv
u(E + p)

⎞
⎟⎟⎠ g(u) =

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + p
v(E + p)

⎞
⎟⎟⎠ (2)
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The first equation is the conservation of mass ρ(x, y, t), the second and third are
the conservation of x-momentum ρu and y-momentum ρv, respectively. The fourth
equation expresses the conservation of energy. The velocity field will be denoted
by v = (u, v).The pressure p is related to the conserved quantities through the
equation of state. In case of an γ-law gas the equation of state is

p = (γ − 1)ρe = (γ − 1)[E − 1
2
ρ(u2 + v2)] (3)

where the total Energy E/ρ is the sum of kinetic 1
2(u2 + v2) and internal energy e.

The Euler equation are a system of hyperbolic conservation laws; i.e. for any
value of u0 = (ρ0, ρ0u0, ρ0v0, E0)T with positive density ρ0 and positive internal
energy e0 the Jacobian matrix

�nD �F (u0) = nxDf(u0) + nyDg(u0) (4)

is diagonalizable with real eigenvalues for every unit vector �n = (nx, ny). Therefore
the structure of a plane-wave

u(x, y, t) = ϕ(�n · (x, y)− st) (5)

propagating at speed s, is independent of the orientation in space; see for exam-
ple [Lev;2002]. A special class of plane-waves is defined through an initial value
problem for (1) with data

u(�x) =

{
ul for �n0 · (�x− �x0) < 0
ur for 0 < �n0 · (�x− �x0)

(6)

where �x0 is a given point in (x,y)-plane and �n0 a given unit-direction, ul and ur

are initial states at time t = tn

Finite-Volume Godunov-type methods are derived form the integral form of
the conservation law for (1):

∂

∂t

∫
Di,j

u(ξ, η, t) dη dξ (7)

= −
∫

�Di,j

�n(ξ) · �F (uR(�x(ξ), t+;�n(ξ))) dξ

where �n(ξ) = (nx(ξ), ny(ξ)) is the outward pointing unit-normal vector on �Di,j

at a point �x(ξ) = (x(ξ), y(ξ)) on �Di,j , where ξ is the arclength parametrization
of �Di,j . We assume that Di,j is a close bounded set with a piecewise smooth
boundary. uR(�x(ξ), t+;�n(ξ)) denotes the one sided limit in time of the solution
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to the plane-wave Riemann problem (6) at the cell boundary �x(ξ) in the direction
�n(ξ); i.e.

uR(�x(ξ), t+;�n(ξ)) := lim
ε→0

uR(�x(ξ), t + ε;�n(ξ)) on �Di,j (8)

If the solution u is smooth and Di,j is a closed set with a piecewise smooth bound-
ary, then we can apply the divergence theorem and obtain the differential form (1)
from the integral form (7). Denote by

ūi,j(t) =
1

V (Di,j)

∫
Di,j

u(ξ, η, t) dη dξ (9)

the cell-average, where V (Di,j) is the Volume of Di,j . The integral form (7) can
be rewritten as

d

dt
ūi,j(t) = − 1

V (Di,j)

∫
�Di,j

�n(ξ) · �F (uR(�x(ξ), t+;�n(ξ))) dξ (10)

which says that we can evolve the cell averages in time, by solving one-dimensional
Riemann problems at a the cell boundary at time t = tn and then solve the system
of ordinary differential equation (10) to obtain the cell average at time t = tn + τ ,
τ > 0. Taking for granted that the solution of the Riemann problem at the cell
interface can be locally advanced in time; i.e. we require that

∂

∂t
uR(�x(ξ), t;�n(ξ))|t=tn+ (11)

should exist where the boundary �Di,j is smooth.
In this paper we consider the stability of the plane-wave Riemann problem

and proof that the plane-wave Riemann problem is unstable under small pertur-
bations. We show that this instability is related to the failing of Godunov´s and
Roe´s method reported by [QUI;1994],[ROE;2007] and give a mathematical anal-
ysis that explains the machinery, which leads to the so called carbuncle instability.

