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1 Introduction

Differential-algebraic equations (DAEs) are composite systems of differential
equations and algebraic equations and often are viewed as differential equa-
tions on manifolds. In its most general form a DAE is an implicit ordinary
differential equation (ODE) of type

G(ξ(t), ξ′(t), u(t)) = 0. (1)

If the partial derivative G′ξ′ happens to be non-singular, then (1) is just an
ODE in implicit form and the implicit function theorem allows to solve (1)
for ξ′ in order to obtain an explicit ODE. The more interesting case occurs if
the partial derivative G′ξ′ is singular. In this case (1) cannot be solved directly
for ξ′ and (1) includes differential equations and algebraic equations at the
same time. Theoretical properties and numerical methods for solving equa-
tions of such type are discussed intensively since the early 1970ies, see Brenan
et al. [2], Hairer and Wanner [15], and Kunkel and Mehrmann [20]. Although
DAEs seem to be very similar to ODEs they possess different solution proper-
ties, see Petzold [23]. Particularly, DAEs possess different stability properties
compared to ODEs and initial values have to be defined properly to guarantee
at least locally unique solutions. At present, (1) is too general and therefore
too challenging to being tackled theoretically or numerically. In this article we
restrict the discussion to semi-explicit DAEs of type

x′(t) = f(x(t), y(t), u(t)), (2)

0 = g(x(t)), (3)

where the state ξ in (1) is decomposed into components x and y. Herein,
x(·) is referred to as differential variable and y(·) is called algebraic variable.
Correspondingly, (2) is called differential equation and (3) algebraic equation.
The control variable u is an external input which allows to control the DAE
in an appropriate way.

The most important application that fits into (2)-(3) are mechanical multi-
body systems with Gear-Gupta-Leimkuhler stabilization, see [8]. The latter
have the following structure

x′ = v − g′(x)�μ,

v′ = M(x)−1
(
f(x, v, u) − g′(x)�λ

)
,

0 = g(x),

0 = g′(x)v.

Moreover, problems in process engineering, electrical engineering, and, as we
shall see later, discretized Navier-Stokes equations lead to DAEs of type (2)-
(3). Often, the control u has to be chosen such that a given performance index
is minimized subject to constraints. This leads to the following optimal control
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problem subject to mixed control-state constraints (OCP):

Minimize

∫ 1

0

f0(x(t), y(t), u(t))dt

w.r.t. x ∈W 1,∞([0, 1],Rnx), y ∈ L∞([0, 1],Rny), u ∈ L∞([0, 1],Rnu),
s.t. DAE (2) − (3),

ψ(x(0), x(1)) = 0,
c(x(t), y(t), u(t)) ≤ 0 a.e. in [0, 1].

Without loss of generality the discussion is restricted to autonomous problems
on the fixed time interval [0, 1]. The functions f0 : R

nx × R
ny × R

nu → R,
f : R

nx × R
ny × R

nu → R
nx , g : R

nx → R
ny , ψ : R

nx × R
nx → R

nψ ,
c : R

nx × R
ny × R

nu → R
nc are supposed to be at least twice continuously

differentiable w.r.t. to all arguments. As usual, the Banach space L∞([0, 1],Rn)
consists of all measurable functions h : [0, 1] → R

n with

‖h‖∞ := ess sup
0≤t≤1

‖h(t)‖ <∞,

where ‖ · ‖ denotes the Euclidian norm on R
n. For 1 ≤ r < ∞ the Banach

spaces Lr([0, 1],Rn) consist of all measurable functions h : [0, 1] → R
n with

‖h‖r :=

(∫ 1

0

‖h(t)‖r dt
)1/r

<∞.

For 1 ≤ r ≤ ∞ the Banach spaces W 1,r([0, 1],Rn) consist of all absolutely
continuous functions h : [0, 1] → R

n with

‖h‖1,r := max{‖h‖r, ‖h′‖r} <∞.

Most numerical approaches for OCP and more general DAE optimal con-
trol problems, respectively, are based on direct discretization in combination
with shooting techniques, compare Pantelides et al. [22], Gritsis et al. [14],
Schulz et al. [29], and Gerdts [11]. These methods proved their capability in
various practical applications. Nevertheless, the computational effort grows at
a nonlinear rate with the number of grid points used for discretization.

Alternative method try to satisfy first-order necessary optimality condi-
tions. Optimality conditions for OCP can be found in Gerdts [9]. Further
results for more general DAEs were derived by Roubicek and Valásek [26] and
Backes [1]. However, the exploitation of the necessary conditions leads to a
nonlinear multi-point boundary value problem which has to be solved numer-
ically. Especially in the presence of control-state constraints this requires a
sufficiently good initial guess of the solution, the Lagrange multipliers and the
sequence of active and in-active constraints. For demanding problems obtain-
ing a good initial guess is crucial. Often, direct methods can be used to provide
an initial guess.

Our intention is to analyze the local and global convergence properties of
an alternative method – the semi-smooth Newton’s method. The method is
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based on a reformulation of the necessary optimality conditions and it was
analyzed for optimal control problems subject to ODEs in Gerdts [13]. A brief
outline of the essential ideas of the algorithm is as follows. The reformulation
of the necessary conditions leads to the semi-smooth equation

F (z) = 0, F : Z → Y,

where Z and Y are appropriate Banach spaces. Application of the global-
ized semi-smooth Newton’s method generates sequences {zk}, {dk} and {αk}
related by the iteration

zk+1 = zk + αkd
k, k = 0, 1, 2, . . . .

Herein, the search direction dk is the solution of the linear operator equation
Vk(d

k) = −F (zk) and the step length αk > 0 is determined by a line-search
procedure of Armijo’s type for a suitably defined merit function. The lin-
ear operator Vk is chosen from an appropriately defined generalized Jacobian
∂∗F (zk).

The semi-smooth Newton’s method was investigated in finite dimensions
amongst others by Qi [24] and Qi and Sun [25]. Extensions to infinite spaces
can be found in Kummer [18,19], Chen et al. [4], Ulbrich [30,31], and Gerdts
[13].

The paper is organized as follows. Section 2 introduces the semi-smooth
Newton’s method for OCP and establishes the locally superlinear convergence
using results in Gerdts [13]. In Section 3 details of the computation of the
search direction are shown. It turns out that the search direction solves a lin-
ear DAE boundary value problem. Sufficient conditions for the existence of the
Newton direction are provided. Section 4 discusses global convergence proper-
ties of the semi-smooth Newton’s method. Finally, numerical illustrations are
presented in Section 5.

2 Local Convergence of the Semi-Smooth Newton’s Method

The (augmented) Hamilton function H : R
nx×R

ny×R
nu×R

nx×R
ny×R

nc →
R is defined by

H(x, y, u, λf , λg, η) :=

f0(x, y, u) + λ�f f(x, y, u) + λ�g g
′
x(x)f(x, y, u) + η�c(x, y, u).

We summarize the minimum principle for OCP, cf. Gerdts [10,9]. Let (x∗, y∗, u∗)
be a (weak) local minimum of OCP and

(i) let ϕ, f0, f, ψ, c be continuous w.r.t. all arguments and continuously differ-
entiable w.r.t. x, y, and u. Let g be twice continuously differentiable w.r.t.
all arguments.
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(ii) let the matrix M := g′x · f ′y be non-singular a.e. in [0, 1] and let M−1 be
essentially bounded in [0, 1]. Furthermore, let

M̂ := g′x ·
(
f ′y − f ′u(c

′
u)

+c′y
)

be non-singular with essentially bounded inverse M̂−1 a.e. in [0, 1]. Herein,

(c′u)
+ = c′�u

(
c′uc

′�
u

)−1
denotes the pseudo-inverse of c′u.

(iii) let

rank (c′u(x∗(t), y∗(t), u∗(t))) = nc

hold a.e. in [0, 1], and let the Mangasarian-Fromowitz constraint qualifica-
tion hold, cf. Gerdts [9].

Then there exist multipliers ζ∗ ∈ R
ny , σ∗ ∈ R

nψ , λf,∗ ∈W 1,∞([0, 1],Rnx),
λg,∗ ∈ L∞([0, 1],Rny), and η∗ ∈ L∞([0, 1],Rnc) with

x′∗(t) − f(x∗(t), y∗(t), u∗(t)) = 0, (4)

g(x∗(t)) = 0, (5)

λ′f,∗(t) +H ′x(x∗(t), y∗(t), u∗(t), λf,∗(t), λg,∗(t), η∗(t))
� = 0, (6)

H ′y(x∗(t), y∗(t), u∗(t), λf,∗(t), λg,∗(t), η∗(t))
� = 0, (7)

ψ(x∗(0), x∗(1)) = 0, (8)

λf,∗(0) + ψ′x0
(x∗(0), x∗(1))�σ∗ + g′x(x∗(0))�ζ∗ = 0, (9)

λf,∗(1) − ψ′x1
(x∗(0), x∗(1))�σ∗ = 0, (10)

H ′u(x∗(t), y∗(t), u∗(t), λf,∗(t), λg,∗(t), η∗(t))
� = 0. (11)

Furthermore, the complementarity conditions hold a.e. in [0, 1]:

η∗(t) ≥ 0, c(x∗(t), y∗(t), u∗(t)) ≤ 0, η∗(t)
�c(x∗(t), y∗(t), u∗(t)) = 0.

