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United Economy after Unification of Areas with Neoclassic

Economies.

Daniel Ansorge∗) and Rainer Ansorge∗∗)

Summary:
We consider N areas (N > 1) the economies of which will mathematically be modelled by the Solow-Swan model with

neoclassic production functions and which will be equal with respect to exogenous savings rates and depriciation rates.

We show that the unification of these areas leads to a united economy which is also neoclassic. This suggests itself

but will now be clarified with respect to suitable assumptions and will then be confirmed by a simple mathematical

proof. Moreover, if the production functions are approximated by Cobb-Douglas functions, the parameters of the

united economy can explicitly be computed from the parameters of the single economies involved, and this also holds

for the steady state solution of the joint economy. In other situations, numerical methods concerning the computation

of steady state solutions will be briefly discussed.

1 The Model

Assume Fi(Ki, Li) (i = 1, · · · , N) to be the production functions of the economies of N (N > 1)
areas depending on the physical capitals Ki in the i-th area and the labors Li proportional to the
number of inhabitants, with

0 < Ki < ∞ , 0 < Li < ∞ (i = 1, · · · , N) . (1)

Let the Capital Accumulation Equations of the single economies be written as

∂Ki

∂t
= si Fi(Ki, Li) − δi Ki , (i = 1, · · · , N) , t : time (2)

with the exogenous savings rates si (0 ≤ si ≤ 1) of the particular regions and the exogenous
depriciation rates δi (i = 1, · · · , N) of the capitals. Hence, corresponding to the simplest form of
the Solow-Swan Model 1, we assume the savings rates to be constant, particularly to be independent
of the production factors capital and labor.

Assume that the depriciation rates do not differ very much from eachother in the areas involved so
that

δi = δ (i = 1, · · · , N) (3)
1It does not lead to real difficulties if one tries to include also knowledges Ti or other more realistic models.
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holds approximately with a common rate δ .

Assume the physical capital K, the labor L and the output F of the united economy to be given
by

K =
N∑

i=1

Ki , (4)

L =
N∑

i=1

Li , (5)

F =
N∑

i=1

Fi , (6)

respectively.

In here, F is a function of the 2N variables Ki , Li (i = 1, · · · , N), and we expect that for a
certain time after the unification the structures of the outputs Fi do not extremely change.

(4), (3), (2) lead to

∂K

∂t
=

N∑
i=1

si Fi(Ki, Li) − δK . (7)

We expect that all the economies of the different areas which are parts of the union are neoclassic
in the sense of the Solow-Swan Model [1] , [2] 2.

Thus, particularly, the production functions exhibit constant returns to scale 3, i.e.

Fi(νKi , νLi) = νFi(Ki , Li) , ∀ ν > 0 , (i = 1, · · · , N), (8)

which leads to

Fi(Ki , Li) = Li Fi

(
Ki

Li
, 1

)
= Li fi(ki) (i = 1, · · · , N). (9)

ki = Ki
Li

is the capital per capita in the i-th region and fi(ki) the so-called intensive form of the
production function Fi.

After the unification the per capita capital does not depend on the regions and we assume the
process of adaptation of the economies to eachother to lead forthwith to identical ratios between
capital and labor:

ki = k =
K

L
, ∀ i = 1, · · · , N , (10)

2This implies, that capital and labor are essential, so that Ki = 0 or Li = 0 can not occur if Fi > 0 is expected.
3in mathematical language: the functions are homogeneous of degree 1 with respect to capital and labor.
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hence

Ki = k Li (i = 1, · · · , N) (11)

and

∂k

∂t
=

N∑
i=1

mi si fi(k) − (n+ δ)k . (12)

In here,

n =
1
L

∂L

∂t

represents the growth rate of the population of the joint region and

mi =
Li

L

measures the share of the population of i-th area compared with the united population.

Obviously (cf. (5)),

N∑
i=1

mi = 1 (13)

and

n =
N∑

i=1

mini (14)

with the population growth rate

ni =
1
Li

∂Li

∂t
(i = 1, · · · , N)

on the i-th area.

(12) represents the so-called fundamental equation of the united economies.

We had already expected that the single economies are equal with respect to the depreciation rates,
and it makes sense to expect that this also holds for the savings rates after the unification of the
areas.