The results of this paper can be extended to general systems of hyperbolic con-
servation laws, which have at least one genuinely nonlinear characteristic field and
two linear degenerate fields with a single eigenvalue. For clarity we restrict the
presentation to the Euler equation for a γ-law gas (1) which serves as a model
equation for more general systems.
The outline of this paper is as follows. In section 2 we analyse the stability of
the plane-wave Riemann problem and prove that the solution can be unstable in a
bounded region under small perturbation. In section 3 we show that this instabil-
ity is related to the known numerical instabilities in Godunov´s and Roe´s method
reported in [QUI;1994]. In section 4 we proof that the HLLE method [EIN;1988]
gets around this instability. The last section contains our conclusion.
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2 An Instability in the plane-wave
Riemann Problem

For first order finite volume methods the assumption is generally made, that the
solution is constant inside a cell at a time-level t = tn; e.g.

ū(�x, t) := ui,j for �x ε Di,j (12)

and that discontinuities are moved to the cell boundary. We assume for simplicity
that Di,j = Ii,j = [xi−1/2, xi+1/2] × [yi−1/2, yi+1/2] is given by a rectangle defined
through a constant cartesian grid xi = iΔx and yj = jΔy and that the plane-
wave solution is moving in the x-direction; i.e �n = (1, 0). If the solution of the
plane-wave Riemann problem at a cell-boundary �xi+1/2,j = (xi+1/2, yj) is given
by a single discontinuity, then the initial states ul = ui,j and ur = ui+1,j of the
Riemann problem satisfy the Rankine-Hugoniot jump condition [CF;1948].

ṡ[ur − ul] = f(ur)− f(ul) (13)

where ṡ = ṡi+1/2,j(t = tn) is the shock speed. The normal velocity of the disconti-
nuity can be computed form (13). However, through nonlinear interactions of the
components uk of u = (u1, · · · , u4) any perturbation of ul or ur results in a non
unique solution for the shock speed in (13).

Let us consider a near stationary discontinuity for the two dimensional Euler
Equations. We assume that the states ul = ui,j and ur = ui+1,j are connected by
a 1-shock wave with normal shock speed −εs < ṡ1

i+1/2,j(t
n) = ṡ1

i+1/2,j < 0. Let
ũr be a small perturbation of the right state. The perturbed solution ũ has the
initial data

ũ(x, y, tn) =

{
ul for x < xi+1/2

ũr for x > xi+1/2

(14)

and consists of a 1-shock, a contact discontinuity and a 3-wave, which is a weak
rarefaction or weak shock wave. In the following we neglect, without loss of gen-
erality, the 3-wave such that ũmr = ũr; see Fig. (1) and assume for notational
simplicity that i = 0. A smooth function F exists with

ũr = ul + F (ε1, ε2, ε3;ul) (15)

where ε2 represents a parameter for the strength of the contact discontinuity and
ε3 is a parameter for the strength of a 3-wave; see [SM;1983 Chapter 17]. ε1

represents a parameter for the strength of a 1-shock. We choose ε1 such that

ur = ul + F (ε1, 0, 0;ul) (16)
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Figure 1: Riemann Problem for a perturbed shock wave
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For a perturbation of ε2 with ε3 = 0 the pressure p and the x-component of
the velocity u are constant behind the 1-shock. We obtain form the Lax shock
conditions ṡ1

1/2,j < λ2(ur) where λ2(ur) is the second eigenvalue of the Jacobian
A(ur). For a near stationary strong shock wave we can assume that 0 < λ2(ur).
Since the parameter ε2 represents a contact discontinuity, the discontinuity speed
ṡ2
1/2,j is equal to the characteristic speed λ2(ur), which is constant across a contact

discontinuity; i.e. ṡ2
1/2,j = λ2(ur) = λ2(ũr). Where ũr is given by

ũr = ul + F (ε1, ε2, 0;ul) (17)