(12)
Unfortunately, these necessary conditions are not directly solvable for z∗ :=
(x∗, y∗, u∗, λf,∗, λg,∗, η∗, ζ∗, σ∗) owing to the complementarity conditions.
Therefore, the subsequent considerations aim at the reformulation of this set
of equalities and inequalities as an equivalent system of equations, which will
be solved by a generalized version of Newton’s method. Throughout the rest
of the paper for brevity we will use the notation f [t] for f(x(t), y(t), u(t)) and
likewise for other functions.

The convex and Lipschitz continuous Fischer-Burmeister function ϕ : R
2 →

R is defined by

ϕ(a, b) :=
√
a2 + b2 − a− b, (13)

cf. Fischer [6]. The Fischer-Burmeister function has the nice property that
ϕ(a, b) = 0 holds if and only if a, b ≥ 0 and ab = 0. Hence, the complementarity
conditions (12) are equivalent with the equality

ϕ(−ci(x∗(t), y∗(t), u∗(t)), ηi,∗(t)) = 0, i = 1, . . . , nc,
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that has to hold almost everywhere in [0, 1]. Rather than working with the
derivative of ϕ, which does not exist at the origin, we will work with Clarke’s
generalized Jacobian of ϕ:

∂ϕ(a, b) =

⎧⎨
⎩
{(

a√
a2 + b2

− 1,
b√

a2 + b2
− 1

)}
, if (a, b) 	= (0, 0),{

(s, r)
∣∣ (s+ 1)2 + (r + 1)2 ≤ 1

}
, if (a, b) = (0, 0).

Notice, that ∂ϕ(a, b) is a nonempty, convex and compact set. For 1 ≤ r ≤ ∞
let the Banach spaces

Zr = W 1,r([0, 1],Rnx) × Lr([0, 1],Rny) × Lr([0, 1],Rnu)

×W 1,r([0, 1],Rnx) × Lr([0, 1],Rny) × Lr([0, 1],Rnc) × R
ny × R

nψ ,

Y1,r = Lr([0, 1],Rnx) ×W 1,r([0, 1],Rny) × Lr([0, 1],Rnx) × Lr([0, 1],Rny)

× R
nψ × R

nx × R
nx × Lr([0, 1],Rnu),

Y2,r = Lr([0, 1],Rnc)

be equipped with the maximum norm for product spaces and z∗ = (x∗, y∗, u∗,
λf,∗, λg,∗, η∗, ζ∗, σ∗). Then, the necessary conditions (4)-(12) are equivalent
with the nonlinear equation

F (z∗) =

(
F1(z∗)
F2(z∗)

)
= 0, (14)

where F1 : Z∞ → Y1,r and F2 : Z∞ → Y2,r denote the smooth and the
nonsmooth part of F : Z∞ → Yr := Y1,r × Y2,r with 1 ≤ r ≤ ∞, respectively:

F1(z)(·) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′(·) − f(x(·), y(·), u(·))
g(x(·))

λ′f (·) +H ′x(x(·), y(·), u(·), λf (·), λg(·), η(·))�
H ′y(x(·), y(·), u(·), λf (·), λg(·), η(·))�

ψ(x(0), x(1))
λf (0) + ψ′x0

(x(0), x(1))�σ + g′x(x(0))�ζ
λf (1) − ψ′x1

(x(0), x(1))�σ
H ′u(x(·), y(·), u(·), λf (·), λg(·), η(·))�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

F2(z)(·) := ω(z(·)), (16)

where ω = (ω1, . . . , ωnc)
� : R

nx×R
ny×R

nu×R
nx×R

ny×R
nc×R

ny×R
nψ →

R
nc and

ωi(x̄, ȳ, ū, λ̄f , λ̄g, η̄, ζ̄ , σ̄) := ϕ(−ci(x̄, ȳ, ū), η̄i), i = 1, . . . , nc. (17)

For technical reasons, which become apparent later, we consider F as a map-
ping from Z∞ into Yr. However, we note that

im(F ) ⊆ Y∞ ⊂ Yr for every 1 ≤ r <∞.
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Notice, that the first component F1 of F in (15) as a mapping from Z∞ to
Y1,∞ is continuously Fréchet-differentiable with

F ′1(z
k)(z) =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′ − f ′xx− f ′yy − f ′uu
g′xx

λ′f +H ′′xxx+H ′′xyy +H ′′xuu+H ′′xλfλf +H ′′xλgλg +H ′′xηη

H ′′yxx+H ′′yyy +H ′′yuu+H ′′yλfλf +H ′′yλgλg +H ′′yηη

ψ′x0
x(0) + ψ′x1

x(1)

λf (0) + (ψ′x0

�σk + g′x
�ζk)′x0

x(0) + (ψ′x0

�σk)′x1
x(1) + ψ′x0

�σ + g′x
�ζ

λf (1) − (ψ′x1

�
σk)′x0

x(0) − (ψ′x1

�
σk)′x1

x(1) − ψ′x1

�
σ

H ′′uxx+H ′′uyy +H ′′uuu+H ′′uλf λf +H ′′uλgλg +H ′′uηη

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

provided that the functions f0, f, g, c, ψ are twice continuously differentiable
w.r.t. all arguments. All functions are evaluated at zk = (xk, yk, uk, λkf , λ

k
g , η

k,

ζk, σk) ∈ Z∞. The Fréchet differentiability from Z∞ to Y1,∞ implies that F1

is continuously Fréchet-differentiable as a mapping from Z∞ to Y1,r for every
1 ≤ r ≤ ∞, because

lim
‖h‖Z∞

→0

‖F1(z + h) − F1(z) − F ′1(z)(h)‖Yr
‖h‖Z∞

≤ lim
‖h‖Z∞

→0

C ‖F1(z + h) − F1(z) − F ′1(z)(h)‖Y∞

‖h‖Z∞

= 0,

where C > 0 is a constant.
The standard approach to solve (14) numerically would be to apply the

classical Newton’s method. Unfortunately, the derivative F ′(zk) does not exist
since the component F2 is not differentiable. Motivated by Clarke’s generalized
Jacobian and the chain rule for non-smooth functions in finite dimensions, see
Clarke [5], we define the point to set mapping ∂∗F : Z ⇒ L(Zr, Yr) according
to

∂∗F (zk)(z)

:=

⎧⎪⎪⎨
⎪⎪⎩
(
F ′1(z

k)(z)
−S (c′x[·]x+ c′y[·]y + c′u[·]u

)
+Rη

) ∣∣∣∣∣∣∣∣
S = diag(s1, . . . , snc),
R = diag(r1, . . . , rnc),
(si, ri) ∈ ∂ϕ[·] a.e.,
si(·), ri(·) measurable

⎫⎪⎪⎬
⎪⎪⎭

and use this set as a generalized Jacobian. The same idea was introduced
earlier in Ulbrich [30], Def. 3.35, p. 47, and Gerdts [13].

It is straightforward to show that every V ∈ ∂∗F (zk) defines a linear and
bounded operator from Zr into Yr for every 1 ≤ r ≤ ∞.

Replacing the non-existing Jacobian F ′ in the classical Newton’s method
by the generalized Jacobian ∂∗F (zk) leads to the following algorithm. The
algorithm makes use of a smoothing operator Sk : Zr → Z∞, see Ulbrich [30],
which maps zk + dk ∈ Zr back to Z∞. However, we shall see later that the
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smoothing step is not necessary in our setting as under suitable assumptions
V −1
k maps Y∞ onto Z∞ and thus dk ∈ Z∞ holds whenever F (zk) ∈ Y∞, which

in turn holds true whenever zk ∈ Z∞.

Algorithm 1 (Local Semi-Smooth Newton’s Method)

(0) Choose z0.
(1) If some stopping criterion is satisfied, stop.
(2) Choose an arbitrary Vk ∈ ∂∗F (zk) and compute the search direction dk

from the linear equation

Vk(d
k) = −F (zk).

(3) Set zk+1 = Sk(z
k + dk), k = k + 1, and goto (1).

The assumptions needed to prove local convergence of the method are
similar to those in Qi [24], Qi and Sun [25], Jiang [17], and Ulbrich [30].
∂∗F (z) is called nonsingular if for every V ∈ ∂∗F (z) the inverse operator V −1

exists and if it is linear and bounded, i.e. V −1 ∈ L(Yr, Zr).