Thus,

si = s (i = 1, · · · , N) , (15)

and because of (6) and (11)
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N∑
i=1

simifi(k) = s
N∑

i=1

mifi(k) =
s

L

N∑
i=1

Lifi(k) =
s

L

N∑
i=1

Li Fi(k, 1) =
s

L

N∑
i=1

Fi(Ki, Li) =
s

L
F . (16)

We define

N∑
i=1

mifi(k) = f(k) (17)

so that F
L depends only on k, and with (12) we find the fundamental equation of the joint economy

now in the usual form

∂k

∂t
= sf(k)− (n+ δ)k (18)

2 The Neoclassic Behaviour of the United Economy

Theorem: The production function of the union of single neoclassic economies which are equal
with respect to the exogenous savings- and depriciation rates, and which adapt to eachother with
respect to the ratios between capital and labor, is also neoclassic.

Proof:

Because of (10), (16) and (17), F
L = f(k) depends only on k, hence F = Lf(k) = Lf

(
K
L

)
depends

only on K and L:

F = F̃ (K, L)

with

F̃ (νK, νL) = νLf

(
νK

νL

)
= νF̃ (K,L)

so that F exhibits constant returns to scale.

And it is trivial to show that F exhibits positive and marginal products with respect to inputs, i.e.
to show f ′(k) > 0 , f ′′(k) < 0 , and also the Inada conditions [3]

lim
k→0

f ′(k) = ∞ , lim
k→∞

f ′(k) = 0 (19)

are fulfilled, namely because all these properties hold for the single functions fi (i = 1, · · · , N) ,
because the mi are positive and because of (17).

q.e.d.

Therefore, the single economies as well as the united economy have unique steady state solutions
k∗

i (i = 1, · · · , N) and k∗, respectively.
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3 Computation of the Steady State Solution of the United Eco-
nomy

The steady state solution of (18) results from ∂k
∂t = 0 , i.e. from the nonlinear equation

k∗ = ωf(k∗) with ω =
s

n+ δ
, (20)

and in the same way −because of (10)−

k∗
i = ωifi(k∗

i ) with ωi =
s

ni + δ
(i = 1, · · · , N). (21)

Because the steady state solutions are the limits of k(t) and ki(t) , respectively, for t → ∞ , we find
with (17) and (23) and by the assumption that the intensive production functions are continuous,

k∗ = ω lim
t→∞ f(k(t)) = ω lim

t→∞

N∑
i=1

mifi(ki(t)) = ω
N∑

i=1

mifi(k∗) (22)

so that

k∗ = ω
N∑

i=1

mi

ωi
k∗

i . (23)

Normally, a nonlinear equation like (10) or (22) can not be solved explicitly, even if one knows
−as in our situation− that there is a unique solution. But there are numerical procedures like the
Newton method (see e.g. [4] , p. 216) to solve the problems approximately by iteration, in case of
(20) by

k∗[ν+1] = ωf(k∗[ν])
1− Sh(k∗[ν])
1− ωf ′(k∗[ν])

, (ν = 0, 1, 2, · · ·) , (24)

where k∗[ν] means the approximation for k∗ after the ν-th iteration step and where

Sh(k) =
kf ′(k)
f(k)

(25)

represents the capital share belonging to the production function f . This capital share is obviously
greater than 0 and −by means of the Euler Equation− smaller than 1:

0 < Sh(k) < 1 . (26)

The Euler Equation cited here follows from the return to scale of a neoclassic production function
F , namely
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F (K, L) = K
∂F

∂K
+ L

∂F

∂L
(27)

and in the same way for the functions Fi (i = 1, · · ·N) .

The Newton method (24) converges quadratically to k∗ if f ′(k∗) �= 1
ω and if the value k∗[0] at the

beginning of the iteration procedure is already sufficiently close to the unknown value k∗ 4.

One often tries to approximate the unknown steady state solution of a given fundamental equation
by replacing this production function by a Cobb-Douglas production function [5] which reads in its
intensive form as

f(k) = f(1)kα (0 < α = const < 1). (28)

The Cobb-Douglas function is a first-order approximation to a neoclassic production function where
α is a constant approximation to the capital share (25) of the approximated intensive production
function f .

The steady state solutions which belong to our single production functions −provided that these
functions are given as or approximated by Cobb-Douglas functions− read as

k∗
i = (fi(1)ωi)

1
1−αi (29)

so that the steady state solution of the united economy becomes or will be approximated by

k∗ = ω
N∑

i=1

mi

ωi
(fi(1)ωi)

1
1−αi . (30)

Remark: The fact that a differental equation (like the fundamental equation) with a certain initial
value is a good approximation to another differential equation with the same initial value does not
already guarantee that also the solution of the one is a good approximation to the solution of the
other ! Stability arguments have to be fulfilled additionally.

4e.g. by choosing k∗[0] carefully as the value found by graphical construction over k of the particular value k = k∗

where the functions ωf(k) and k intersect.
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