The y-component of the velocity vl = v0,j and vr = v1,j enters the solution of the
plane-wave Riemann problem essentially as a parameter. We can first solve the one
dimensional Riemann problem ignoring the momentum equation for v and then
introduce a jump in v at the contact discontinuity to obtain the full plane-wave
solution. However, vl and vr enter the one dimensional Riemann problem through
the pressure as a function of the total energy, density and velocity. We assume
that vr = O(ε) and vl = O(ε). For a small perturbation O(ε) the change in (3) is
of order ε2. Therefore we can assume that the wave structure for the perturbed
plane-wave Riemann problem

ũ(x, y, tn) =

{
uε

l (x1/2,j−) for x < x1/2,j

ũε
r(x1/2,j+) for x1/2,j < x

(18)

persists up to second order in ε, where uε
l (x) = (ρl, ρlul, ρlv

ε(x), El)T and uε
r(x) =

(ρ̃r, ρ̃rur, ρ̃rv
ε(x), Ẽr)T .

Note: If vε(x, tn) = vε(x) is discontinuous at x1/2,j the perturbation introduces
a jump in the y-component of the velocity at the contact discontinuity in the
solutions. If ul = 0 and ur = 0 the perturbed plane-wave Riemann problem
contains a tangential or shear instability. In [LL;§81] it is proved that such a
tangential instability in an incompressible non viscous flow is absolutely unstable
and may lead to a turbulent flow, and it is further mentioned that these instabilities
exist also in compressible flows. However, we assume in the following that the
perturbation vε(x, tn) is a smooth function.

We can consider the parameter ε1, ε2 in (17) as functions of y. We assume that
the variation of ε1 in y is small enough such that ṡ1

1/2,j < 0 < ur still holds. This
variation can be defined independently of the y-component of the velocity and we
can assume that v is not affected through this perturbation.

The flow for this perturbed plane-wave Riemann problem is defined through
the two-dimensional Euler equation (1). A change of the parameter ε2 in (17)
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affects only the contact discontinuity. Since the pressure and the x-component of
the velocity are constant across a contact discontinuity, we have behind the 1-shock
p(x, y, t) = pr = p̃r and u(x, y, t) = ur = ũr and we obtain with v(x, y, t) = v(x, t)
for the Euler equation :

∂

∂t
ρ + ur

∂

∂x
ρ + v

∂

∂y
ρ = 0 (19)

∂

∂t
v + ur

∂

∂x
v = 0

∂

∂t
E + ur

∂

∂x
E + v

∂

∂y
E = 0

where the last equation follows from the equation of state (3) and from the first
two. Therefore the perturbed solution satisfies behind the 1-shock the eqaution
(19) with the initial data

ũ(x, y, tn+) =

{
uε

r(x, y) for x < x1/2

ũε
r(x, y) for x1/2 < x

(20a)

with
uε

r(x, y) = (ρ(x, y), ρ(x, y)ur, ρ(x, y)vε(x), E(x, y))T

ρ(x, y) = ρr(1 + ρε
0(y)) (20b)

and
ũε

r(x, y) = (ρ(x, y), ρ(x, y)ur, ρ(x, y)vε(x), E(x, y))T

ρ(x, y) = ρ̃r(1 + ρε
0(y)) (20c)

and

E(x, y) = pr/(γ − 1) +
1
2
ρ(x, y)(u2

r + vε(x)2) (20d)

where vε
0(x) and ρε

0(y) are arbitrary smooth initial perturbations.
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Proposition: The solution of the initial vale problem (19), (20a) is given by:

ρ(x, y, t) = ρx(x, t)ρy(y, t) = ρx
0(x− urt)ρ

y
0(y − vεt) (21a)

with
vε(x, t) = vε

0(x− x1/2 − urt)

and

ρx
0(x) =

{
ρr for x < x1/2

ρ̃r for x1/2 < x
(21b)

and
ρy

0(y) = 1 + ρε
0(y) (21c)

