
Hamburger Beiträge
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Abstract: We consider the variational discretization of elliptic Dirichlet optimal control problems

with constraints on the control. The underlying state equation, which is considered on smooth two-

and three-dimensional domains, is discretized by linear finite elements taking into account domain

approximation. The control variable is not discretized. We obtain optimal error bounds for the optimal

control in two and three space dimensions and prove a superconvergence result in two dimensions

provided that the underlying mesh satisfies some additional condition. We confirm our analytical

findings by numerical experiments.
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1 Introduction

Dirichlet boundary control plays an important role in many practical applications such as
active boundary control of flows. If one is interested in control by blowing and suction on parts
of the boundary only, boundary controls with low regularity should be admissible which even
may develop jump discontinuities. In model based optimization with boundary controls the
flow often is modeled with the help of the Navier-Stokes equations whose classical variational
formulation does not allow for Dirichlet boundary data with jump discontinuities, see [6, 9],
so that the concept of very weak solutions [11] has to be applied instead, see [2] for a more
detailed discussion. Moreover, pointwise bounds on the control actions have to be considered
in practice.
In the present work we consider as model problem Dirichlet boundary control of an elliptic

equation with L2-boundary controls subject to pointwise bounds on the controls. The state
equation is posed on a bounded, smooth domain in Rd, d = 2, 3. Our aim is to develop and
analyze a finite element concept which is tailored to the numerical treatment of pointwise
bounds, and at the same time is able to cope with the low regularity of the control and the
state. To this purpose we propose an approximation of the state equation using piecewise
linear, continuous finite elements taking into account domain approximation. The controls
are not discretized explicitly, but implicitly (variationally) through the optimality conditions
associated with the discrete optimal control problem. Our main result, see Theorem 4.1, is an
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O(h
√

| log h|) bound for the L2–error of optimal control and state. In two space dimensions
and under additional conditions on the underlying mesh we are able derive the improved
error bound O(h

3

2 ), which reflects a superconvergence effect.
There are only few contributions to Dirichlet boundary control reported in the literature.

Casas and Raymond in [5] consider semilinear elliptic Dirichlet boundary control problems
with pointwise bounds on two-dimensional convex polygonal domains Ω. Denoting by u the
optimal control they are able to prove the optimal result

‖u− uh‖0,∂Ω ≤ Ch1−1/p.

Here, uh denotes the optimal discrete boundary control which they find in the space of
piecewise linear, continuous finite elements on ∂Ω, and p ≥ 2 depends on the smallest angle
of the boundary polygon. For control functions of the form

Bq :=

n∑

i=1

qifi

with given fi ∈ H5/2(Γ) and box-constrained q ∈ Rn, Vexler in [14] provides a finite element
analysis for two-dimensional bounded polygonal domains and proves

‖q − qh‖ ≤ Ch2.

In a recent paper [12] May, Rannacher and Vexler consider Dirichlet boundary control with-
out control constraints on two-dimensional convex polygonal domains, where they present
optimal error estimates for the state and the adjoint state. Important ingredients are duality
techniques and an optimal error estimate in H−1/2 for the control.
Our paper is organized as follows. In the next section we present the mathematical setting

and formulate the optimal control problem. In Section 3 we examine the finite element
discretization of the state equation taking into account the approximation of the domain. In
Section 4 we introduce the discrete control problem and prove an optimal error estimate for
the discrete controls. Section 5 deals with superconvergence properties of boundary controls
induced by finite element partitions with certain regularity properties. In Section 6 we finally
present numerical results which confirm our analytical findings.

For a domain or hypersurface Q and s ≥ 0, 1 ≤ p ≤ ∞ we denote by W s,p(Q) the usual
Sobolev space and by ‖ · ‖s,p,Q its norm. If p = 2 we write W s,2(Q) = Hs(Q) with norm
‖ · ‖s,Q.

2 Mathematical setting

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with a smooth boundary Γ := ∂Ω and consider
the differential operator

Ay := −
d∑

i,j=1

∂xj

(
aijyxi

)
+ a0y,

where for simplicity the coefficients aij and a0 are assumed to be smooth functions on Ω̄. In
what follows we assume that aij = aji, a0 ≥ 0 in Ω and that there exists c0 > 0 such that

d∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|2 for all ξ ∈ Rd and all x ∈ Ω.
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Given f ∈ L2(Ω), u ∈ L2(Γ) we consider the boundary value problem

Ay = f in Ω, y = u on Γ. (2.1)

It is well–known that (2.1) has a unique solution y ∈ H
1

2 (Ω) which we denote by y = G(u).
Note that y solves the problem in the sense that

∫

Ω
yAφ =

∫

Ω
fφ−

∫

Γ
u∂νAφ ∀φ ∈ H2(Ω) ∩H1

0 (Ω), (2.2)

where ∂νAφ =

d∑

i,j=1

aijφxj
νi and ν is the outer unit normal to Γ.

In order to define an approximation of (2.1) we also introduce the bilinear form a : H1
0 (Ω)×

H1
0 (Ω) → R associated with the differential operator A as

a(y, z) :=

d∑

i,j=1

∫

Ω

(
aijyxi

zxj
+ a0yz

)
.

Next, let α > 0 and y0 ∈W 1,r̄(Ω), r̄ > d be given. We then consider the Dirichlet boundary
control problem

min
u∈Uad

J(u) =
1

2

∫

Ω
|y − y0|2 +

α

2

∫

Γ
|u|2

subject to y = G(u),
(2.3)

where
Uad = {u ∈ L2(Γ) | a ≤ u ≤ b a.e. on Γ}.

Existence of a unique solution u ∈ Uad of (2.3) follows by standard arguments. This solution
is characterized by the variational inequality

∫

Ω
(y − y0)(z − y) + α

∫

Γ
u(v − u) ≥ 0 ∀v ∈ Uad (2.4)

where z = G(v). Let us introduce the adjoint state p ∈ H2(Ω)∩H1
0 (Ω) as the solution of the

following boundary value problem:

Ap = y − y0 in Ω, p = 0 on Γ. (2.5)

It is not difficult to see that the optimal control u is given by

u = P[a,b]

( 1

α
∂νAp

)
a.e. on Γ (2.6)

where P[a,b] denotes the pointwise projection onto the interval [a, b].

Lemma 2.1. Let u ∈ Uad be the solution of (2.3) with corresponding state y and adjoint
state p. Then

u ∈ H1(Γ), y ∈ H
3

2 (Ω), p ∈W 3,r(Ω) for some d < r ≤ r̄.