Theorem 1 Let z∗ ∈ Z∞ be a zero of F . Suppose that there exist constants
Δ > 0, C > 0, and 1 ≤ r ≤ ∞ such that for every ‖z − z∗‖Z∞

< Δ the
generalized Jacobian ∂∗F (z) of the mapping F : Z∞ → Yr is nonsingular and
‖V −1‖L(Yr,Zr) ≤ C for every V ∈ ∂∗F (z). Moreover, let there exist a constant
CS > 0 such that

‖Sk(zk + dk) − z∗‖Z∞
≤ CS‖zk + dk − z∗‖Zr

for all k.

Moreover, let F be semi-smooth, compare Ulbrich [30], Def. 3.1, p. 34:

sup
V ∈∂∗F (z)

‖F (z) − F (z∗) − V (z − z∗)‖Yr = o(‖z − z∗‖Z∞
) as ‖z − z∗‖Z∞

→ 0.

Then, for z0 sufficiently close to z∗ the semi-smooth Newton’s method con-
verges superlinearly to z∗.

Furthermore, if F (zk) 	= 0 for all k and if there is a constant C̃S with
‖Sk(zk + dk) − zk‖Z∞

≤ C̃S · ‖dk‖Yr for every k, then the residual values
converge superlinearly:

lim
k→∞

‖F (zk+1)‖Yr
‖F (zk)‖Yr

= 0.

Proof Due to the first assumption, the algorithm is well-defined in some neigh-
borhood of z∗. It holds

Vk(z
k + dk − z∗) = Vk(z

k − z∗) + Vkd
k = Vk(z

k − z∗) − F (zk) + F (z∗).
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The first assertion follows from

‖zk+1 − z∗‖Z∞
= ‖Sk(zk + dk) − z∗‖Z∞

(18)

≤ CS · ‖zk + dk − z∗‖Zr (19)

= CS · ‖V −1
k

(
Vk(z

k − z∗) − F (zk) + F (z∗)
) ‖Zr

≤ CS · ‖V −1
k ‖L(Yr,Zr) · ‖F (zk) − F (z∗) − Vk(z

k − z∗)‖Yr
≤ CS · C · ‖F (zk) − F (z∗) − Vk(z

k − z∗)‖Yr

=

{
o(‖zk − z∗‖Z∞

), in case (i),

O(‖zk − z∗‖1+p
Z∞

), in case (ii).
(20)

Let ε > 0 be arbitrary. According to Equation (20) there exists δ > 0 with

‖zk+1 − z∗‖Z∞
≤ ε‖zk − z∗‖Z∞

whenever ‖zk − z∗‖Z∞
≤ δ.

Notice, that for any δ > 0 there exists some k0(δ) such that ‖zk − z∗‖Z∞
≤ δ

for every k ≥ k0(δ) since zk converges to z∗. By the local Lipschitz continuity
of F we get

‖F (zk+1)‖Yr = ‖F (zk+1) − F (z∗)‖Yr ≤ L‖zk+1 − z∗‖Z∞
≤ Lε‖zk − z∗‖Z∞

locally around z∗ and the Newton iteration implies

‖zk+1 − zk‖Z∞
≤ C̃S · ‖V −1

k ‖L(Yr,Zr) · ‖F (zk)‖Yr ≤ C̃S · C · ‖F (zk)‖Yr .
Thus,

‖zk − z∗‖Z∞
≤ ‖zk+1 − zk‖Z∞

+ ‖zk+1 − z∗‖Z∞

≤ C̃S · C · ‖F (zk)‖Yr + ‖zk+1 − z∗‖Z∞

≤ C̃S · C · ‖F (zk)‖Yr + ε‖zk − z∗‖Z∞

and

‖zk − z∗‖Z∞
≤ C̃S · C

1 − ε
‖F (zk)‖Yr .

Finally,

‖F (zk+1)‖Yr ≤ Lε‖zk − z∗‖Z∞
≤ LεC̃SC

1 − ε
‖F (zk)‖Yr .

Since F (zk) 	= 0 and ε may be arbitrarily small this shows the last assertion.

Remark 1 In the above theorem it suffices if the assumptions are satisfied
for certain elements of ∂∗F provided that only these elements are used in the
algorithm. For the upcoming computations we used the element corresponding
to the choices

si(t) =

{−1, if ci[t] = 0, ηi(t) = 0,
−ci[t]√

ci[t]2+ηi(t)2
− 1, otherwise,

ri(t) =

{
0, if ci[t] = 0, ηi(t) = 0,

η(t)√
ci[t]2+ηi(t)2

− 1, otherwise.
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For 1 ≤ r <∞ the operator F turns out to be semi-smooth and we obtain
the following local convergence result:

Theorem 2 Let z∗ ∈ Z∞ be a zero of F . Let 1 ≤ r < ∞. Suppose that there
exist constants Δ > 0 and C > 0 such that for every ‖z − z∗‖Z∞

< Δ the
generalized Jacobian ∂∗F (z) of the mapping F : Z∞ → Yr is nonsingular and
‖V −1‖L(Yr,Zr) ≤ C for every V ∈ ∂∗F (z). Moreover, let there exist a constant
CS > 0 such that

‖Sk(zk + dk) − z∗‖Z∞
≤ CS‖zk + dk − z∗‖Zr

for all k.
Then, the semismooth Newton method converges locally at a superlinear

rate, if f0, f , g, c, ψ are twice continuously differentiable.
Furthermore, if F (zk) 	= 0 for all k and if there is a constant C̃S with

‖Sk(zk + dk) − zk‖Z∞
≤ C̃S · ‖dk‖Yr for every k, then the residual values

converge superlinearly:

lim
k→∞

‖F (zk+1)‖Yr
‖F (zk)‖Yr

= 0.

Proof We need to show that the operator F : Z∞ → Yr is semismooth for
every 1 ≤ r <∞.

As F1 is continuously Fréchet-differentiable as a mapping from Z∞ to Yr
for every 1 ≤ r ≤ ∞ if f0, f, g, c, ψ are twice continuously differentiable, the
component F1 is semismooth.

The second component F2(z)(t) = ω(z(t)) of F is a superposition oper-
ator as in Ulbrich [30], Sec. 3.3, which maps L∞ into Lr. It was shown in
Ulbrich [30], Theorems 3.44 and 3.48, that the superposition operator F2 is
semismooth as a mapping from Z∞ to Y2,r for every 1 ≤ r <∞, if the following
assumptions are satisfied:

– The operator G : Z∞ → Y2,r, 1 ≤ r <∞, defined by

G(z)(·) = (c(x(·), y(·), u(·)), η(·))
is continuously Fréchet differentiable.

– The mapping z ∈ Z∞ 
→ G(z) ∈ Y2,∞ is locally Lipschitz continuous.
– ϕ is Lipschitz continuous and semismooth.

Please note that r = ∞ is excluded.
The Fischer-Burmeister function ϕ : R

2 → R is Lipschitz continuous and
semismooth, see Fischer [7], Lemma 20. The mapping z ∈ Z∞ 
→ G(z) ∈ Y2,∞

is continuously Fréchet differentiable (and thus locally Lipschitz continuous), if
c is continuously differentiable. This implies that the operator G as a mapping
from Z∞ to Y2,r for every 1 ≤ r < ∞ is continuously Fréchet differentiable.
Hence, the operator F2 is semismooth as an operator from Z∞ to Y2,r with
1 ≤ r <∞. Theorem 1 completes the proof.

The crucial assumption in Theorem 2 is the non-singularity of ∂∗F (z) and
the uniform boundedness of V −1 for every V ∈ ∂∗F (z). In the next section
sufficient conditions for these assumptions are presented.
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3 Computation of the Search Direction and Uniform
Non-Singularity

For brevity we neglect the arguments whenever possible. The linear operator
equation Vk(d

k) = −F (zk) in step (2) of Algorithm 1 reads as

⎛
⎜⎜⎜⎜⎜⎜⎝

x′

λ′f
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎜⎝

f ′x 0 f ′y 0 f ′u 0
−H ′′xx −H ′′xλf −H ′′xy −H ′′xλg −H ′′xu −H ′′xη
−g′x 0 0 0 0 0
−H ′′yx −H ′′yλf −H ′′yy −H ′′yλg −H ′′yu −H ′′yη
−H ′′ux −H ′′uλf −H ′′uy −H ′′uλg −H ′′uu −H ′′uη
Sc′x 0 Sc′y 0 Sc′u −R

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x
λf
y
λg
u
η

⎞
⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(xk)′ − f

(λkf )
′ + (H ′x)

�

g(
H ′y
)�

(H ′u)
�

ω(zk(·))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

and

⎛
⎝ ψ′x0

0 0 0

(ψ′x0

�
σk + g′x

�
ζk)′x0

I g′x
�

ψ′x0

�

−(ψ′x1

�
σk)′x0

0 0 −ψ′x1

�

⎞
⎠
⎛
⎜⎜⎝
x(0)
λf (0)
ζ
σ

⎞
⎟⎟⎠

+

⎛
⎝ ψ′x1

0 0 0

(ψ′x0

�
σk)′x1

0 0 0

−(ψ′x1

�
σk)′x1

I 0 0

⎞
⎠
⎛
⎜⎜⎝
x(1)
λ(1)
ζ
σ

⎞
⎟⎟⎠ = −

⎛
⎜⎝ ψ(xk(0), xk(1))

λkf (0) + ψ′x0

�
σk + g′x

�
ζk

λkf (1) − ψ′x1

�
σk

⎞
⎟⎠ .