Proof: The solution of the plane-wave Riemann problem has behind the 1-
shock, i.e. for x > s1

1/2t + x1/2, a constant pressure pr = p̃r and constant a
x-component of the velocity ur = ũr. Therefore the Euler equation reduce to (19)
and the solution is completely defined through the density ρ and the y-component
of the velocity v and the constant pressure and the x-component of the velocity.
We have

∂

∂t
ρ + ur

∂

∂x
ρ + vε ∂

∂y
ρ

= ρy[
∂

∂t
ρx + ur

∂

∂x
ρx + vε ∂

∂y
ρx] + ρx[

∂

∂t
ρy + ur

∂

∂x
ρy + vε ∂

∂y
ρy]

Furthermore
∂

∂t
ρx = −ur

d

dξ
ρx

0

∂

∂x
ρx =

d

dξ
ρx

0

∂

∂y
ρx = 0

(22)

and
∂

∂t
ρy = −(

∂

∂t
vεt + vε)

d

dξ
ρy

0

∂

∂x
ρy = − ∂

∂x
vεt

d

dξ
ρy

0

∂

∂y
ρy =

d

dξ
ρy

0

(23)
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Thus we obtain

∂

∂t
ρx + ur

∂

∂x
ρx + vε ∂

∂y
ρx = −ur

d

dξ
ρx

0 + ur
d

dξ
ρx

0 = 0

and

∂

∂t
ρy + ur

∂

∂x
ρy + vε ∂

∂y
ρy

= −(
∂

∂t
vεt + vε)

d

dξ
ρy

0 − ur
∂

∂x
vεt

d

dξ
ρy

0 + vε d

dξ
ρy

0

= −t
d

dξ
ρy

0[
∂

∂t
vε + ur

∂

∂x
vε] = 0

Therefore (21a) and the constant x-component u = ur = ũr and constant pressure
p = pr = p̃r define a solution of the Euler equation (1) in smooth parts of the
solution. The Jump Condition for a plane-wave moving in the x-direction reduce
for constant pressure and constant x-component of the velocity to

ṡ(t)[ρ(x+, y, t)− ρ(x−, y, t)] = ur[ρ(x+, y, t)− ρ(x−, y, t)]

ṡ(t)ur[ρ(x+, y, t)− ρ(x−, y, t)] = (ur)2[ρ(x+, y, t)− ρr(x−, y, t)]
ṡ(t)[ρ(x+, y, t)vε(x+, t)− ρ(x−, y, t)vε(x−, t)] =
ur[ρ(x+, y, t)vε(x+, t)− ρ(x−, y, t)vε(x−, t)]
ṡ(t)[E(x+, y, t)− E(x−, y, t)] = ur[E(x+, y, t)− E(x−, y, t)]

where ṡ is the speed of the discontinuity in the x-direction. Therefore we see that
the jump conditions are satisfied along the curve x = s2

1/2t + x1/2 = urt + x1/2,
and (21a) is a weak solution of (1). For x = urt + x1/2 we have

vε(x+, t) = vε
0(0)

ρ(x+, y, t) = ρx
0(x1/2+)ρy

0(y − vε
0(0)t) = ρ̃rρ

y
0(y − vε

0(0)t)

and (24)
vε(x−, t)t = vε

0(0)
ρ(x−, y, t) = ρx

0(x1/2−)ρy
0(y − vε

0(0)t) = ρrρ
y
0(y − vε

0(0)t)

and we see that the initial conditions are satisfied. This completes the proof. �

For a small positive constant δ < ε we define

vε
0(x) = δ sin(x

π

δ2
) (25)
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Then we obtain for a point with x− urt = x1/2 on the contact-shear discontinuity

lim
ε→0+

ρ(x1/2 + urt + ε, y, t) = (26)

lim
ε→0+

ρx
0(x1/2 + ε)ρy

0(y − δt sin(ε
π

δ2
)) =

ρ̃r lim
ε→0

ρy
0(y − δt sin(ε

π

δ2
)) =

ρ̃r lim
ε→0

ρy
0(y − δ(x− x1/2)/ur sin(ε

π

δ2
)) = ρ̃r(1 + ρε

0(y))

as we would expect. However, for the time derivative of ρ we get

∂

∂t
ρ =

∂

∂t
[ρx

0(x− urt)ρ
y
0(y − vεt)] (27)

= ρx ∂

∂t
ρy + ρy ∂

∂t
ρx

= −ρx(vε + t
∂

∂t
vε)

d

dξ
ρy

0 − urρ
y d

dξ
ρx

0 (28)

and we obtain with
∂

∂t
vε =

∂

∂t
vε
0(x− x1/2 − urt) (29)

=
∂

∂t
[δ sin((x− x1/2 − urt)

π

δ2
)]

= −ur
π

δ2
[δ cos((x− x1/2 − urt)

π

δ2
)]

= −ur
π

δ
cos((x− x1/2 − urt)

π

δ2
)

for a point with x− urt = x1/2 on the contact discontinuity

lim
ε→0+

∂

∂t
ρ(x1/2 + urt + ε, y, t) (30)

= lim
ε→0+

[−ρx
0(x1/2 + ε)vε

0(ε) + ρx
0(x1/2 + ε)tur

π

δ
cos(ε

π

δ2
)]

d

dξ
ρy

0 − lim
ε→0+

[urρ
y d

dξ
ρx

0 ]

= lim
ε→0+

ρ̃rtur
π

δ

d

dξ
ρy

0

= lim
ε→0+

ρ̃rtur
π

δ

d

dξ
ρε

0

= ρ̃rtur
π

δ

d

dξ
ρε

0 |ξ=y

Let t > 0 and (x, y) a point on the discontinuity with d
dyρε

0(y) �= 0, then the last
term grows to infinity if lim δ → 0+ in (25). Therefore the one sided limit for
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∂
∂tρ(x1/2 + urt + ε, y, t) can increase for arbitrary small perturbation of the form
(25). Since we obtain the same result for any δn in (25), where n > 2 is an arbi-
trary integer (30) grows exponential. The two-dimensional contact discontinuity
is unstable for t > 0 and d

dyρε
0(y0) �= 0. We obtained the following

Theorem: If the solution of the plane-wave Riemann problem (14) contains a
contact discontinuity, then the solution is not stable under small perturbations
and (11) can grow exponentially, if the instability coincides with the cell boundary
for t > 0.

Note: To derive the Rankine-Hugoniot Jump Condition (13) form the integral
form (7) of the conservation law, we must assume that the integral∫ xi+1/2

xi−1/2

ut(ξ, y, tn) dξ (31)

approaches zero for limΔ → 0. This assumption fails for the perturbed two
dimensional plane-wave Riemann problem.

As Courant and Friedrichs [CF;1948] mentioned: "It is obvious that in reality
such a contact surface cannot be maintained for an appreciable length of time;
heat conduction between the permanently adjacent particles on either side of the
discontinuity would soon make our idealized assumption unrealistic. While gas
particles crossing a shock front are exposed to heat conduction for only a very
short time, those that remain adjacent on either side of a contact surface are ex-
posed to heat conduction all the time. Hence it is clear that a contact layer will
gradually fade out."
In a Finite Volume method discontinuities are moved to the cell boundary. This
small displacement of a shock is accompanied by infinitesimal disturbances of the
dependent variable (pressure, velocity, etc.). These disturbances originate near the
shock wave and spread with sound speed relative to the gas. This does not hold
for the entropy disturbances which are carried with fluid away form the shock; see
[LL;1959]. We have proved in this section that infinitesimal density changes (which
are caused by the entropy disturbance behind a shock), can lead to an exponen-
tial growth of the time-derivative of the density at the two-dimensional contact
discontinuity. If this 2d-contact instability enters the numerical method through
the solution of the Riemann problem at the cell-boundary, then the absence of
sufficient numerical viscosity can lead to a failing of the numerical method. This
will be shown for Godunov´s and Roe´s method in the next secton.
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3 Instability of Godunov´s method
We have seen in the last section that the solution of the plane-wave Riemann prob-
lem is unstable under perturbations at the contact discontinuity. If this instability
enters a numerical scheme through the use of the plane-wave Riemann problem in
the numerical flux function at the cell boundary, the numerical method itself can
fail.
In Godunov´s method a plane-wave Riemann problem is solved at the cell bound-
ary for example at the cell-boundary (xi+1/2, yj) at time t = tn in the x-direction.
Denote by uR(x, y, t; (1, 0)) the solution of the plane-wave Riemann problen in the
x-direction at the cell boundary.
Then un