Proof. Elliptic regularity implies that p ∈ H2(Ω) and hence ∂νAp ∈ H
1

2 (Γ). In view of (2.6)

we then have u ∈ H
1

2 (Γ) (cf. [5], p. 1590) which in turn yields y ∈ H1(Ω). Repeating the

above argument we obtain p ∈ H3(Ω) and then ∂νAp ∈ H
3

2 (Γ). Therefore u ∈ H1(Γ) and

y ∈ H
3

2 (Ω). Using an embedding theorem, the above regularity of ∂νAp also implies that

u ∈W 1− 1

r
,r(Γ) for some r > d. Hence, y ∈W 1,r(Ω) and since y0 ∈W 1,r̄(Ω) we finally obtain

p ∈W 3,r(Ω) for some d < r ≤ r̄ again by elliptic regularity.
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3 Finite element discretization

Let Th be a triangulation of a polygonal domain Ωh approximating Ω. We assume that all
vertices on ∂Ωh =: Γh also lie on Γ and that at most one face of a simplex T ∈ Th belongs to
Γh. Furthermore, we suppose that the triangulation is quasi-uniform in the sense that there
exists a constant κ > 0 (independent of h) such that each T ∈ Th is contained in a ball of
radius κ−1h and contains a ball of radius κh, where h := maxT∈Th

diam(T ) is the maximum
mesh size. For every T ∈ Th there exists an invertible affine mapping

FT : Rd → Rd, FT (x̂) = AT x̂+ bT ,

which maps the standard d–simplex T̂ onto T . Besides the triangulation Th which will be used
to define the discrete problem and to carry out the practical calculations we also introduce
an exact triangulation T̃h of Ω. The existence of such a triangulation for sufficiently small h
is shown in [3]. In essence, for every T ∈ Th there is a mapping ΦT ∈ C3(T̂ ,Rd) such that
F̃T := FT + ΦT maps T̂ onto a curved d–simplex T̃ ⊂ Ω̄ and Ω̄ =

⋃
T̃∈T̃h

T̃ . Furthermore, the

mapping Gh which is locally defined by Gh|T := F̃T ◦ F−1
T is a homeomorphism between Ωh

and Ω. The construction in [3] also implies that ΦT = 0 if T has at most one vertex on Γh so
that Gh ≡ id on all simplices which are disjoint from Γh. Furthermore, we have the estimates

sup
x∈T

‖(DGh |T − I)(x)‖ ≤ Ch, ‖Gh‖3,∞,T ≤ C, T ∈ Th

sup
x̂∈T̂

‖DF̃T (x̂)‖ ≤ C‖AT ‖, sup
x∈T̃

‖DF̃−1
T (x)‖ ≤ C‖A−1

T ‖, T ∈ Th

c1|detAT | ≤ |detDF̃T (x̂)| ≤ c2|detAT |, x̂ ∈ T̂ .

(3.1)

Let us next define the space of linear finite elements,

Xh := {φh ∈ C0(Ωh) |φh|T ∈ P1(T ), T ∈ Th}

as well as Xh0 := Xh ∩ H1
0 (Ωh). Let γXh be the restriction to Γh of functions in Xh and

denote by Ph : L2(Γh) → γXh the L2–projection, i.e. for v ∈ L2(Γh) we have

∫

Γh

vχh =

∫

Γh

Phv χh ∀χh ∈ γXh. (3.2)

Let us introduce an approximation to the solution operator G as follows. For a given function
uh ∈ L2(Γh) we denote by yh = Gh(uh) ∈ Xh the unique solution of

ah(yh, φh) =

∫

Ωh

fhφh, ∀φh ∈ Xh0, yh = Ph(uh) on Γh, (3.3)

where

ah(yh, φh) =
d∑

i,j=1

∫

Ωh

(
ah,ijyh,xi

φh,xj
+ ah,0yhφh

)

and ah,ij = aij ◦Gh, ah,0 = a0 ◦Gh and fh = f ◦Gh.

In order to deal with the problem that the solutions of (2.1) and (3.3) are defined on different
domains we assign to each φh ∈ Xh a function φ̃h : Ω̄ → R by φ̃h := φh ◦G−1

h and let

X̃h := {φ̃h |φh ∈ Xh} as well as γX̃h = {φ̃h|Γ | φ̃h ∈ X̃h}.
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It is not difficult to verify with the help of (3.1) that for yh, φh ∈ Xh

|a(ỹh, φ̃h) − ah(yh, φh)| ≤ Ch‖ỹh‖1,Ah
‖φ̃h‖1,Ah

, (3.4)

where Ah = {x ∈ Ω |dist(x,Γ) < γh} and γ is chosen so large that
⋃

T̃∩Γ6=∅ T̃ ⊂ Ah.
Next, by adapting the methods developed in [13] it is possible to show that there exists an

interpolation operator Π̃h : L1(Ω) → X̃h such that for φ ∈ W l,p(Ω) (1 ≤ l ≤ 2 if p = 1,
1
p < l ≤ 2 otherwise)

‖φ− Π̃hφ‖m,p,Ω ≤ Chl−m‖φ‖l,p,Ω, 0 ≤ m ≤ min(1, l). (3.5)

In addition it is possible to construct Π̃h in such way that Π̃hφ = 0 on Γ provided that
φ = 0 on Γ. If φ ∈ C0(Ω̄) then we can also define the usual Lagrange interpolation operator
Ĩh : C0(Ω̄) → X̃h via Ĩhφ = Ih(φ ◦Gh) ◦G−1

h where Ih is the Lagrange interpolation operator
corresponding to Xh.
Abbreviating gh := Gh|Γh

we define for v ∈ L2(Γ) the projection P̃hv := [Ph(v ◦ gh)] ◦ g−1
h ∈

γX̃h. In view of Lemma 3.1 in [10] we have
∫

Γh

v =

∫

Γ
v ◦ g−1

h dh where dh = detDG−1
h |(DGh)T ◦G−1

h ν|. (3.6)

Applying (3.6) to (3.2) we see that P̃h is characterized by the relation
∫

Γ
vχ̃h dh =

∫

Γ
P̃hv χ̃h dh ∀χ̃h ∈ γX̃h. (3.7)

Furthermore one can show that

‖v − P̃hv‖0,Γ ≤ Chs‖v‖s,Γ, v ∈ Hs(Γ), 0 ≤ s ≤ 2. (3.8)

Next we prove an L2 error estimate for ỹh, compare also [2].

Lemma 3.1. Suppose that f ∈ L2(Ω), u ∈ Hs(Γ) (0 ≤ s ≤ 1) and that y ∈ Hs+ 1

2 (Ω), yh ∈ Xh

are the solutions of (2.1) and (3.3) with uh = u ◦ gh respectively. Then there exists h0 > 0
such that for 0 < h ≤ h0

‖y − ỹh‖0,Ω ≤ Chs+ 1

2

(
‖u‖s,Γ + ‖f‖0,Ω

)
. (3.9)

Proof. In view of the linearity of A it is sufficient to consider the problems where either
f ≡ 0 or u ≡ 0.
Let us first assume that f ≡ 0 and take s = 1. We denote by yh ∈ H

3

2 (Ω) the solution of

a(yh, φ) = 0 ∀φ ∈ H1
0 (Ω), yh = P̃hu on Γ. (3.10)

Clearly,
‖yh‖s+ 1

2
,Ω ≤ C‖P̃hu‖s,Γ, 0 ≤ s ≤ 1. (3.11)

Let us choose φ̃h = Π̃h[yh − ỹh] = Π̃hy
h − ỹh. Note that φh ∈ Xh0 since yh = ỹh on Γ. The

ellipticity of A and the fact that a0 ≥ 0 imply together with (3.10) and (3.3)

c0

∫

Ω
|∇(yh − ỹh)|2 ≤ a(yh − ỹh, y

h − ỹh)

= a(yh − ỹh, y
h − Π̃hy

h) + a(yh − ỹh, Π̃hy
h − ỹh)

= a(yh − ỹh, y
h − Π̃hy

h) + [ah(yh, (Π̃hy
h) ◦Gh − yh) − a(ỹh, Π̃hy

h − ỹh)]

≡ I + II.
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In view of (3.4), (3.5) and Poincaré’s inequality we have

|II| ≤ Ch‖ỹh‖1,Ω‖Π̃hy
h − ỹh‖1,Ω

≤ Ch
(
‖yh‖1,Ω + ‖yh − ỹh‖1,Ω

)(
‖yh − Π̃hy

h‖1,Ω + ‖yh − ỹh‖1,Ω

)

≤ (ǫ+ Ch)‖∇(yh − ỹh)‖2
0,Ω + Cǫh

3

2‖yh‖2
3

2
,Ω
.

