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Abstract

We present a space-time hierarchical multigrid solution concept for optimisation
problems governed by the time-dependent Stokes system. Discretisation is carried out
with finite elements in space and a one-step θ-scheme in time. It is a key-feature of
our multigrid solver that it shows a convergence behaviour which is independent of
the degrees of freedom of the discrete problem, and that the solver performs robust
with regard to the considered flow configuration. A set of numerical tests confirms this
expectation and shows the efficiency of this approach for various problem settings.

1 Introduction

Active flow control plays a central role in many practical applications such as e.g. control of
crystal growth processes [9, 14, 15], where the flow in the melt has a significant impact on the
quality of the crystal. Optimal control of the flow by electro-magnetic fields and/or boundary
temperatures leads to optimisation problems with PDE constraints, which are frequently
governed by the time-dependent Navier-Stokes system. In the present work, we focus on the
development of the hierarchical solution algorithm and therefore in the first instance consider
flow governed by the time-dependent Stokes equation. The extension of the numerical solution
concept to the fully nonlinear Navier-Stokes system is addressed in [18].

The structure of an optimisation problem with PDE constraints is condensated in the so
called Karush-Kuhn-Tucker system (KKT), which describes the first order necessary optimal-
ity conditions of the underlying optimisation problem. It couples the state equation, which
is the PDE to be controlled, with an adjoint equation and an optimality condition for the
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control input. The KKT system inherits a lot of structure and, as is shown in the present
work, allows to develop numerical solution approaches which satisfy

effort for optimisation

effort for simulation
≤ C, (1.1)

with a constant C > 0 if moderate size. Here, the effort needed for the simulation of the
PDE should be optimal, which typically means that the solver calculates an approximate
solution with O(N) operations, N ∈ N denoting the total number of unknowns for a given
computational mesh – for a nonstationary simulation, in space and time. This can be achieved
e.g. by implicit timestepping methods for the discretisation in time, multigrid methods for
linear systems in space and Newton methods for treating nonlinearities. Requiring (1.1)
then means that a solver for an optimal control problem also should have optimal complexity
O(N). As an example, in many practical applications adjoint-based steepest descent methods
are used to solve optimisation problems, which in general do not satisfy this complexity
requirement.

In the present work, we propose an hierarchical solution algorithm for distributed control
of time-dependent Stokes flow with O(N) complexity. It is based on a space-time multigrid
approach applied to a space-time boundary value problem which is defined through the KKT
system. First numerical results indicate that solving the KKT-system with this approach is
about C ≈ 8−10 times more expensive than the simulation. A related approach can be found,
e.g. in [4] where multigrid methods for the numerical solution of optimal control problems for
parabolic PDEs are developed based on Finite Difference techniques for the discretisation. In
[6] a space-time multigrid method for Hackbusch’s integral equation approach [10] is developed,
compare also [7].

The paper is organised as follows: In Section 2, we describe the discretisation of the flow
control problem and focus on the ingredients needed to design our multigrid solver. The
discretisation is carried out with Finite Elements in space and Finite Differences in time.
In Section 3, we propose the basic algorithms that are necessary to construct our multigrid
solver. Finally, Section 4 is devoted to numerical examples based on the Stokes equation
which we present to confirm the predicted behaviour.

An extension of our solution concept to flow governed by the nonstationary Navier-Stokes
system is presented in [18].

2 Problem formulation and discretisation

We consider the optimal control problem

J(y, u) :=
1

2
||y − z||2L2(Q) +

α

2
||u||2L2(Q) +

γ

2
||y(T )− z(T )||2L2(Ω) −→ min! (2.1)



3

s.t. yt − ν∆y +∇p = u in Q,

−div y = 0 in Q,

y(0, ·) = y0 in Ω,

y = g at Σ,

Here, Ω ⊂ Rd (d = 2, 3) denotes an open bounded domain, Γ := ∂Ω, T > 0 defines the time
horizon, and Q = (0, T ) × Ω denotes the corresponding space-time cylinder with space-time
boundary Σ := (0, T ) × Γ. The function g : Σ → Rd specifies some Dirichlet boundary
conditions, u denotes the control, y the velocity vector, p the pressure and z a given target
velocity field for y. Finally, γ ≥ 0, α > 0 denote constants. For simplicity, we do not assume
any restrictions on the control u.