i+1/2,j := limt→tn+ uR(xi+1/2, yj , t; (1, 0)) is computed and used to evaluate
the physical flux function. The following conditions must be met if the instability
at the contact discontinuity can affect Godunov´s method:

(i)Perturbation must be present in the approximate solution.
(ii)There is not enough numerical dissipation to suppress perturbations.

(iii)The physical signal speeds satisfy ḃl
i+1/2,j < 0 < ḃr

i+1/2,j

The smallest numerical signal speed ḃl
i+1/2,j in the solution of the plane-wave

Riemann problem at the cell boundary (xi+1/2, yj) is either the 1-shock speed
s1
i+1/2,j or the characteristic speed ui,j − ci,j , where ui,j is the x-component of

the velocity and ci,j the sound speed of the state ui,j . The largest numerical
signal speed ḃr

i+1/2,j is either the 3-shock speed s3
i+1/2,j or the characteristic speed

ui+1,j + ci+1,j . If the solution satisfies

un
i+1/2,j =

{
ui,j for 0 < ḃl

i+1/2,j

ui+1,j for ḃr
i+1/2,j < 0

(32)

then Godunov´s scheme reduces to an upwind scheme and the internal wave struc-
ture of the Riemann problem is ignored. The instability at the contact disconti-
nuity does not enter the numerical solution.

If the first and third nonlinear waves are weak waves, no significant noise is
generated in Godunov´s method. For a strong rarefaction wave there is a signif-
icant amount of dissipation in Godunov´s method. Therefore, if we are looking
for numerical solutions which contain perturbations, a strong 1-shock or 3-shock
should be present in the numerical solution. It is well known that numerical noise
is generated in a moving shock wave. The source of small perturbation is the
displacement of the shock curve at the cell-boundary and the nonlinear interac-
tion of the dependent variables in the numerical shock layer. A non stationary or
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stationary displaced shock wave is approximated through a smeared profile with
at least one intermediate cell. Whenever the smeared shock profile changes, small
(acoustic and entropy) perturbations are generated from the characteristic fields
. If the shock curve is not exactly a plane-wave in the x-direction the shock-
curvature will introduce an additional perturbation which depends on y. This is
the situation discussed in the previous section for a plane-wave 1-shock. Small per-
turbations from the smeared shock profile generate a contact discontinuity down-
stream of the shock. The curvature introduces a y-dependence of the density
shock-perturbations, while the pressure and the x-component of the velocity at
the contact discontinuity remain constant. If condition (iii) holds for the signal
speeds, then a two-dimensional contact instability can enter Godunov´s scheme
through the evaluation of the flux-function at the cell-boundary. This instability
at the two-dimensional contact discontinuity can lead to large disturbances of the
density, which are transported into the solution; see the Theorem in the previous
section.
Based on numerical results, Abouziarov et. al. [AAT; 2001] found that the carbun-
cle phenomenon is related to an amplification of an error in the conserved variable
ρv, in regions where the density has a discontinuity or very strong gradient.
We have for the perturbation discussed in the last section (with δ2 replaced by δn,
with n > 2) for a point x− urt = x1/2 on the contact-shear discontinuity

lim
ε→0+

∂

∂t
[ρ(x1/2 + urt + ε, y, t)v(x1/2 + urt + ε, t)] (33)