Estimating I with the help of (3.5) and Young’s inequality we obtain for 0 < h ≤ h0, h0

sufficiently small
‖yh − ỹh‖1,Ω ≤ C

√
h‖yh‖ 3

2
,Ω. (3.12)

In order to estimate the L2–norm of y − ỹh we employ the usual duality argument, namely
denote by ψ ∈ H2(Ω) the solution of

Aψ = y − ỹh in Ω, ψ = 0 on Γ. (3.13)

Then, (2.2) and integration by parts imply that
∫

Ω
|y − ỹh|2 =

∫

Ω
(y − ỹh)Aψ = −a(ỹh, ψ) −

∫

Γ
(u− P̃hu)∂νAψ = I + II.

Observing that ψ, Ĩhψ ∈ H1
0 (Ω), Ih(ψ ◦Gh) ∈ Xh0 we infer from (3.3) and (3.10)

I = a(yh − ỹh, ψ − Ĩhψ) + [−a
(
ỹh, ˜Ih(ψ ◦Gh)

)
+ ah

(
yh, Ih(ψ ◦Gh)

)
]

≤ Ch
3

2‖yh‖ 3

2
,Ω‖ψ‖2,Ω + Ch‖ỹh‖1,Ah

‖Ĩhψ‖1,Ah

by (3.12), (3.4) and an interpolation estimate. Next, using the continuous embeddings

H
1

2 (Ω) →֒ L3(Ω), H1(Ω) →֒ L6(Ω) as well as (3.12) we obtain

‖ỹh‖1,Ah
≤ ‖yh‖1,Ah

+ ‖yh − ỹh‖1,Ah
≤ C|Ah|

1

6‖yh‖1,3,Ah
+ C

√
h‖yh‖ 3

2
,Ω ≤ Ch

1

6 ‖yh‖ 3

2
,Ω,

‖Ĩhψ‖1,Ah
≤ ‖ψ‖1,Ah

+ ‖ψ − Ĩhψ‖1,Ah
≤ C|Ah|

1

3 ‖ψ‖1,6,Ah
+ Ch‖ψ‖2,Ω ≤ Ch

1

3‖ψ‖2,Ω.

Thus,

|I| ≤ Ch
3

2 ‖yh‖ 3

2
,Ω‖ψ‖2,Ω ≤ Ch

3

2‖P̃hu‖1,Γ‖ψ‖2,Ω (3.14)

in view of (3.11). For II we obtain with the help of (3.7)

II = −
∫

Γ
(u− P̃hu)∂νAψ dh +

∫

Γ
(u− P̃hu)∂νAψ(dh − 1) (3.15)

= −
∫

Γ
(u− P̃hu)(∂νAψ − P̃h∂νAψ)dh +

∫

Γ
(u− P̃hu)∂νAψ(dh − 1)

and hence using (3.8) and (3.1)

|II| ≤ Ch
3

2‖u‖1,Γ‖∂νAψ‖ 1

2
,Γ + Ch2‖u‖1,Γ‖∂νAψ‖0,Γ ≤ Ch

3

2 ‖u‖1,Γ‖ψ‖2,Ω.

Combining this bound with (3.14), the stability of P̃h in H1(Γ) and a standard elliptic regu-
larity result we deduce that

‖y − yh‖0,Ω ≤ Ch
3

2 ‖u‖1,Γ. (3.16)

Let us next look at the case s = 0 and define ψ ∈ H2(Ω)∩H1
0(Ω) again via (3.13). As above

we obtain ∫

Ω
|y − ỹh|2 = I + II.
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Using (3.14) together with an inverse inequality we have

|I| ≤ Ch
3

2 ‖P̃hu‖1,Γ‖ψ‖2,Ω ≤ Ch
1

2 ‖P̃hu‖0,Γ‖ψ‖2,Ω.

Returning to (3.15) we infer for the second term

|II| ≤ C
(
‖u‖0,Γ + ‖P̃hu‖0,Γ

)(
h

1

2 ‖∂νAψ‖ 1

2
,Γ + h‖∂νAψ‖0,Γ

)
≤ Ch

1

2 ‖u‖0,Γ‖ψ‖2,Ω.

Combining the above two bounds we deduce that

‖y − ỹh‖0,Ω ≤ Ch
1

2 ‖u‖0,Γ. (3.17)

The case 0 < s < 1 then follows from (3.16) and (3.17) by interpolation.
If u ≡ 0, f ∈ L2(Ω) we can proceed in a similar way as above, starting with a bound of the
form ‖y − ỹh‖1,Ω ≤ Ch‖f‖0,Ω followed by a duality argument to give

‖y − ỹh‖0,Ω ≤ Ch
3

2‖f‖0,Ω.

Since our primary interest lies on the boundary values we leave the details to the reader.

Our next aim is to bound the discrete solution corresponding to f ≡ 0 in terms of ‖u‖0,Γ. In
order to formulate the result we introduce the distance function dΓ(x) := dist(x,Γ). It follows
from [7], 14.6 that there exists δ > 0 such that dΓ ∈ C3(Ωδ), where Ωr := {x ∈ Ω̄ | dΓ(x) < r}
for r > 0. Choose a function η ∈ C3(Ω̄) such that 0 ≤ η ≤ 1, η(x) = 1, x ∈ Ω δ

2

and

η(x) = 0, x ∈ Ω̄ \ Ω 2δ
3

. Then, ρ(x) := η(x)dΓ(x) + (1 − η(x)) δ
2 , x ∈ Ω̄ belongs to C3(Ω̄) and

satisfies

ρ(x) = dΓ(x), x ∈ Ω δ
2

, ρ(x) ≥ δ

2
, x ∈ Ω̄ \ Ω δ

2

. (3.18)

Furthermore, let
ω(x) := ρ(x) + h, x ∈ Ω̄.