It is well known that problem (2.1) admits a unique solution (y, u), see e.g. [1, 8, 13], where
also appropriate functional analytic settings for the optimisation problem can be found.

The first order necessary (and here also sufficient) optimality conditions for problem (2.1)
are given by the so called Karush-Kuhn-Tucker system

yt − ν∆y +∇p = u in Q
−div y = 0 in Q
y(t, ·) = g(t, ·) on Γ for all t ∈ [0, T ]
y(0, ·) = y0 in Ω

−λt − ν∆λ +∇ξ = y − z in Q
−div λ = 0 in Q
λ(t, ·) = 0 at Γ for all t ∈ [0, T ]
λ(T ) = γ(y(T )− z(T )) in Ω

u = − 1
α
λ,

where λ denotes the dual velocity and ξ the dual pressure. Eliminating u in the KKT system
yields (omitting boundary conditions at the moment)

yt − ν∆y +∇p = − 1

α
λ, (2.2)

−div y = 0,

y(0, ·) = y0,

−λt − ν∆λ +∇ξ = y − z, (2.3)

−div λ = 0,

λ(T ) = γ(y(T )− z(T )),

where we call (2.2) the primal and (2.3) the dual equation.
In the next step, we semi-discretise in time. As space-time systems are usually large, it is

important to use a timestep as large as possible while guaranteeing accuracy and robustness.
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This requires the usage of implicit time-stepping algorithms (cf. [21]) for stiff problems.
Here, implicit schemes like the Crank-Nicolson or the Fractional-Step-θ scheme are favourable
because they are of 2nd order accurate. However, for the sake of simplicity, we restrict to the
standard 1st order backward Euler scheme as a representative of implicit schemes. Schemes
of higher order and non-equidistant time stepping will be investigated in a forthcoming paper.

Using the implicit Euler scheme for the time discretisation of (2.2) yields

yn+1 − yn

∆t
− ν∆yn+1 +∇pn+1 = − 1

α
λn+1, (2.4)

−div yn+1 = 0,

n = 0, ..., N − 1, where N ∈ N and ∆t := 1/N . To the system (2.2), (2.3) we apply
the discretisation recipe from [3]. For this purpose, we set A := −ν∆, I := id, G := ∇,
D := −div . With x := (y0, p0, y1, p1, ..., yn, pn) this yields

Hx :=




I
∆t

+A G
D
− I

∆t
I
∆t

+A G
D
. . . . . . . . .

− I
∆t

I
∆t

+A G
D







y0

p0

y1

p1

...
yn

pn




=




( I
∆t

+A)y0

0

−λ1

α

0
...

−λn

α

0




,

which is equivalent to (2.4) if y0 is solenoidal. The time-integration scheme for the adjoint
equation is determined by the adjoint H∗ of H defined by

(Hx, λ) = (x,H∗λ),

where λ := (λ0, ξ0, λ1, ξ1, ..., λn, ξn). This yields

H∗λ =


I
∆t

+A G − I
∆t

D
I
∆t

+A G − I
∆t

D
. . . . . . . . .

I
∆t

+A G
D







λ0

ξ0

λ1

ξ1

...
λn

ξn




=




0
0

y1 − z1

0
...

(1 + γ
∆t

)(yn − zn)
0




(2.5)

as the time discretisation scheme for the dual equation (2.3). Here we have used D∗ = G
and A∗ = A. Now let us define wi := (yi, pi, λi, ξi), w := (w0, w1, ...) := (y0, p0, λ0, ξ0,
y1, p1, λ1, ξ1, y2, p2, λ2, ξ2, ...). After shifting the terms with λn+1 and yn in (2.4) and (2.5)
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from the right hand side to the left hand side and mixing the two matrices stemming from H
and H∗, we obtain a semi-discrete system

Gw = f. (2.6)

Here,

G =


I
∆t +A G
D

I
∆t +A G − I

∆t
D

− I
∆t

I
∆t +A G I

α
D
−I I

∆t +A G − I
∆t

D
. . . . . . . . .

− I
∆t

I
∆t +A G I

α
D

−(1 + γ
∆t )I I

∆t +A G
D




and the right-hand-side of the system is given by

f =

(
(I/∆t +A)y0, 0, 0, 0︸ ︷︷ ︸, 0, 0,−z1, 0︸ ︷︷ ︸, ..., 0, 0,−zn−1, 0︸ ︷︷ ︸, 0, 0,−(1 + γ/∆t)zn, 0︸ ︷︷ ︸

)
.