= lim
ε→0+

v(x1/2 + urt + ε, t) lim
ε→0+

∂

∂t
ρ(x1/2 + urt + ε, y, t)

+ lim
ε→0+

ρ(x1/2 + urt + ε, y, t) lim
ε→0+

∂

∂t
v(x1/2 + urt + ε, t)

= lim
ε→0+

vε
0(ε)ρ̃rtur

π

δn−1

d

dξ
ρε

0 |ξ=y −ρ̃r(1 + ρε
0(y))ur

π

δn−1

= −ρ̃r(1 + ρε
0(y))ur

π

δn−1

� −ρ̃rur
π

δn−1

Therefore a small density perturbation from the 1-shock can generate an exponen-
tial growth of the conserved variable ρv at the contact discontinuity, in agreement
with the findings in [AAT; 2001].
Based on the numerical observation, that shock capturing methods which try to
capture contact discontinuities exactly, generally suffer from failings, a link be-
tween the carbuncle phenomenon and the resolution of the contact discontinuities
was suggested by [GRE; 1998].
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In [ROE; 2007], one-dimensional oscillations at a shock are denoted as a carbun-
cle instability. This 1D numerical "instability" has a different character then the
carbuncle phenomenon reported by [Quirk; 1994] and will not be denoted as a
carbuncle instability in this paper; see also [EIN3;2008] for a discussion of 1D
post-shock oscillations.
Numerical examples for a plane shock wave aligned with the grid, which is moving
down a duct form left to right is also given in [QUI 1994; Figure 5]. At the grid
center line, a small perturbation is introduced in the computation. Downstream
of the shock an unstable density profile develops, which over time leads to an
unstable numerical shock front. If we associate the center of the duct with the
x-axis, then the perturbation introduced in the computation depends at the shock
front on y. This numerical example reflects the situation discussed analytically in
the previous section; the perturbation from the shock leads to an unstable growth
of the density at the 2d contact discontinuity. In [Roe; 2007]results for a similar
problem, denoted as 1 1/2 dimensional, are reported. It is claimed that 1d "stabil-
ity" is important for 1 1/2d stability. In agreement with the results in this paper,
since if a numerical scheme generates noise at the shock, the instability at the 2d-
contact discontinuity is activated, whereas if very little or no noise is generated at
the shock the dissipation of the method may be sufficient to suppress the unstable
growth of the density at the 2d-contact discontinuity.

Roe´s method [Roe; 1980] is more vulnerable to the 2d-contact instability
then Godunov´s method, due to the fact that a rarefaction wave is replaced by
a rarefaction shock. Therefore noise form the rarefaction shock, can also lead to
an unstable growth of the density at the contact discontinuity, in addition to the
noise from the shock.

An example from an aerodynamic simulation, which results in incorrect nu-
merical results is given in [Peery; 1988], for a bow shock over a blunt body placed
in a high Mach number flow. Along the stagnation line the bow shock is approxi-
mately aligned with grid used for the calculation. A perturbation normal to shock
is given through the curvature of the shock. At the stagnation point we have ap-
proximately a plane-wave near stationary shock wave, with a disturbance normal
to the shock. This again is the situation discussed in the previous section.

Since small disturbance propagate along characteristics, the instability in the
plane-wave Riemann problem at the two-dimensional contact discontinuity can
spread into the solution not faster then the smallest and largest characteristic
speed; i.e. we can assume that the unstable flow region is restricted to an area
λ1(ur)t = (ur − cr)t < x and x < λ3(ũr)t = (ũr + c̃r)t where cr and c̃r are the
sound speeds to left and right of the contact discontinuity. From the Lax shock
conditions we have ur − cr < s1(ur,ul) and the unstable flow can overtake the 1-
shock. Then the assumption of a constant 1-shock speed in the Riemann problem
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is no longer valid - this explains the implications of the contact-shear instability
on the shock itself, which are visible in the numerical results [Roe 2007; Fig.5] and
[Quirk 1994; Fig 5].