(22)

Herein, every function is evaluated at the current iterate zk. We analyze prop-
erties of this DAE. Equations (21) and (22) can be written as

⎛
⎜⎜⎝
x′

λ′f
0
0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

f ′x 0 f ′y 0
−H ′′xx −H ′′xλf −H ′′xy −H ′′xλg
−g′x 0 0 0
−H ′′yx −H ′′yλf −H ′′yy −H ′′yλg

⎞
⎟⎟⎠
⎛
⎜⎜⎝
x
λf
y
λg

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝

f ′u 0
−H ′′xu −H ′′xη

0 0
−H ′′yu −H ′′yη

⎞
⎟⎟⎠
(
u
η

)
= −

⎛
⎜⎜⎝

(xk)′ − f

(λkf )
′ + (H ′x)

�

g(
H ′y
)�

⎞
⎟⎟⎠ (23)
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and

⎛
⎝ ψ′x0

0 0 0

(ψ′x0

�σk + g′x
�ζk)′x0

I g′x
� ψ′x0

�

−(ψ′x1

�
σk)′x0

0 0 −ψ′x1

�

⎞
⎠
⎛
⎜⎜⎝
x(0)
λf (0)
ζ
σ

⎞
⎟⎟⎠

+

⎛
⎝ ψ′x1

0 0 0

(ψ′x0

�
σk)′x1

0 0 0

−(ψ′x1

�
σk)′x1

I 0 0

⎞
⎠
⎛
⎜⎜⎝
x(1)
λ(1)
ζ
σ

⎞
⎟⎟⎠ = −

⎛
⎜⎝ ψ(xk(0), xk(1))

λkf (0) + ψ′x0

�
σk + g′x

�
ζk

λkf (1) − ψ′x1

�
σk

⎞
⎟⎠ ,

(24)

and

A
(
u
η

)
+

(
H ′′ux H ′′uλf H ′′uy H ′′uλg
−Sc′x 0 −Sc′y 0

)⎛⎜⎜⎝
x
λf
y
λg

⎞
⎟⎟⎠ = −

(
(H ′u)

�

ω(zk(·))
)
, (25)

where

A :=

(
H ′′uu (c′u)

�

−Sc′u R

)
. (26)

Herein, every function is evaluated at the current iterate zk. If the inverse
operator A−1 exists, equation (25) can be solved for u and η according to

(
u
η

)
= −A−1

⎡
⎢⎢⎣
(
H ′′ux H ′′uλf H ′′uy H ′′uλg
−Sc′x 0 −Sc′y 0

)⎛⎜⎜⎝
x
λf
y
λg

⎞
⎟⎟⎠+

(
(H ′u)

�

ω(zk(·))
)⎤⎥⎥⎦ , (27)

which means u and η are so-called index-1 variables. The constants σ and ζ
can be viewed as solutions of the differential equations σ′ = 0 and ζ′ = 0.
Introducing (27) into the differential-algebraic equation (23), augmenting this
system by σ′ = 0 and ζ′ = 0, and taking into account the boundary conditions
(24), yields the linear DAE boundary value problem for the differential variable
ξ = (x, λf , σ, ζ)

�, the index-2 algebraic variable y and the index-1 algebraic
variable λg.

ξ′ = Bdξ +B1λg +B2y + b, (28)

0 = Gdξ + g, (29)

0 = Fdξ + F̃1λg + F̃2y + f̃ , (30)

q = E0ξ(0) +E1ξ(1), (31)
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where

Bd =

0
BB@

f ′x 0 0 0
−H′′xx −H

′′

xλf
0 0

0 0 0 0
0 0 0 0

1
CCA−

0
BB@

f ′u 0
−H′′xu −H

′′
xη

0 0
0 0

1
CCAA−1

„
H′′ux H′′

uλf
0 0

−Sc′x 0 0 0

«
,

B1 =

0
BB@

0
−H′′

xλg

0
0

1
CCA−

0
BB@

f ′u 0
−H′′xu −H

′′
xη

0 0
0 0

1
CCAA−1

„
H′′

uλg

0

«
,

B2 =

0
BB@

f ′y
−H′′xy

0
0

1
CCA−

0
BB@

f ′u 0
−H′′xu −H

′′
xη

0 0
0 0

1
CCAA−1

„
H′′uy

−Sc′y

«
,

b = −

0
BB@

(xk)′ − f

(λk
f
)′ + (H′x)�

0
0

1
CCA−

0
BB@

f ′u 0
−H′′xu −H

′′
xη

0 0
0 0

1
CCAA−1

„
(H′u)�

ω(zk(·))

«
,

Gd =
`
g′x 0 0 0

´
,

Fd =
“
−H′′yx −H

′′

yλf
0 0

”
−

`
−H′′yu −H

′′
yη

´
A−1

„
H′′ux H′′

uλf
0 0

−Sc′x 0 0 0

«
,

F̃1 = −H′′yλg
−

`
−H′′yu −H

′′
yη

´
A−1

„
H′′

uλg

0

«
,

F̃2 = −H′′yy −
`
−H′′yu −H

′′
yη

´
A−1

„
H′′uy

−Sc′y

«
,

f̃ = −
`
H′y

´�
−

`
−H′′yu −H

′′
yη

´
A−1

„
(H′u)�

ω(zk(·))

«
,

E0 =

0
@ ψ′x0

0 0 0

(ψ′x0

�σk + g′x
�ζk)′x0

I g′x
� ψ′x0

�

−(ψ′x1

�
σk)′x0

0 0 −ψ′x1

�

1
A ,

E1 =

0
@ ψ′x1

0 0 0

(ψ′x0

�
σk)′x1

0 0 0

−(ψ′x1

�
σk)′x1

I 0 0

1
A ,

q = −

0
B@

ψ(xk(0), xk(1))

λk
f
(0) + ψ′x0

�
σk + g′x

�
ζk

λk
f
(1) − ψ′x1

�
σk

1
CA .

A sufficient condition for the existence of the inverse operator A−1 was
established in Gerdts [13], Theorem 3.2.

Theorem 3 Let z = (x, y, u, λf , λg, η, ζ, σ) ∈ Z∞ be given. Define the index
sets

I>(t) := {i ∈ {1, . . . , nc} | ci[t] = 0, ηi(t) > 0},
Jγ(t) := {i ∈ {1, . . . , nc} | |ci[t]| ≤ γηi(t), ηi(t) ≥ 0}, γ > 0.

Let the following assumptions hold at z:
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(i) Let there exist constants C1, C2, C3 such that a.e. in [0, 1] it holds

‖H ′′uu[t]‖ ≤ C1, ‖c′u[t]�‖ ≤ C2, ‖c′u[t]‖ ≤ C3.

(ii) (Coercivity) Let there exist a constant α > 0 such that a.e. in [0, 1] it holds

d�H ′′uu[t]d ≥ α‖d‖2 for all d ∈ R
nu : c′I>(t),u[t]d = 0.

(iii) (Linear independence) Let there exist constants γ > 0 and β > 0 such that
a.e. in [0, 1] it holds

‖c′Jγ(t),u[t]�ζ‖ ≥ β‖ζ‖ for all ζ of appropriate dimension.

Then, a.e. in [0, 1] the inverse operator A−1(t) exists and it holds ‖A−1(t)‖ ≤
C for some constant C.

We need an auxiliary result.

Lemma 1 Consider the linear BVP (28)-(31).
Let there exist a constant C such that a.e. in [0, 1] F̃1(t) is nonsingular and

‖F̃−1
1 (t)‖ ≤ C.
Then, a.e. in [0, 1] it holds

λg(t) = −F̃1(t)
−1
(
Fd(t)ξ(t) + F̃2(t)y(t) + f̃(t)

)
and

‖λg‖∞ ≤ C
(
‖Fd‖∞‖ξ‖1,∞ + ‖F̃2‖∞‖y‖∞ + ‖f̃‖∞

)
Moreover, the BVP (28)-(31) reduces to the linear BVP

ξ′ = B̂dξ + B̂2y + b̂, (32)

0 = Gdξ + g, (33)

q = E0ξ(0) +E1ξ(1), (34)

where

B̂d = Bd −B1F̃
−1
1 Fd, B̂2 = B2 −B1F̃

−1
1 F̃2, b̂ = b−B1F̃

−1
1 f̃ .