At this point, we discretise in space with a Finite Element approach. The fully discrete
version of the KKT system is defined by replacing the operators I, A, D and G by their
Finite Element versions Ah, Ih, Gh and Dh and by incorporating boundary conditions into
the right hand side f . We finally end up with the linear system

Ghwh = fh (2.7)

with the vector wh := (wh
0 , wh

1 , ...) and wh
i := (yh

i , ph
i , λh

i , ξh
i ). Note that Gh is a block

tridiagonal matrix of the form

Gh =




G0 M̂0

M̃1 G1 M̂1

. . . . . . . . .

M̃N GN




where N ∈ N denotes the number of timesteps, and thus the solver for optimal control
problem reduces to a solver for a sparse block tridiagonal system where the diagonal blocks
Gn correspond to the timesteps of the fully coupled KKT system. This system does not have
to be set up in memory in its complete form: Utilising defect correction algorithms reduces the
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solution process to a sequence of matrix vector multiplications in space and time. A matrix-
vector multiplication of a vector wh with the space-time matrix Gh on the other hand reduces
to N local matrix-vector multiplication sequences, one in each timestep with subsequent M̃n,
Gn and M̂n. So for solving (2.7), it is sufficient to perform matrix-vector multiplications
in space with M̃n, Gn and M̂n – as long as it is possible to design correspondingly suitable
space-time preconditioners to accelerate the iterative solution algorithm. This is explained in
more detail in the next section.

3 The multigrid solver

The KKT-system represents a boundary value problem in the space-time cylinder. It is shown
e.g. in [6] that, assuming sufficient regularity on the state (y, p) and the adjoint state (λ, ξ),
it can equivalently be rewritten as higher-order elliptic equation in the space-time cylinder
for either the state or the adjoint state. This indicates that multigrid could be used to solve
the KKT system as it is an ideal solver for elliptic PDEs.

To formulate the multigrid solver, let Ω1, ..., Ωk for k ∈ N be a conformal hierarchy of
triangulations of the domain Ω, with Ωi+1 stemming from a regular refinement of Ωi (i.e. new
vertices, cells and edges are generated by connecting opposite midpoints of edges). We use
V1, ..., Vk to refer to the different Finite Element spaces in space built upon these meshes.
Furthermore, let T1, ..., Tk be a hierarchy of decompositions of the time interval [0, T ], where
each Ti+1 stems from Ti by bisecting each time interval. For each i, the above discretisation
in space and time yields a solution space Wi = Vi × Ti and a space-time system

Giwi = f i, i = 1, ..., k

of the form (2.7) with fk = fh, wk = wh and Gk = Gh identifying the discrete right hand
side, the solution and system operator on the finest level, respectively.

To describe the multigrid solver, we need prolongation and restriction operators. Let
us denote by I : Wi → Wi+1 the prolongation and by R : Wi → Wi−1 the corresponding
restriction. Furthermore, let S : Wi → Wi define a smoothing operator (see the following
sections for a definiton of these operators) and let us denote with NSMpre, NSMpost ∈ N
the numbers of pre- and postsmoothing steps, respectively.

This algorithm implements a basic multigrid V-cycle; for variations of this algorithm which
use the W- or F-cycle, see [2, 11, 24].

3.1 Smoothing operators

The special matrix structure of the global space-time matrix (2.7) allows to define iterative
smoothing operators for this algorithm. Note that every smoother usually can also be used as
coarse grid solver to solve the equation (Gk)−1f in the first step of the algorithm by replacing
the fixed number of iterations by a terminating condition depending on the residuum.

We introduce two basic iterative block smoothing algorithms. Let ω ∈ R be a damping
parameter. Then, the special matrix structure suggests the use of a Block-Jacobi method of
the following form, see Algorithm 2.
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Algorithm 1 Space-time multigrid

function SpaceTimeMultigrid(w;f ;k)
if (k = 1) then

return (Gk)−1f . coarse grid solver
end if
while (not converged) do

w ← S(Gk, w, f, NSMpre) . presmoothing
d ← R(f −Gkw) . restricion of the defect
w ← w + I(SpaceTimeMultigrid(0; d; k − 1)) . coarse grid correction
w ← S(Gk, w, f, NSMpost) . postsmoothing

end while
return w . solution

end function

Algorithm 2 Space-time Block-Jacobi smoother

function JacSmoother(Gk,w,f ,NSM)
for j = 0 to NSM do

d ← f −Gkw . Defect
for i = 0 to N do

di ← (Gk
i )
−1di . Block-Jacobi preconditioning

end for
w ← w + ωd

end for
return w . Solution

end function

Note that the key of the Block-Jacobi smoother lies in solving the system Gk
i ci = di.