Lemma 3.2. Let u ∈ L2(Γ) and suppose that zh ∈ Xh is the solution of

ah(zh, φh) = 0 ∀φh ∈ Xh0, zh = Ph(u ◦ gh) on Γh. (3.19)

Then ∫

Ω

(
|z̃h|2 + ω|∇z̃h|2

)
≤ C‖u‖2

0,Γ. (3.20)

Proof. Let yh be again the solution of (3.10). Since (P̃hu) ◦ gh = Ph(u ◦ gh) and P 2
h = Ph,

Lemma 3.1 for s = 0 implies that

‖yh − z̃h‖0,Ω ≤ C
√
h‖P̃hu‖0,Γ ≤ C

√
h‖u‖0,Γ. (3.21)

Combining this estimate with (3.11) we deduce

‖z̃h‖0,Ω ≤ ‖yh‖0,Ω + C
√
h‖u‖0,Γ ≤ C‖u‖0,Γ. (3.22)

On the other hand, an inverse estimate, (3.5), (3.11) and (3.21) yield

‖∇z̃h‖0,Ω ≤ ‖∇(z̃h − Π̃hy
h)‖0,Ω + ‖∇Π̃hy

h‖0,Ω ≤ Ch−1‖z̃h − Π̃hy
h‖0,Ω + C‖yh‖1,Ω (3.23)

≤ Ch−1‖z̃h − yh‖0,Ω + C‖yh‖1,Ω ≤ Ch−
1

2‖u‖0,Γ + C‖P̃hu‖ 1

2
,Γ ≤ Ch−

1

2 ‖u‖0,Γ.
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It remains to bound

∫

Ω
ρ |∇z̃h|2. The ellipticity of A and the fact that a0 ≥ 0 imply

c0

∫

Ω
ρ |∇z̃h|2 ≤

d∑

i,j=1

∫

Ω
ρaij z̃h,xi

z̃h,xj
≤ a(z̃h, ρz̃h) − 1

2

d∑

i,j=1

∫

Ω
aijρxi

(z̃2
h)xj

≡ I + II.

Since ρ(x) = dΓ(x) = 0, x ∈ Γ, we have that φh := Ih
(
(ρ ◦ Gh)zh

)
∈ Xh0. Hence, (3.19) and

(3.4) yield

I = a(z̃h, ρz̃h − Ĩh(ρz̃h)) + [a(z̃h, Ĩh(ρz̃h)) − ah

(
zh, Ih((ρ ◦Gh)zh)

)
] (3.24)

≤ C‖z̃h‖1,Ω‖ρz̃h − Ĩh(ρz̃h)‖1,Ω + Ch‖z̃h‖1,Ah
‖Ĩh(ρz̃h)‖1,Ah

.

For fixed T̃ ∈ T̃h we have observing (3.1) together with the fact that zh ∈ P1(T )

‖ρz̃h − Ĩh(ρz̃h)‖1,T̃ (3.25)

≤ C‖(ρ ◦Gh)zh − Ih
(
(ρ ◦Gh)zh

)
‖1,T ≤ Ch‖D2[(ρ ◦Gh)zh]‖0,T

≤ Ch
(
‖zhD2(ρ ◦Gh)‖0,T + ‖∇(ρ ◦Gh) ⊗∇zh‖0,T + ‖∇zh ⊗∇(ρ ◦Gh)‖0,T

)

≤ Ch‖zh‖1,T ≤ Ch‖z̃h‖1,T̃ ,

where ⊗ denotes the dyadic product of two vectors. In particular

‖Ĩh(ρz̃h)‖1,T̃ ≤ ‖ρz̃h − Ĩh(ρz̃h)‖1,T̃ + ‖ρz̃h‖1,T̃ ≤ C‖z̃h‖1,T̃ . (3.26)

Inserting (3.25) and (3.26) into (3.24) we deduce with the help of (3.22) and (3.23)

I ≤ Ch‖z̃h‖2
1,Ω ≤ C‖u‖2

0,Γ. (3.27)

Finally, integration by parts and (3.22) imply

II =
1

2

d∑

i,j=1

∫

Ω

(
aij,xj

ρxi
+ aijρxixj

)
z̃2
h − 1

2

d∑

i,j=1

∫

Γ
∂νAρ z̃

2
h

≤ C
(
‖z̃h‖2

0,Ω + ‖z̃h‖2
0,Γ

)
≤ C

(
‖u‖2

0,Γ + ‖P̃hu‖2
0,Γ

)
≤ C‖u‖2

0,Γ.

Combining this estimate with (3.27) completes the proof.

4 Error analysis for the control problem

We approximate (2.3) using the variational discretization from [8]. This leads to the following
control problem depending on h:

min
uh∈Uh,ad

Jh(uh) =
1

2

∫

Ωh

|yh − yh,0|2 +
α

2

∫

Γh

|uh|2

subject to yh = Gh(uh),

(4.1)

where Uh,ad = {uh ∈ L2(Γh) | a ≤ uh ≤ b a.e. on Γh} and yh,0 = y0 ◦Gh. It is not difficult to
see that (4.1) has a unique solution uh ∈ Uh,ad and that this solution is characterized by the
variational inequality

∫

Ωh

(yh − yh,0)(zh − yh) + α

∫

Γh

uh(vh − uh) ≥ 0 ∀vh ∈ Uh,ad. (4.2)
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Here zh = Gh(vh) ∈ Xh. It is easy to show that (compare (2.6))

uh = P[a,b](
1

α
∂h

νA
ph), (4.3)

where ph ∈ Xh0 and ∂h
νA
ph ∈ γXh are defined by

ah(φh, ph) =

∫

Ωh

(yh − yh,0)φh ∀φh ∈ Xh0

and ∫

Γh

(∂h
νAph)wh = ah(wh, ph) −

∫

Ωh

(yh − yh,0)wh ∀wh ∈ Xh.

Theorem 4.1. Let u and uh be the solutions of (2.3) and (4.1) with corresponding states y
and yh respectively. Then

‖u− ũh‖0,Γ + ‖y − ỹh‖0,Ω ≤ Ch
√

| log h|

for all 0 < h ≤ h0. Here, ũh = uh ◦ g−1
h .

Proof. Using v = ũh ∈ Uad in (2.4) and vh = u ◦ gh ∈ Uh,ad in (4.2) we obtain

∫

Ω
(y − y0)(y

h − y) + α

∫

Γ
u(ũh − u) ≥ 0 (4.4)

∫

Ωh

(yh − yh,0)(zh − yh) + α

∫

Γh

uh(u ◦ gh − uh) ≥ 0 (4.5)

where yh = G(uh ◦ g−1
h ) and zh = Gh(u ◦ gh). Transforming (4.5) to Ω and Γ respectively we

obtain ∫

Ω
(ỹh − y0)(z̃h − ỹh)|detDG−1

h | + α

∫

Γ
ũh(u− ũh)dh ≥ 0

or equivalently ∫

Ω
(ỹh − y0)(z̃h − ỹh) + α

∫

Γ
ũh(u− ũh) + δh ≥ 0 (4.6)

where, using (3.1),

|δh| ≤ Ch
(
‖z̃h − ỹh‖0,Ω + ‖u− ũh‖0,Γ

)
≤ Ch

(
‖y − ỹh‖0,Ω + ‖y − z̃h‖0,Ω + ‖u− ũh‖0,Γ

)

≤ ǫ
(
‖y − ỹh‖2

0,Ω + ‖u− ũh‖2
0,Γ

)
+ Cǫh

2 + C‖y − z̃h‖2
0,Ω. (4.7)