Proof. Solve (30) for λg and introduce it into (28).
It remains to establish the non-singularity and the boundedness of the

inverse of the linear operator defining the BVP (32)-(34). This operator T :
Ω0 → Ω1, Ω0 := W 1,r([0, 1],R2nx+nψ+ny) × Lr([0, 1],Rny), Ω1 := Lr([0, 1],
R

2nx+nψ+ny ) ×W 1,r([0, 1],Rny) × R
2nx+nψ is defined by

T (ξ, y)(t) =

⎛
⎝ ξ′(t) − B̂d(t)ξ(t) − B̂2(t)y(t)

Gd(t)ξ(t)
E0ξ(0) +E1ξ(1)

⎞
⎠

with ‖(ξ, y)‖Ω0
= max{‖ξ‖1,r, ‖y‖r} and ‖(ω1, ω2, ω3)‖Ω1

= max{‖ω1‖r, ‖ω2‖1,r, ‖ω3‖}.
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Theorem 4 Consider the operator equation T (ξ, y) = (ω1, ω2, ω3)
�. Let the

following assumptions be satisfied:

(i) Let there exist a constant C such that a.e. in [0, 1] it holds

‖B̂d(t)‖, ‖B̂2(t)‖, ‖Gd(t)‖, ‖G′d(t)‖, ‖b̂(t)‖, ‖g(t)‖ ≤ C.

(ii) Let there exist a constant C1 such that a.e. in [0, 1] M := GdB̂2 is nonsin-
gular and ‖M(t)−1‖ ≤ C1.

(iii) Let there exist κ > 0 such that for all μ ∈ R
2nx+nψ it holds

‖ (E0Φ(0) +E1Φ(1))Γμ‖ ≥ κ‖μ‖,
where Φ is a fundamental solution with Φ′(t) = B(t)Φ(t), Φ(0) = I and Γ
is defined in (a) below.

Define

B(t) := B̂d(t) − B̂2(t)M(t)−1Q(t),

ω(t) := ω1(t) − B̂2(t)M(t)−1q(t),

Q(t) := G′d(t) +Gd(t)B̂d(t),

q(t) := −ω′2(t) +Gd(t)ω1(t).

Then:

(a) There exist consistent initial values ξ(0) = ξ0 satisfying 0 = Gd(0)ξ0−ω2(0)
and every consistent ξ0 possesses the representation

ξ0 = Πω2(0) + Γμ,

where Π ∈ R
(2nx+nψ+ny)×ny satisfies (I − Gd(0)Π)ω2(0) = 0 and the

columns of Γ ∈ R
(2nx+nψ+ny)×(2nx+nψ) define an orthonormal basis of

ker(Gd(0)), i.e. Gd(0)Γ = 0. Vice versa, every such ξ0 is consistent for
arbitrary μ ∈ R

2nx+nψ .
(b) The initial value problem

ξ′(t) − B̂d(t)ξ(t) − B̂2(t)y(t) = ω1(t),

Gd(t)ξ(t) = ω2(t),

together with the consistent initial value ξ(0) = ξ0 = Πω2(0) + Γμ has a
unique solution ξ(·) ∈ W 1,r([0, 1],R2nx+nψ+ny), for every μ ∈ R

2nx+nψ ,
every ω1(·) ∈ Lr([0, 1],R2nx+nψ+ny) and every ω2(·) ∈ W 1,r([0, 1],Rny).
The solution is given by

ξ(t) = Φ(t)

(
Πω2(0) + Γμ+

∫ t

0

Φ−1(τ)ω(τ)dτ

)
in [0, 1], (35)

y(t) = −M(t)−1 (q(t) +Q(t)ξ(t)) a.e. in [0, 1], (36)

where the fundamental system Φ(t) ∈ R
(2nx+nψ+ny)×(2nx+nψ+ny) is the

unique solution of

Φ′(t) = B(t)Φ(t), Φ(0) = I. (37)
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(c) The boundary value problem T (ξ, y) = (ω1, ω2, ω3)
� has a solution for every

(ω1, ω2, ω3)
� and the inverse operator T−1 exists and it holds ‖T−1‖ ≤ K

for some constant K.

Proof.

(a) Consider the equation 0 = Gd(0)ξ0 − ω2(0). Since M(0) = Gd(0) · B̂2(0) is
supposed to be non-singular, Gd(0) has full row rank. Hence, there exists
a QR decomposition

Gd(0)� = P

(
R
0

)
, P = (Π1, Γ ) ∈ R

(2nx+nψ+ny)×(2nx+nψ+ny),

where R ∈ R
ny×ny is nonsingular, P is orthogonal, Π1 ∈ R

(2nx+nψ+ny)×ny

is an orthonormal basis of im(Gd(0)�), Γ ∈ R
(2nx+nψ+ny)×(2nx+nψ) is a

orthonormal basis of im(Gd(0)�)⊥ = ker(Gd(0)). Every ξ0 ∈ R
2nx+nψ+ny

can be expressed uniquely as ξ0 = Π1v + Γμ with v ∈ R
ny and μ ∈

R
2nx+nψ . Introducing this expression into the algebraic equation yields

0 = Gd(0)(Π1v + Γμ) − ω2(0) = R�v − ω2(0) ⇒ v = R−�ω2(0).

Hence, the consistent values are characterized by

ξ0 = Πω2(0) + Γμ, Π := Π1R
−�.

(b) We differentiate the algebraic equation 0 = Gd(t)ξ(t) − ω2(t) and obtain

0 = G′d(t)ξ(t) +Gd(t)ξ
′(t) − ω′2(t)

=
(
G′d(t) +Gd(t)B̂d(t)

)
ξ(t) +Gd(t)B̂2(t)y(t) − ω′2(t) +Gd(t)ω1(t)

= Q(t)ξ(t) +M(t)y(t) + q(t).

We exploit the non-singularity of M(t) = Gd(t) · B̂2(t) in order to solve the
equation w.r.t. y and obtain

y(t) = −M(t)−1 (q(t) +Q(t)ξ(t)) .

Introducing this expression into the differential equation for ξ yields

ξ′(t) =
(
B̂d(t) − B̂2(t)M(t)−1Q(t)

)
ξ(t) + ω1(t) − B̂2(t)M(t)−1q(t)

= B(t)ξ(t) + ω(t).

Considering the representation of consistent initial values ξ0 in (a) we are
in the situation as in Hermes and Lasalle [16], p. 36, and the assertions
follow likewise.
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(c) Part (c) exploits the solution formulas in (a) and (b). Since

‖T−1‖ =
1

inf{‖T (ξ, y)‖ | ‖(ξ, y)‖ = 1} ,

we must show that

‖(ω1, ω2, ω3)‖Ω1
≥ 1

K
‖(ξ, y)‖Ω0

for all (ω1, ω2, ω3) ∈ Ω1 and (ξ, y) ∈ Ω0 solving the BVP

ξ′(t) − B̂d(t)ξ(t) − B̂2(t)y(t) = ω1(t),

Gd(t)ξ(t) = ω2(t),

E0ξ(0) +E1ξ(1) = ω3.

We note

‖Q‖∞ ≤ ‖G′d‖∞ + ‖Gd‖∞‖B̂d‖∞ ≤ C + C2 =: κ1,

‖B‖∞ ≤ ‖B̂d‖∞ + ‖B̂2‖∞‖M−1‖∞‖Q‖∞ ≤ C + CC1κ1 =: κ2,

‖q‖r ≤ ‖ω2‖1,r + ‖Gd‖∞‖ω1‖r ≤ max{1, C}‖(ω1, ω2, ω3)‖Ω1

=: κ3‖(ω1, ω2, ω3)‖Ω1
,

‖ω‖r ≤ ‖ω1‖r + ‖B̂2‖∞‖M−1‖∞‖q‖r
≤ ‖ω1‖r + CC1‖q‖r ≤ max{1, CC1κ3}‖(ω1, ω2, ω3)‖Ω1

=: κ4‖(ω1, ω2, ω3)‖Ω1
.

The boundary condition is satisfied, if

ω3 = E0ξ(0) +E1ξ(1)

= E0 (Πω2(0) + Γμ) + E1Φ(1)

(
Πω2(0) + Γμ+

∫ 1

0

Φ−1(τ)ω(τ)dτ

)
= (E0 + E1Φ(1))Γμ+ (E0 + E1Φ(1))Πω2(0)

+E1Φ(1)

∫ 1

0

Φ−1(τ)ω(τ)dτ.

Rearranging terms and exploiting Φ(0) = I yields

(E0Φ(0) +E1Φ(1))Γμ = ω3 − (E0 + E1Φ(1))Πω2(0)

− E1Φ(1)

∫ 1

0

Φ−1(τ)ω(τ)dτ. (38)

Consider the initial value problem

ξ̃′(t) = B(t)ξ̃(t) + ω(t), ξ̃(0) = 0.

The solution is given by

ξ̃(t) =

∫ t

0

B(τ)ξ̃(τ) + ω(τ)dτ = Φ(t)

∫ t

0

Φ−1(τ)ω(τ)dτ.
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Gronwall’s lemma yields

‖ξ̃(t)‖ ≤ ‖ω‖1 exp(‖B‖∞) ≤ ‖ω‖1 exp(κ2).