4 HLLE Methods
The instability of the two-dimensional contact discontinuity can lead in a very short
time to an extreme irregular and disorderly change of the density. If values from
this unstable region enter the numerical method, nonphysical numerical artifacts
can occur in the solution and, if the flow structure is not known a priori, the
numerical solution may be useless. In this section we review a method which
circumvents this problem.
We can assume, that for the plane Riemann problem in the x-direction curves
bl
l,r(y, t) and br

l,r(y, t) exists such that

u(x, y, t) =

{
ul for x < bl

l,r(y, t)
ur for br

l,r(y, t) < x
(34)

where we assumed that bl
l,r(y, 0) = xi+1/2.j = bl

l,r(y, 0). We denote by bl
l,r(y, 0)

and br
l,r(y, 0) the smallest and largest signal curves at the cell interface for a plane-

wave Riemann problem in the x-direction and assume for notational simplicity
that tn = 0.
Given the largest and smallest signal curves we can define the average

ūl,r(y, t) :=
1

br
l,r(y, t)− bl

l,r(y, t)

∫ br
l,r(y,t)

bl
l,r(y,t)

u(ξ, y, t) dξ (35)

From the integral form of the conservation law (7) we obtain with (34) for bl
l,r(y, t) <

0 < br
l,r(y, t):

ūl,r(y, t) =
br
l,r(y, t)− xi+1/2,j

br
l,r(y, t)− bl

l,r(y, t)
ur −

bl
l,r(y, t)− xi+1/2,j

br
l,r(y, t)− br

l,r(y, t)
ul (36)

− t

br
l,r(y, t)− bl

l,r(y, t)
[f(ur)− f(ul)]

Assuming that bl
l,r(y, t) and br

l,r(y, t) has onesided derivatives for t = 0; i.e.

∂

∂t
bl
l,r(y, t)|t=0+ := ḃl

l,r(y) (37)

∂

∂t
br
l,r(y, t)|t=0+ := ḃr

l,r(y)
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we obtain

bl
l,r(t, y) = bl

l,r(0, y) + ḃl
l,r(y)t + O2(Δt) (38)

= xi+1/2 + ḃl
l,r(y)t + O2(Δt)

br
l,r(t, y) = br

l,r(0, y) + ḃr
l,r(y)t + O2(Δt)

= xi+1/2 + ḃr
l,r(y)t + O2(Δt)

and

ūl,r(y, t) =
ḃr
l,r(y)

ḃr
l,r(y)− ḃl

l,r(y)
ur −

ḃl
l,r(y)

ḃr
l,r(y)− ḃr

l,r(y)
ul (39)

− 1
ḃr
l,r(y)− ḃl

l,r(y)
[f(ur)− f(ul)] + O2(Δt)

follows.
Therefore the average (39) is well defined for small times, although the solu-
tion between the smallest and largest signal curves may be unstable at the two-
dimensional contact discontinuity. This result is also reasonable from a physical
point of view, then an unstable solution should fluctuate around a mean value.
An approximate solution to the Riemann problem which is only based on the
largest and smallest signal speeds in the plane-wave Riemann problem and the
corresponding average value (39), results in a HLLE method [EIN 1988]. This
explains why the HLLE methods are not affected by the carbuncle instability.

5 Conclusion

The instability of the two-dimensional contact discontinuity in the plane wave
Riemann problem under perturbations requires a rethinking concerning the use
of the internal wave structure from approximate or exact solutions of plane wave
Riemann problems in Finite Volume methods.
Immanent numerical noise and the instability of the two-dimensional contact dis-
continuity are fundamental aspects of shock capturing methods for the Euler equa-
tions, which must be considered in a numerical stability and convergence analysis.
The class of HLLE schemes can address these aspects.
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