Combining (4.4), (4.6) and (4.7) we deduce

α‖u− ũh‖2
0,Γ ≤

∫

Ω
(y − y0)(y

h − y) +

∫

Ω
(ỹh − y0)(z̃h − ỹh) + δh

= −
∫

Ω
(y − ỹh)2 +

∫

Ω
(y − ỹh)(y − z̃h) −

∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)
+ δh

≤ −1

2
‖y − ỹh‖2

0,Ω −
∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)

+ǫ
(
‖y − ỹh‖2

0,Ω + ‖u− ũh‖2
0,Γ

)
+ Cǫh

2 +Cǫ‖y − z̃h‖2
0,Ω

and hence after choosing ǫ > 0 small enough and recalling Lemma 3.1

α

2
‖u− ũh‖2

0,Γ +
1

4
‖y − ỹh‖2

0,Ω ≤ Ch2 −
∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)
. (4.8)
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Using (2.5), (2.2), integration by parts, the definition of P̃h and the fact that ah(zh−yh, φh) =
0 for φh ∈ Xh0 we obtain

∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)
=

∫

Ω
(y − yh)Ap−

∫

Ω
(z̃h − ỹh)Ap

= −
∫

Γ
(u− ũh)∂νAp− a(p, z̃h − ỹh) +

∫

Γ
P̃h(u− ũh)∂νAp

= −a(p− Ĩhp, z̃h − ỹh) −
∫

Γ

(
(u− ũh) − P̃h(u− ũh)

)
∂νAp

+[ah(Ih(p ◦Gh), zh − yh) − a(Ĩhp, z̃h − ỹh)]

≡ I + II + III. (4.9)

The first integral is estimated with the help of an interpolation inequality and Lemma 3.2:

|I| ≤
(∫

Ω
ω−1|∇(p − Ĩhp)|2

) 1

2

(∫

Ω
ω|∇(z̃h − ỹh)|2

) 1

2

≤ Ch‖p‖2,∞,Ω

(∫

Ω
ω−1

) 1

2 ‖u− ũh‖0,Γ ≤ Ch‖p‖3,r,Ω

(∫

Ω
ω−1

) 1

2 ‖u− ũh‖0,Γ.

In view of (3.18) and the coarea formula we have

∫

Ω
ω−1 ≤

∫

Ω δ
2

1

dΓ + h
+

∫

Ω\Ω δ
2

2

δ
≤ C

∫ δ
2

0

∫

{dΓ=τ}

1

τ + h
dAdτ + C ≤ C| log h|

so that
|I| ≤ ǫ‖u− ũh‖2

0,Γ + Cǫh
2| log h|. (4.10)

Next, II = II1 + II2 where

II1 = −
∫

Γ

(
(u− ũh) − P̃h(u− ũh)

)
∂νAp dh

II2 =

∫

Γ

(
(u− ũh) − P̃h(u− ũh)

)
∂νAp(dh − 1).

We infer from (3.7) and (3.8) that

|II1| =
∣∣ −

∫

Γ
(u− ũh)

(
∂νAp− P̃h∂νAp

)
dh

∣∣

≤ Ch
3

2 ‖∂νAp‖ 3

2
,Γ‖u− ũh‖0,Γ ≤ ǫ‖u− ũh‖2

0,Γ + Cǫh
3.

On the other hand, (3.1) implies

|II2| ≤ Ch‖u− ũh‖0,Γ‖∂νAp‖0,Γ ≤ ǫ‖u− ũh‖2
0,Γ + Cǫh

2

so that in conclusion
|II| ≤ ǫ‖u− ũh‖2

0,Γ + Cǫh
2. (4.11)

Finally, recalling (3.4) we have

|III| ≤ Ch‖Ĩhp‖1,Ah
‖z̃h − ỹh‖1,Ω ≤ Ch|Ah|

1

2‖p‖1,∞,Ah
‖z̃h − ỹh‖1,Ω

≤ Ch‖p‖1,∞,Ω‖u− ũh‖0,Γ ≤ ǫ‖u− ũ‖2
0,Γ + Cǫh

2 (4.12)

in view of Lemma 3.2. Inserting (4.10), (4.11) and (4.12) into (4.8) and choosing ǫ small
enough yields the result.
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5 Superconvergence

In the following section we demonstrate that it is possible to improve the order of convergence
under additional conditions on the underlying mesh. We assume from now on that d = 2
making use of the theory developed in [1], where the following definition can be found:

Definition 5.1. The triangulation Th is called O(h2σ) irregular if the following holds:
a) The set of interior edges of Th can be decomposed into two disjoint sets E1 and E2 with
the following properties:

• For each e ∈ E1 let T, T ′ ∈ Th with T ∩ T ′ = e. Then in the parallelogram formed by
T ∪ T ′ the lengths of any two opposite edges only differ by O(h2).

•
∑

e∈E2
(|T | + |T ′|) = O(h2σ).

b) The set of boundary vertices P can be decomposed into two disjoint sets P1 and P2 with
the following properties:

• For each vertex x ∈ P1 denote by e ⊂ T, e′ ⊂ T ′ the two boundary edges sharing x and
let t, t′ be the unit tangents. Also denote by e, f, g and e′, f ′, g′ the edges obtained by
making a clockwise traversal of ∂T, ∂T ′ respectively. Then

|t− t′| = O(h), |e| − |e′| = O(h2), |f | − |f ′| = O(h2), |g| − |g′| = O(h2).

• |P2| ≤ C where C is independent of h.

The following result is essentially proved in [1], Lemma 2.5 for functions f belonging to
W 3,∞(Ω). Since we would like to use a corresponding estimate for the solution of the adjoint
problem which only belongs to W 3,r(Ω) for some r > 2 we require a suitable modification
allowing a boundary term of the discrete test function φh.

Lemma 5.2. Suppose that the triangulation Th is O(h2σ) irregular and let f ∈W 3,r(Ωh) for
some r > 2. Then

|
∫

Ωh

∇(f − Ihf) · ∇φh| ≤ C‖f‖3,r,Ωh

(
h1+min(1,σ)‖φh‖1,Ωh

+ h
3

2‖φh‖0,Γh

)
∀φh ∈ Xh.