Hölder’s inequality implies

‖ξ̃(t)‖ ≤ C̃‖ω‖r exp(κ2) ≤ C̃κ4 exp(κ2)‖(ω1, ω2, ω3)‖Ω1

for 1 ≤ r ≤ ∞ and some constant C̃.
Similarly, we find

‖ξ(t)‖ ≤
(
‖Πω2(0) + Γμ‖ + C̃‖ω‖r

)
exp(κ2).

For the fundamental system Φ we obtain

‖Φ(t)‖ ≤ 1 + ‖B‖∞
∫ t

0

‖Φ(τ)‖dτ ≤ exp(κ2).

Using the solution formula for ξ yields

ξ(t) = Φ(t)

(
Πω2(0) + Γμ+

∫ t

0

Φ(τ)−1ω(τ)dτ

)
= Φ(t) (Πω2(0) + Γμ) + ξ̃(t).

Equation (38) reads as

(E0Φ(0) +E1Φ(1))Γμ = ω3 − (E0 + E1Φ(1))Πω2(0) − E1ξ̃(1).

Assumption (iii) and ‖ω2(0)‖ ≤ 2C̃‖ω‖1,r yields

κ‖μ‖ ≤ ‖ (E0Φ(0) +E1Φ(1))Γμ‖
≤ ‖ω3‖ + 2C̃

(
‖E0‖ + C̃‖E1‖ exp(κ2))

)
‖Π‖‖ω2‖1,r

+C̃‖E1‖‖ω‖r exp(κ2).

As the operators E0, E1 and Π are bounded, we find

‖μ‖ ≤ 1

κ
max{1, 2C̃

(
‖E0‖ + C̃‖E1‖ exp(κ2)

)
‖Π‖,

C̃‖E1‖κ4 exp(κ2)}‖(ω1, ω2, ω3)‖Ω1

=: κ5‖(ω1, ω2, ω3)‖Ω1
.

Moreover,

‖ξ(t)‖ ≤ exp(κ2)max{2C̃‖Π‖, ‖Γ‖κ5, C̃κ4}‖(ω1, ω2, ω3)‖Ω1

=: κ6‖(ω1, ω2, ω3)‖Ω1
.

Minkowski’s inequality yields

‖ξ′‖r = ‖B(·)ξ(·) + ω(·)‖r ≤ ‖B(·)ξ(·)‖r + ‖ω‖r ≤ κ2‖ξ‖r + ‖ω‖r
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and thus

‖ξ′‖r ≤ (κ4 + κ2κ6)‖(ω1, ω2, ω3)‖Ω1
.

With κ7 := max{κ6, κ4 + κ2κ6} we obtain ‖ξ‖1,r ≤ κ7‖(ω1, ω2, ω3)‖Ω1
.

Using formula (36) for y it follows ‖y‖r ≤ C1 (‖q‖r + κ1‖ξ‖r) ≤ κ8‖(ω1, ω2, ω3)‖Ω1

and κ8 := C1(κ3 + κ1κ6).
Finally the assertion follows because of

‖(ξ, y)‖Ω0
≤ max{κ7, κ8}‖(ω1, ω2, ω3)‖Ω1

=: K‖(ω1, ω2, ω3)‖Ω1
.

Hence, in each iteration of Algorithm 1 we have to solve the linear bound-
ary value problem given by the differential-algebraic equation (23) and the
boundary condition (24). The differential-algebraic equation (23) has algebraic
equations of index-1 and index-2.

Remark 2 Theorem 4 holds for every 1 ≤ r ≤ ∞. In particular, this implies
that every element V ∈ ∂∗F (z) maps a function in Yr to a function in Zr. In
particular, if F (zk) ∈ Y∞ then dk = −V −1

k F (zk) ∈ Z∞. F (zk) ∈ Y∞ holds,
if zk ∈ Z∞. Hence, the smoothing operator Sk in step (3) of Algorithm 1 can
be chosen to be the identity if the initial z0 is chosen to be in Z∞. Then the
condition

‖Sk(zk + dk) − z∗‖Z∞
≤ CS‖zk + dk − z∗‖Zr

reduces to

‖zk+1 − z∗‖Z∞
≤ CS‖zk+1 − z∗‖Zr .

4 Globalization

One reason that makes the Fischer-Burmeister function appealing is the fact
that its square

φ(a, b) := ϕ(a, b)2 =
(√

a2 + b2 − a− b
)2

is continuously differentiable with φ′(a, b) = 2ϕ(a, b)v, where v ∈ ∂ϕ(a, b) is
arbitrary. Hence, the mappings

(x̄, ȳ, ū, η̄) ∈ R
nx × R

ny × R
nu × R

nc 
→ φ(−ci(x̄, ȳ, ū), η̄i), i = 1, . . . , nc

are continuously differentiable by the chain rule. This allows to globalize the
local semi-smooth Newton’s method using the squared L2-norm of F as a
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merit function:

Θ(z) :=
1

2
‖F (z)‖2

Y2

=
1

2

∫ 1

0

(
‖x′(t) − f(x(t), y(t), u(t))‖2

+ ‖g(x(t))‖2
)
dt

+
1

2

∫ 1

0

(∥∥λ′f (t) +H ′x[t]
�
∥∥2

+
∥∥H ′y[t]�∥∥2

+
∥∥H ′u[t]�∥∥2

)
dt

+
1

2

nc∑
i=1

∫ 1

0

φ(−ci(x(t), y(t), u(t)), ηi(t))dt

+
1

2
‖ψ(x(0), x(1))‖2 +

1

2
‖λ(0) + ψ′x0

(x(0), x(1))�σ + g′x(x(0))�ζ‖2

+
1

2
‖λ(1) − ψ′x1

(x(0), x(1))�σ‖2.

Θ is Fréchet-differentiable in Z∞ if f0, f, g, c, ψ are twice continuously differ-
entiable. An analysis of the derivative of Θ reveals that for dk with Vk(d

k) =
−F (zk) it holds

Θ′(zk)(dk) = −2Θ(zk) = −‖F (zk)‖2
Y2
. (39)

As a consequence, dk is a direction of descent of Θ at zk and the line-search
in the following global version of the semi-smooth Newton’s method is well-
defined unless zk is a zero of F .

Algorithm 2 (Global Semi-Smooth Newton’s Method)

(0) Choose z0, β ∈ (0, 1), σ ∈ (0, 1/2).
(1) If some stopping criterion is satisfied, stop.
(2) Chose an arbitrary Vk ∈ ∂∗F (zk) and compute the search direction dk from

Vk(d
k) = −F (zk).

(3) Find smallest ik ∈ N0 with

Θ(zk + βikdk) ≤ Θ(zk) + σβikΘ′(zk)(dk)

and set αk = βik .
(4) Set zk+1 = Sk(z

k + αkd
k), k = k + 1, and goto (1).

Remark 3 According to the Remark 2 the smoothing operator Sk can be omit-
ted.

The following global convergence result can be proven in the same way as
Theorem 4.2 in Gerdts [13].

Theorem 5 Let the inverse operators V −1
k exist for all k and let C > 0

be a constant such that ‖V −1
k ‖L(Y∞,Z∞) ≤ C holds for all k. Let z∗ be an

accumulation point of the sequence {zk} generated by the global semi-smooth
Newton’s method.

Then, z∗ is a zero of F .
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Eventually the globalized semi-smooth Newton method accepts the step
size αk = 1 and turns into the local method.

Theorem 6 Let the assumptions of Theorems 1 and 5 be valid with r = 2.
Then, for sufficiently large k the step length αk = 1 is accepted and the

global method turns into the local one.

Proof The proof of the local convergence theorem 1 showed the superlinear
convergence of the values ‖F (zk)‖Yr , i.e. for any ε > 0 there exists δ > 0 such
that for all ‖z − z∗‖Z∞

≤ δ it holds

‖z + d− z∗‖Z∞
≤ ε‖z − z∗‖Z∞

, ‖F (z + d)‖Yr ≤ ε‖F (z)‖Yr ,

where d = −V −1F (z), V ∈ ∂∗F (z). In particular, with z = zk and d = dk

there exists δ > 0 such that for all ‖zk − z∗‖Z∞
≤ δ it holds

‖zk + dk − z∗‖Z∞
≤ 1

2
‖zk − z∗‖Z∞

, ‖F (zk + dk)‖Yr ≤
√

1 − 2σ‖F (zk)‖Yr .

With r = 2 this implies

Θ(zk + dk) =
1

2
‖F (zk + dk)‖2

Y2
≤ 1 − 2σ

2
‖F (zk)‖2

Y2
= (1 − 2σ)Θ(zk)

resp.

Θ(zk + dk) ≤ Θ(zk) − 2σΘ(zk) = Θ(zk) + σΘ′(zk)(dk),

i.e. Armijo’s line-search accepts αk = 1 and zk+1 = zk + dk. Furthermore,
‖zk+1− z∗‖Z∞

≤ 1
2‖zk− z∗‖Z∞

≤ δ and we are in the same situation as above
and the argument could be repeated.

More advanced globalization strategies for inexact Newton methods or
smoothing Newton methods can be found in a recent paper by Chen and
Gerdts [3].

5 Computational Issues and Numerical Results

We give numerical results where the linear DAE boundary value problem
(21)-(22) is solved using the symmetric collocation method of Kunkel and
Stöver [21]. They use index reduction techniques in order to get a differentia-
tion index of 1 and separation of differential and algebraic equations. Instead
of numerical index reduction we will reduce the index likewise to the proof of
theorem 4 (b), by replacing the index-2 constraint

g′x(x
k(t))x(t) = −g(xk(t))

by its time derivative
d

dt
(g′x)x+ g′xẋ = −g′xẋk
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resp. (
d

dt
(g′x) + g′xf

′
x

)
x+ g′xf

′
yy + g′xf

′
uu = −g′xf.

Consistency is preserved by adding the boundary condition

g′x(x
k(0))x(0) = −g(xk(0)).

It is not unusual that the linear operator Vk is singular due to contradicting
or redundant boundary conditions and algebraic constraints. E.g. Bk in(

g′x 0
ψ′x0

ψ′x1

)
︸ ︷︷ ︸

Bk

(
x(0)
x(1)

)
= −

(
g
ψ

)
︸ ︷︷ ︸
w(zk)

. (40)

might not have full row rank ny + nψ for some intermediate iterate zk. If this
happens we propose the following modifications. First we determine a maximal
index set I of linearly independent rows of Bk by QR-decomposition of B�k .
Let

i∗ := arg max
i∈I

|wi(zk)|

and let bl denote the l-th row ofBk. Let us assume for a moment that wi∗(zk) 	=
0. Then we replace w by w̃ where

w̃i(z) :=

⎧⎪⎨
⎪⎩
wi(z), if i ∈ I \ {i∗},
wi∗(z) +

∑
j∈Ic

wj(z
k)

wi∗ (zk)wj(z), if i = i∗,

pi(z), if i ∈ Ic,

and p(z) := (ζ(0), σ(0))�. In globalized semi-smooth Newton’s method we now
calculate the search direction from

Ṽkd̃
k = −F̃k(zk)

where Ṽk is some element of ∂∗F̃k(z
k) and F̃k is F where the boundary con-

ditions w in (40) are replaced by w̃. This means that the new boundary con-
ditions read

bix̃01 = −wi(zk), if i ∈ I \ {i∗}, (41)

bi∗ x̃01 +
∑
j∈Ic

wj(z
k)

wi∗(zk)
bj x̃01 = −wi∗(zk) −

∑
j∈Ic

wj(z
k)2

wi∗(zk)
, if i = i∗, (42)

pi(z) = −pi(zk), if i ∈ Ic, (43)

where x̃01 := (x̃(0), x̃(1))�. We motivate these modifications by showing that
it still holds

Θ′(zk)(d̃k) = −2Θ(zk). (44)
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Since almost all components of Vk and F remain unchanged, (44) reduces to

Θ′(zk)(d̃k) + 2Θ(zk) = 〈Vk d̃k, F (zk)〉2 + 〈F (zk), F (zk)〉2
= (Bkx̃01)

�
w(zk) + w(zk)�w(zk)

= wi∗(zk)bi∗ x̃01 + wi∗(zk)2

+
∑

i∈I\{i∗}

(
wi(z

k)bix̃01 + wi(z
k)2
)

+
∑
j∈Ic

(
wj(z

k)bjx̃01 + wj(z
k)2
)
.

Introducing the expressions for bix̃01 from (41) and bi∗ x̃01 from (42) directly
yields Θ′(zk)(d̃k) + 2Θ(zk) = 0.

If wi∗(z
k) = 0 or I = ∅ (e.g. Bk = 0) we set w̃i(z) := wi(z) and w̃j(z) :=

pj(z) for i ∈ I and j ∈ Ic. Then we get

Θ′(zk)(d̃k) = −2Θ(zk) +
∑
j∈Ic

wj(z
k)2.

Since 2Θ(zk) = ‖F (zk)‖2
Y2

≥ w(zk)�w(zk), the search direction d̃k is at least
a direction of descent.

Although the described modifications resolve a common situation in which
Vk is singular, it is not guaranteed that Ṽk is non-singular. In such a case one
could try to find an alternative relaxation strategy, switch to gradient methods
or restart with another initial guess. A globalization strategy which is able to
handle singular operators Vk by switching to gradient steps is discussed in
Chen and Gerdts [3].

The two following examples both have linearly dependent constraints (even
at local minimizers) and we observe at least numerically that the method works
well and we do not lose fast local convergence.

The following computations were performed on a shared memory 64-bit
multiple core computer with 8 dual-core CPUs at 2.8 GHz processing speed.
Symmetric collocation method yields a large and sparse linear system of equa-
tions which was solved in parallel using the software package PARDISO [27],
[28]. The collocation method proposed in [21] works with two different inter-
polation schemes, a Gauß-scheme with q knots for the differential parts and
a Lobatto-scheme with q + 1 knots for the algebraic parts. For the following
computations we split the overall time interval [0, 1] in Nt equal sized subin-
tervals.

Parameters in Armijo’s line search rule are β = 0.9 and σ = 0.1. We
observe that the number of iterations can be reduced significantly using a
non-monotone line search rule.



24

5.1 2D-pendulum

The equations of motion in modeling of mechanical multi body systems are
given by

q̇(t) = v(t),

M(q(t))v̇(t) = F (q(t), v(t), u(t)) −G′(q(t))�ν(t),

0nG = G(q(t)),

where q are generalized coordinates of the bodies, M is the symmetric and
positive definite mass matrix, F combines generalized forces and G = 0 defines
algebraic constraints. Multiplying the second equation with M−1 leads to a
Hessenberg DAE which has differentiation index 3 if rank(G′) = nG, see [12].
In this paper we discuss only index 2 DAEs. We reduce the index using the
Gear-Gupta-Leimkuhler technique, see [8]:

q̇(t) = v(t) −G′(q(t))�μ(t),

M(q(t))v̇(t) = F (q(t), v(t), u(t)) −G′(q(t))�ν(t),

0nG = G(q(t)),

0nG = G′(q(t))v(t).

With the notation from the previous sections we have x := (q, v)�, y := (ν, μ)�

and

f(x, y, u) :=

(
v −G′(q)�μ

M(q)−1
(
F (q, v, u) −G′(q)�ν

)) ,
g(x) :=

(
G(q)
G′(q)v

)
.

The index is 2, since the matrix

g′x(x)f
′
y(x, y, u) =

(
0 −G′(q)G′(q)�

−G′(q)M(q)−1G′(q)� −(G′(q)v)′qG
′(q)�

)

is non-singular if rank(G′(q)) = nG.

We discuss the optimal control of a two dimensional pendulum. Let the
pendulum be mounted in the origin, let q := (x1, x2)

� be the position of the
mass and v := (x3, x4)

� its velocity. Let M(q) := I2. The distance of the mass
from the origin should remain constant which yields the algebraic constraint
G(q) := x2

1 + x2
2 − 1 = 0. The pendulum can be controlled by the momentum

u. We minimize the costs

1

2

∫ T

0

u(t)2dt
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subject to the equations of motion(
ẋ1

ẋ2

)
=

(
x3

x4

)
−
(

2x1y2
2x2y2

)
,(

ẋ3

ẋ4

)
=

(
ux2

−ag − ux1

)
−
(

2x1y1
2x2y1

)
, ag := 9.81

m

s2
,

0 = x2
1 + x2

2 − 1,

0 = 2x1x3 + 2x2x4,

and we want to move the pendulum from the starting position (1, 0) and
velocity (0, 0) to its equilibrium, e.g. the boundary conditions are given by

0 = ψ(x(0), x(T )) = (x1(0) − 1, x2(0), x3(0), x4(0), x1(T ), x3(T ))� .

Finally we restrict the control by box constraints

umin ≤ u ≤ umax.

The assumptions made for the local minimum principle in Section 2 are fulfilled
with exception of the rank-assumption on

c(x(t), y(t), u(t)) :=

(
umin − u(t)
u(t) − umax

)
.