Proof. Lemma 2.3 in [1] gives
∫

Ωh

∇(f − Ihf) · ∇φh =
∑

T∈Th

∫

T
∇(f − Ihf) · ∇φh

=
∑

T∈Th

∑

e⊂∂T

∫

e
qe

(
αe
∂2f

∂t2
+ βe

∂2f

∂t∂n

)∂φh

∂t
−

∑

T∈Th

∫

T

∑

|λ|=3,|µ|=1

γT,λµ ∂
λf ∂µφh

≡ I1 + I2. (5.1)

Here, qe is the quadratic function vanishing at the endpoints of e and being equal to 1
4 at the

midpoint. Furthermore, n is the unit normal to e pointing away from T while t denotes the
unit tangent with the tangents on ∂T being oriented counterclockwise. The numbers αe, βe

and γT,λµ depend on the geometry of T and their precise form can be found in [1]. For our
purposes it is sufficient to note that the conditions in Definition 5.1 imply

|αe|, |βe|, |γT,λµ| ≤ Ch2, e ∈ E1 ∪ E2, (5.2)

|αe − α′
e|, |βe − β′e| ≤ Ch3, T ∩ T ′ = e ∈ E1, (5.3)

|αe − αe′ |, |βe − βe′ | ≤ Ch3, e, e′ ⊂ Γh, e ∩ e′ = {x}, x ∈ P1. (5.4)
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In view of (5.2) we have
|I2| ≤ Ch2‖f‖3,Ωh

‖φh‖1,Ωh
. (5.5)

Next, we write as in [1]
I1 = I11 + I12 + I13,

where

I1j =
∑

e∈Ej

∫

e
qe

{
(αe − α′

e)
∂2f

∂t2
+ (βe − β′e)

∂2f

∂t∂n

}∂φh

∂t
, j = 1, 2,

I13 =
∑

e⊂Γh

∫

e
qe

{
αe
∂2f

∂t2
+ βe

∂2f

∂t∂n

}∂φh

∂t
.

Arguing as in [1] we have

|I11| + |I12| ≤ C(h2 + h1+σ)‖f‖2,∞,Ωh
‖φh‖1,Ωh

. (5.6)

In order to treat I13 we proceed in a slightly different manner compared to [1]. Let us set

Be(f) := αe
∂2f

∂t2
+ βe

∂2f

∂t∂n
, e ⊂ Γh as well as B̄e(f) :=

1

|e|

∫

e
Be(f).

Then we can write

∑

e⊂Γh

∫

e
qeBe(f)

∂φh

∂t
=

∑

e⊂Γh

∫

e
qe

(
Be(f) − B̄e(f)

)∂φh

∂t
+

∑

e⊂Γh

∫

e
qeB̄e(f)

∂φh

∂t
.

A Poincaré type inequality along with a scaling argument yields for g ∈ H1,q̃(T )

‖g − 1

|e|

∫

e
g‖0,q,e ≤ Ch

1+ 1

q
− 2

q̃ ‖∇g‖0,q̃,T , e ⊂ ∂T, 1 +
1

q
− 2

q̃
> 0. (5.7)

Applying this estimate with q = q̃ = 2 and using (5.2) as well as an inverse inequality we
deduce

|
∑

e⊂Γh

∫

e
qe

(
Be(f) − B̄e(f)

)∂φh

∂t
|

≤ C
∑

e⊂Γh

‖Be(f) − B̄e(f)‖0,e‖∇φh‖0,e ≤ Ch2‖f‖3,Ωh
‖∇φh‖0,Ωh

.

For the second term we write as in [1]

∑

e⊂Γh

∫

e
qeB̄e(f)

∂φh

∂t
=

∑

e⊂Γh

B̄e(f)
∂φh

∂t

∫

e
qe =

∑

e⊂Γh

B̄e(f)
∂φh

∂t

|e|
6

=
1

6

∑

x∈P1

(
B̄e(f) − B̄e′(f)

)
φh(x) +

1

6

∑

x∈P2

(
B̄e(f) − B̄e′(f)

)
φh(x),

where e and e′ are the edges sharing x. Using (5.4) as well as |t− t′| = O(h) for e ∩ e′ = {x}
we have for x ∈ P1

|B̄e(f) − B̄e′(f)| ≤ |B̄e(f) −Be(f)(x)| + |B̄e′(f) −Be′(f)(x)| + |Be(f)(x) −Be′(f)(x)|
≤ C

(
‖Be(f) − B̄e(f)‖0,∞,e + ‖Be′(f) − B̄e′(f)‖0,∞,e′

)
+ Ch3|D2f(x)|

≤ Ch3− 2

r ‖f‖3,r,T∪T ′
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by (5.7) with q = ∞, q̃ = r. On the other hand we have for x ∈ e ⊂ T

|φh(x)| ≤ ‖φh‖∞,e ≤ Ch−
1

2‖φh‖0,e + Ch1− 2

r′ ‖∇φh‖0,r′,T .

Thus,

|
∑

x∈P1

(
B̄e(f) − B̄e′(f)

)
φh(x)|

≤ Ch3− 2

r

∑

x∈P1

‖f‖3,r,T∪T ′

(
h−

1

2 ‖φh‖0,e + h1− 2

r′ ‖∇φh‖0,r′,T

)

≤ Ch
5

2
− 2

r

(∑

T∈T

‖f‖r
3,r,T

) 1

r
( ∑

e⊂Γh

‖φh‖2
0,e

) 1

2

(∑

x∈P

1
) 1

2
− 1

r

+Ch4− 2

r
− 2

r′

( ∑

T∈Th

‖f‖r
3,r,T

) 1

r
( ∑

T∈Th

‖∇φh‖r′

0,r′,T

) 1

r′

≤ Ch2− 1

r ‖f‖3,r,Ωh
‖φh‖0,Γh

+ Ch2‖f‖3,r,Ωh
‖∇φh‖0,Ωh

,

since
∑

x∈P 1 ≤ Ch−1 and r′ < 2. Furthermore, recalling that |P2| ≤ C,

|
∑

x∈P2

(
B̄e(f) − B̄e′(f)

)
φh(x)| ≤ Ch2‖D2f‖0,∞,Γh

‖φh‖0,∞,Γh
≤ Ch

3

2‖f‖3,r,Ωh
‖φh‖0,Γh

.

In conclusion,

|I13| ≤ Ch
3

2‖f‖3,r,Ωh
‖φh‖0,Γh

+ Ch2‖f‖3,r,Ωh
‖∇φh‖0,Ωh

. (5.8)

Combining (5.8) with (5.6) and (5.5) we finish the proof of the lemma.

Remark 5.3. Lemma 5.2 continues to hold if the triangulation Th is piecewise O(h2σ) irreg-
ular, that is, if Ωh can be written as the union of a bounded number of polygonal subdomains
each of which is O(h2σ) irregular (cf. Theorem 4.4 in [1]).

In order to simplify the subsequent analysis we assume from now on that Ω ⊂ R2 is convex
and that A = −∆. As a consequence, Ωh ⊂ Ω and yh = Gh(uh) is defined by

∫

Ωh

∇yh · ∇φh =

∫

Ωh

fφh, ∀φh ∈ Xh0, yh = Ph(uh) on Γh, (5.9)

where Ph is again given by (3.2). We extend a function φh ∈ Xh to Ω̄ as follows: if Ωe is the
subset of Ω \ Ωh bounded by the boundary edge e ⊂ T ∩ Γh and the curved segment ẽ ⊂ Γ,
then φ̃h|Ωe

is given by the linear extension of φh from T . Furthermore, let gh : Γh → Γ be
defined by

gh(x) := x+ δ(x)νh(x), x ∈ e ⊂ Γh,

where νh is the constant normal to Γh on e and δ(x) is chosen in such a way that gh(x) ∈ Γ.
Note that gh is bijective for small h. Given u ∈ Hs(Γ), 0 ≤ s ≤ 1, it follows from Theorem 1
in [4] that

‖y − ỹh‖0,Ω ≤ C
(
h2‖f‖0,Ω + hs+ 1

2‖u‖s,Γ

)
, y = G(u), yh = Gh(u ◦ gh). (5.10)

We are now in position to prove the main result of this section.
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Theorem 5.4. Suppose that the triangulation Th is piecewise O(h2) irregular. Let u and uh

be the solutions of (2.3) and (4.1) with corresponding states y and yh respectively. Then

‖u− ũh‖0,Γ + ‖y − ỹh‖0,Ω ≤ Ch
3

2

for all 0 < h ≤ h0. Here, ũh = uh ◦ g−1
h .