However, it can be shown, using a minimum principle with set constraints
u(t) ∈ U that the necessary conditions also hold for box constraints. The
operator

A =

⎛
⎝ 1 −1 1

s1 r1 0
−s2 0 r2

⎞
⎠

is non-singular for any (s1, r1) ∈ ∂ϕ(uk(t) − umin, η
k
1 ), (s2, r2) ∈ ∂ϕ(umax −

uk(t), ηk2 ), due to Theorem 3. It holds H ′′yu ≡ 0, H ′′yη ≡ 0, H ′′yy ≡ 0, H ′′uλg ≡ 0
for all z ∈ Z and therefore

F1 = −g′xf ′y, GdB̂2 = g′xf
′
y =

(
0 −4x2

1 − 4x2
2

−4x2
1 − 4x2

2 −4x1x3 − 4x2x4

)
.

g′xf
′
y is non-singular and its inverse is bounded if x2

1+x2
2 is bounded away from

0. This is fulfilled around a local minimizer x∗, since x∗,1(t)
2 + x∗,2(t)

2 = 1
for all t ∈ [0, T ], but it might be violated at some iterate xk in a globalized
method. In such a case one could restart the algorithm with different initial
values or one could switch to gradient methods.

We give numerical results for parameters T := 3 and −umin := umax := 2.7.
An initial guess was calculated by forward simulation of state and adjoint
equation letting x(t0) := (1, 0, 0, 0)�, λf (t0) := (0, 0, 0, 0)� and u(t) = η1(t) =
η2(t) = 0. The numerical solution for Nt = 1000 and q = 3 is depicted in
Figure 1 and the progress of the algorithm is shown in Table 1.
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Fig. 1 Optimal control of the pendulum: converged solution (bold curves), initial guess
(solid curve) and intermediate iterates (dashed curves)
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Table 1 Optimal control of the pendulum: progress of semi-smooth Newton’s method

k
R

1

0
f0[t]dt αk−1 ‖F (zk)‖2

0 +0.000000000e+00 4.346837202e+00

1 +4.699355852e-02 0.05815 4.276531490e+00

2 +1.194251879e-01 0.03815 4.245650469e+00

3 +2.175784629e-01 0.03815 4.215799320e+00

4 +3.511018268e-01 0.04239 4.191093567e+00

5 +5.229507301e-01 0.04710 4.165010763e+00

6 +7.351681875e-01 0.05233 4.129532832e+00

7 +1.019076932e+00 0.06461 4.096028060e+00

8 +1.388198829e+00 0.07977 4.051127913e+00

9 +1.907341070e+00 0.10942 4.003788346e+00

10 +2.601024972e+00 0.15009 3.879776951e+00

11 +3.814497162e+00 0.28243 3.737060208e+00

12 +5.119627956e+00 0.43047 3.388155685e+00

13 +5.971125780e+00 0.59049 2.972992261e+00

14 +6.465774547e+00 1.00000 1.079417085e+00

15 +6.447073056e+00 1.00000 4.799579185e-02

16 +6.450874390e+00 1.00000 1.237672155e-02

17 +6.451931139e+00 1.00000 2.204752972e-03

18 +6.451987455e+00 1.00000 3.674825590e-04

19 +6.451989236e+00 1.00000 3.886533238e-05

20 +6.451989298e+00 1.00000 2.270141717e-06

21 +6.451989298e+00 1.00000 6.629377974e-08

22 +6.451989298e+00 1.00000 8.176486434e-11

23 +6.451989298e+00 1.00000 3.834227001e-14

5.2 2D-Navier-Stokes Problem

We illustrate the method on the distributed control of the two dimensional
instationary incompressible Navier-Stokes equations on Q := (0, T ) × Ω with
Ω = (0, 1) × (0, 1). Please note that we don’t claim that the presented dis-
cretization approach is the most efficient method for the Navier-Stokes equa-
tions. Our primary intention is to create a large-scale DAE optimal control
problem which allows to test the performance of the semi-smooth Newton
method.

The task is to minimize the distance to the desired velocity field

yd(t, x1, x2) = (−q(t, x1)q
′
x2

(t, x2), q(t, x2)q
′
x1

(t, x1))
�,

q(t, z) = (1 − z)2(1 − cos(2πzt))

within a given time T > 0.

Minimize

1

2

∫
Q

‖y(t, x1, x2) − yd(t, x1, x2)‖2dx1dx2dt+
δ

2

∫
Q

‖u(t, x1, x2)‖2dx1dx2dt

(45)
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subject to
yt = 1

ReΔy − (y · ∇)y −∇p+ u,
0 = div(y),

y(0, x1, x2) = 0, (x1, x2) ∈ Ω,
y(t, x1, x2) = 0, (t, x1, x2) ∈ (0, T ) × ∂Ω,

(46)

and the control constraints

umin ≤ u ≤ umax.

y = (v, w)� denotes the velocity vector and p the pressure. The instationary
incompressible Navier-Stokes equations can be viewed as a partial differential-
algebraic equation.

We discretize the problem in space on an equally spaced mesh with step-
length h = 1

N , N ∈ N, while the time stays continuous. This refers to the
method of lines. Let yij(t) = (vij(t), wij(t))

� ≈ y(t, x1,i, x2,j), pij(t) ≈ p(t,
x1,i, x2,j) and uij(t) ≈ u(t, x1,i, x2,j), i, j = 0, . . . , N denote the approxima-
tions at the grid points. Using these definitions finite differences discretization
scheme reads

Δy|(t,x1,i,x2,j)
≈ 1

h2

(
yi+1,j(t) + yi−1,j(t) + yi,j+1(t) + yi,j−1(t)

−4yi,j(t)
)
,

(y · ∇)y|(t,x1,i,x2,j)
≈ 1

2h

(
vij(t) (yi+1,j(t) − yi−1,j(t))

+wij(t) (yi,j+1(t) − yi,j−1(t))
)
,

∇p|(t,x1,i,x2,j)
≈ 1

h

(
pi+1,j(t) − pi,j(t), pi,j+1(t) − pi,j(t)

)�
,

div(y)|(t,x1,i,x2,j)
≈ 1

h

(
vi,j(t) − vi−1,j(t) + wi,j(t) − wi,j−1(t)

)
,

for i, j = 1, . . . , N − 1. The undefined pressure components pi,j with i = N or
j = N are set to zero.

Introducing these approximations into the optimal control problem and
exploiting the boundary conditions yi,0(t) = yi,N (t) = 0 for i = 1, . . . , N − 1
and y0,j(t) = yN,j(t) = 0 for j = 1, . . . , N − 1 yields a DAE optimal control
problem with a differential-algebraic equation of index two:

Minimize

1

2

∫ T

0

‖yh(t) − yd,h(t)‖2dt+
δ

2

∫ T

0

‖uh(t)‖2dt (47)

subject to the DAE

y′h(t) =
1

Re
Ahyh(t) − 1

2

⎛
⎜⎝ yh(t)

�Qh,1yh(t)
...

yh(t)
�Qh,2(N−1)2yh(t)

⎞
⎟⎠−Bhph(t) + uh(t),

0 = B�h yh(t),

(48)
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the initial values
yh(0) = 0,

and the control constraints

umin ≤ uh(t) ≤ umax.

Herein,

yh = (y1,1, . . . , yN−1,1, y1,2, . . . , yN−1,2, . . . , y1,N−1, . . . , yN−1,N−1)
�
,

ph = (p1,1, . . . , pN−1,1, p1,2, . . . , pN−1,2, . . . , p1,N−1, . . . , pN−1,N−1)
�
,

uh = (u1,1, . . . , uN−1,1, u1,2, . . . , uN−1,2, . . . , u1,N−1, . . . , uN−1,N−1)
�
.

The matrices Ah ∈ R
2(N−1)2×2(N−1)2 and Bh ∈ R

2(N−1)2×(N−1)2 represent the
discretized Laplacian resp. the discretized gradient. Qh,i ∈ R

2(N−1)2×2(N−1)2

is the Hessian of the i-th component of the discretized convective term w.r.t.
yh, e.g.

qij(t) = (y · ∇)y|(t,x1,i,x2,j)
∈ R

2,

Qh,2(i+j(N−1))−1 = ∇2
yhqij,1(t), i, j = 1, . . . , N − 1,

Qh,2(i+j(N−1)) = ∇2
yhqij,2(t), i, j = 1, . . . , N − 1.

Note thatQh,i does not depend on yh(t), since the convective term is quadratic.
We give results for parameters T = 2, δ = 5 · 10−6, Re = 1, −umin =

umax = 200 and N = 36, Nt = 60, q = 2. Then the DAE optimal control
problem has nx = 2(N−1)2 = 2450 differential variables, ny = (N−1)2 = 1225
algebraic variables and nu = 2450 controls. The linear system which has to be
solved in each iteration has 2649675 equations.

As initial guess we take the solution of the unconstrained Stokes problem
(e.g. Re = 1, Qh,i = 0 for i = 1, . . . , nx, umin = −∞, umax = ∞) and set
η = 0. Solution of the unconstrained Stokes problem only needs one iteration,
since F is linear.

The desired flow, controlled flow and the control are depicted in Figure 2.
An animation of the flow can be downloaded from the webpage of the first au-
thor (http://web.mat.bham.ac.uk/M.Gerdts/movies.htm). The regular struc-
ture of the control at t = 1.3 and t = 1.966 results from the constraints which
are active in the lower left quarter. The progress of the algorithm is shown in
Table 2.
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