Proof. As in the proof of Theorem 4.1 let yh = G(uh ◦ g−1
h ), zh = Gh(u ◦ gh). We again have

∫

Ω
(ỹh − y0)(z̃h − ỹh) + α

∫

Γ
ũh(u− ũh) + δh ≥ 0 (5.11)

where now

δh = −
∫

Ω\Ωh

(ỹh − y0)(z̃h − ỹh) + α

∫

Γ
ũh(u− ũh)(dh − 1).

Since |dh − 1| ≤ Ch2 in our situation we obtain

|δh| ≤
(
‖y0‖0,Ω\Ωh

+ ‖ỹh‖0,Ω\Ωh

)
‖z̃h − ỹh‖0,Ω\Ωh

+ Ch2‖u− ũh‖0,Γ. (5.12)

Using Lemma 2 in [4] we infer that

‖y0‖0,Ω\Ωh
≤ C

(
h‖y0‖0,Γ + h2‖y0‖1,Ω

)
≤ Ch.

On the other hand it follows from (2.10) in [4] that for φh ∈ Xh

‖φ̃h‖0,Ω\Ωh
≤ C

(
h‖φh‖0,Γh

+ h2‖φ̃h‖1,Ω

)
≤ C

(
h‖φh‖0,Γh

+ h2‖φh‖1,Ωh

)
. (5.13)

Combining the bounds

‖yh‖1,Ωh
≤ C

(
h−

1

2‖uh‖0,Γh
+ ‖f‖0,Ωh

)
≤ Ch−

1

2 , ‖zh − yh‖1,Ωh
≤ Ch−

1

2 ‖u ◦ gh − uh‖0,Γh

with (5.13) we deduce from (5.12)

|δh| ≤ Ch2
(
‖u ◦ gh − uh‖0,Γh

+ ‖u− ũh‖0,Γ

)
≤ Ch2‖u− ũh‖0,Γ. (5.14)

Thus, we deduce from (4.4), (5.11) and (5.14) similarly as in the proof of Theorem 4.1

α‖u− ũh‖2
0,Γ ≤ −1

2
‖y − ỹh‖2

0,Ω −
∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)

+ǫ
(
‖y − ỹh‖2

0,Ω + ‖u− ũh‖2
0,Γ

)
+ Cǫh

4 + C‖y − z̃h‖2
0,Ω

and hence after choosing ǫ sufficiently small and applying (5.10)

α

2
‖u− ũh‖2

0,Γ +
1

4
‖y − ỹh‖2

0,Ω ≤ Ch3 −
∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)
. (5.15)

Using (2.5) for our case A = −∆ as well as integration by parts we have
∫

Ω
(y − y0)

(
(y − yh) − (z̃h − ỹh)

)
(5.16)

= −
∫

Ω
(y − yh)∆p+

∫

Ωh

(zh − yh)∆p+

∫

Ω\Ωh

(z̃h − ỹh)∆p

= −
∫

Γ
(u− ũh)∂νp−

∫

Ωh

∇(zh − yh) · ∇p+

∫

Γh

Ph

(
(u ◦ gh) − uh

)
∂νh

p

+

∫

Ω\Ωh

(z̃h − ỹh)∆p ≡ S1 + S2 + S3 + S4.
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Taking into account (5.9) we infer with the help of Lemma 5.2

|S2| = |
∫

Ωh

∇(zh − yh) · ∇(p− Ihp)| ≤ C‖p‖3,r,Ωh

(
h2‖zh − yh‖1,Ωh

+ h
3

2‖zh − yh‖0,Γh

)

≤ Ch
3

2‖u ◦ gh − uh‖0,Γh
≤ Ch

3

2‖u− ũh‖0,Γ.

Since p ∈ H3(Ω) we deduce similarly as above that

|S4| ≤ Ch2‖u− ũh‖0,Γ.

Next, recalling the relation [P̃hv] ◦ gh = Ph(v ◦ gh) as well as (3.6) we have

S3 =

∫

Γ
P̃h(u− ũh)[∇p · νh] ◦ g−1

h dh

=

∫

Γ
P̃h(u− ũh)∂νp dh +

∫

Γ
P̃h(u− ũh)

(
[∇p · νh] ◦ g−1

h −∇p · ν
)
dh.

In order to deal with the second term we let y = gh(x) ∈ Γ. Since p = 0 on Γ we have that
∇p = ∂νp ν on Γ. Hence

[∇p · νh](g−1
h (y)) − (∇p · ν)(y) = ∇p(x) · νh(x) −∇p(gh(x)) · ν(gh(x))

=
(
∇p(x) −∇p(gh(x))

)
· νh(x) + ∂νp(gh(x)) ν(gh(x)) · (νh(x) − ν(gh(x))

=
(
∇p(x) −∇p(gh(x))

)
· νh(x) − 1

2
∂νp(gh(x))|ν(gh(x)) − νh(x)|2,

so that
|[∇p · νh] ◦ g−1

h −∇p · ν| ≤ Ch2 on Γ

since |gh(x) − x| ≤ Ch2, |ν(gh(x)) − νh(x)| ≤ Ch. As a result we may write

S1 + S3 = −
∫

Γ

(
(u− ũh) − P̃h(u− ũh)

)
∂νpdh + rh = −

∫

Γ
(u− ũh)

(
∂νp− P̃h∂νp

)
dh + rh

where |rh| ≤ Ch2‖u− ũh‖0,Γ. Now, (3.8) implies

|S1 + S3| ≤ Ch
3

2 ‖∂νp‖ 3

2
,Γ‖u− ũh‖0,Γ + |rh| ≤ Ch

3

2 ‖u− ũh‖0,Γ.

Returning to (5.16) we finally obtain

|
∫

Ω
(y − y0)

(
(y − yh) − (zh − yh)

)
| ≤ Ch

3

2 ‖u− ũh‖0,Γ

and the result follows after inserting this estimate into (5.15).

6 Numerical examples

For our numerical experiments we consider the variational discretization (4.1) of problem
(2.3) with the unit circle Ω = B1(0) as domain and A = −∆ as differential operator. We set
α = 1, a = 0 and b = 1. For the numerical solution of the optimal control problem (4.1) we
apply the fixpoint iteration

• v ∈ Uh,ad given

• v+ := P[a,b](
1
α∂

h
νA
ph(v))
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• v := v+.

Here, for given v ∈ Uh,ad the function ∂h
νAph(v) is defined by (4.3) with yh = Gh(v). We

note that the variational discrete solution uh may admit active sets whose boundaries do not
coincide with finite element nodes, compare Fig. 1(a), where the boundary control uh (bold)
is depicted on a coarse mesh together with function 1

α∂
h
νAph(uh) (dotted).

We consider two examples and investigate the error functionals

E0
u(h) = ‖u− ũh‖0,Γ, E0

y(h) = ‖y − yh‖0,Ωh
, E1

y(h) = ‖y − yh‖1,Ωh
,

E0
p(h) = ‖p − ph‖0,Ωh

, E1
p(h) = ‖p − ph‖1,Ωh

,

both on a sequence of arbitrary meshes and on a sequence of congruently refined, piecewise
O(h2) irregular meshes. Fig. 1(b) shows an arbitrary mesh while Fig. 1(c) depicts a grid of
the type which we use to numerically confirm our superconvergence result of Theorem 5.4.

Remark 6.1. The triangulation in Fig. 1(c) is piecewise O(h2) irregular, but only O(h)
irregular. It is automatically constructed by congruent refinement from the initial grid formed
by the 8 bold sector boarders together with the corresponding sector secants. Here we note
that new boundary nodes are projected onto the unit circle. The resulting triangulation in
each of the 8 sectors then is O(h2) irregular.
Piecewise O(h2) irregular meshes are often generated automatically by congruent refinement,

say from an initial grid T0 containing finitely many triangles T combined with projecting
boundary nodes onto smooth domain boundaries. Every sub-triangulation obtained in this
way from some T ∈ T0 then is O(h2) irregular. This in view of Theorem 5.4 explains why
in practice one often observes better rates of convergence than expected from the general
theory, compare the discussion in [1].

Tables 1 and 2 summarize the mesh-properties in terms of the number of triangles nt, the
number of nodes np and the mesh parameter h.
For an error functional we define the experimental order of convergence by

EOC =
logE(h1) − logE(h2)

log h1 − log h2
.

Finally for an arbitrary function g : B1(0) → R we abbreviate ĝ(r, φ) := g(r cosφ, r sinφ),
where (r, φ) ∈ (0, 1] × [0, 2π).

(a) Variational discretization. (b) Arbitrary mesh (i = 2). (c) Superconvergence mesh (j = 4).

Figure 1: Variational discretization and considered triangulations.
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i nt np h

1 8 9 1.000000
2 40 29 0.596568
3 170 102 0.298819
4 684 371 0.149721
5 2680 1393 0.074921
6 10812 5511 0.037497
7 44568 22489 0.018749
8 179292 90051 0.009375
9 701964 351791 0.004687

Table 1: Mesh parameters for the sequence
of arbitrary meshes.

j nt np h

1 8 9 1.000000
2 32 25 0.571070
3 128 81 0.302195
4 512 289 0.155086
5 2048 1089 0.078516
6 8192 4225 0.039498
7 32768 16641 0.019809
8 131072 66049 0.009919
9 524288 263169 0.004963

Table 2: Mesh parameters for the sequence
of piecewise O(h2) irregular meshes.

In our first example we consider problem (2.3) with contiuous data f and smooth data y0.
For this purpose we set

ŷ(r, φ) = r3 max(0, cos3 φ)

ŷ0(r, φ) = (7r2 cos2 φ+ 6r2 − 6r) cos φ+ ŷ(r, φ) and

f̂(r, φ) = −6rmax(0, cos φ).

Then it is easy to check that û(1, φ) = û(φ) = max(0, cos3 φ) solves (2.3) and the associated
adjoint variable is given by p̂(r, φ) = r3(r − 1) cos3 φ. In the present example we deal with
classical solutions in the sense that y, p ∈ C2(Ω̄) and u ∈ C2(Γ), see Figs. 2(a) and 2(b).
Table 3 summarizes the numerical results for the sequence of arbitrary meshes from Table 1.

In addition to the EOCs for two consecutive meshes also the average and the EOC between
coarsest and finest grid is computed in the rows ∅ and 1

9 . The EOC for E0
u behaves as

predicted by Theorem 4.1, whereas the L2-error of the state E0
y converges with a rate of

1.5 faster than predicted. In Table 4 we present the numerical results for our sequence of
O(h2) irregular meshes. One clearly observes the superconvergence effect for piecewise O(h2)
irregular grids predicted by Theorem 5.4. Again the rate of convergence for E0

u behaves as
expected whereas the EOC for E0

y is nearly quadratic.

Next, let us construct an analytical solution to problem (2.3) in the same way as in the
previous example but with less regular data and hence less regular optimal control. We
choose

ŷ(r, φ) = r3 max(0, cos φ),

ŷ0(r, φ) = (15r2 − 8r) cosφ+ ŷ(r, φ)

and set f := −∆y. Then û(1, φ) = û(φ) = max(0, cos φ) solves (2.3) and the associated
adjoint variable is given by p̂(r, φ) = r3(r − 1) cos φ. Let us note that f = −∆y has to be
understood in the distributional sense, i.e.

〈f, ζ〉 = −
∫

%

8r(x1, x2) cos(φ(x1, x2))ζ(x1, x2) dx1 dx2 −
∫ 1

−1
x2

2ζ(0, x2) dx2 ∀ ζ ∈ C∞
0 (Ω),

where % =
{
(x1, x2) ∈ Ω̄ |x1 > 0

}
.

Fig. 3(a) shows the optimal state y with the optimal boundary control u and Fig. 3(b)
presents the associated adjoint state p. The convergence behaviour of our error functionals is
similar to that observed in the previous example. For arbitrary meshes E0

u converges linearly
as is shown in Table 5. On our sequence of piecewise O(h2) irregular meshes the convergence
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rate of this error functional improves to 1.5 as displayed in Table 6. Again in both cases
the behaviour of E0

y is better than predicted and the convergence rate on our sequence of
piecewise O(h2) irregular meshes is higher than on the sequence of arbitrary meshes.

(a) Optimal state y with boundary control u. (b) Adjoint state p.

Figure 2: Analytical solution of Example 1.

i E0
u EOC E0

y EOC E1
y EOC E0

p EOC E1
p EOC

1 0.277414 - 0.149239 - 0.983167 - 0.073546 - 0.313464 -
2 0.071514 2.624 0.040577 2.521 0.441360 1.550 0.039436 1.207 0.287896 0.165
3 0.070380 0.023 0.023135 0.813 0.407958 0.114 0.012772 1.631 0.175988 0.712
4 0.018892 1.903 0.005006 2.215 0.158316 1.370 0.003133 2.034 0.085166 1.050
5 0.011166 0.760 0.001868 1.424 0.104513 0.600 0.000771 2.024 0.041827 1.027
6 0.006742 0.729 0.000762 1.295 0.081769 0.355 0.000197 1.970 0.021083 0.990
7 0.004180 0.690 0.000341 1.159 0.078123 0.066 0.000050 1.978 0.010630 0.988
8 0.002040 1.035 0.000124 1.456 0.050939 0.617 0.000012 2.013 0.005287 1.008
9 0.000994 1.037 0.000044 1.513 0.033625 0.599 0.000003 2.004 0.002635 1.005
1
9 1.050 1.518 0.629 1.879 0.891
∅ 1.100 1.550 0.659 1.858 0.868

Table 3: Errors and EOCs for arbitrary meshes of Example 1.
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