This step means to solve the fully coupled KKT system in one time step and thus reduces
the full space time algorithm to an algorithm in space; time coupling is controlled by the
defect correction. One step of the Block-Jacobi algorithm therefore corresponds to one sweep
through the whole time domain.

Similar to a Block-Jacobi algorithm, it is possible to design a forward-backward block
SOR algorithm for smoothing, see Algorithm 3. (For the sake of notation, we define x−1 :=
xN+1 := 0, M̃0 := M̂N := 0.) Again, let ω ∈ R be a damping parameter; for ω = 1 the
algorithm reduces to a standard block Gauß-Seidel algorithm.

In contrast to Block-Jacobi, this algorithm respects the solutions backward and forward
in time, so a stronger time coupling is reached without more additional costs, just some
multiplications with a mass matrix. Like the Block-Jacobi method, this smoother reduces the
whole space-time iteration to solving the spatial system Gk

i ci = di in each time step.
Note that our proposed multigrid is an iterative algorithm based on defect correction

which, as we already mentioned, can be implemented without setting up the complete space-
time matrix in memory. Both proposed smoothers reduce their space-time subproblems to a
sequence of problems in space as well. The complete algorithm can therefore be implemented
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Algorithm 3 Forward-Backward Block-SOR smoother

function FBSORSmoother(Gk,w,f ,NSM)
r ← f −Gkw . Defect
x ← 0 . Initial correction vector
for istep = 1 to NSM do

xold ← x
for i = N downto 0 do . Backward in time

di ← ri − M̃ix
old
i−1 −Gk

i x
old
i − M̂i

(
ωxi+1 + (1− ω)xold

i+1

)
xi ← xold

i + (Gk
i )
−1di

end for
xold ← x
for i = 0 to N do . Forward in time

di ← ri − M̃i

(
ωxi−1 + (1− ω)xold

i−1

)−Gk
i x

old
i − M̂ix

old
i+1

xi ← xold
i + (Gk

i )
−1di

end for
end for
w ← w + x . Correction
return w . Solution

end function

without the necessity of setting up and saving the whole space time matrix in memory.
Solving a system of the form Gk

i ci = di in space looks more like a standard task. This
system can be solved e.g. with direct solvers as long as the number of unknowns in space is
not too large. For larger systems however, sophisticated techniques from computational fluid
mechanics must be used. The system is a coupled saddle point problem for primal and dual
velocity and pressure. Such problems can be solved by invoking a special multigrid method
in space.

3.2 Coupled multigrid solvers in space

As mentioned above, in each time step a system of the form Gk
i ci = di must be solved, e.g.

with a multigrid solver in space. Since the used prolongation and restriction operators based
on the applied Finite Element spaces are standard and well known (see e.g. [2, 11, 24, 5, 21]),
we restrict here to a short introduction into the pressure Schur complement (‘PSC’) approach
for CFD problems (see also [20, 22, 23]) which is used as a smoother, acting simultaneously on
the primal and dual variables. A complete overview and in-depth description of the operators
and smoothers will be given in [17].

To formulate the corresponding algorithm, we first introduce some notations. Let iel ∈ N
denote the number of an arbitrary element in the mesh. On this mesh, a linear system Ax = b
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is to be solved; in our case, this system can be written in the form




Aprimal Mdual B 0
Mprimal Adual 0 B
BT 0 0 0
0 BT 0 0







y
λ
p
ξ


 =




by

bλ

bp

bξ




which is a typical saddle point problem for primal and dual variables, with Aprimal, Adual ve-
locity submatrices, Mprimal and Mdual coupling matrices between the primal and dual velocity
and B and BT clustering the gradient/divergence matrices.

Now let I(iel) identify a list of all degrees of freedom that can be found on element iel,
containing numbers for the primal and dual velocity vectors in all spatial dimensions and
the primal and dual pressure. With this index set, we define AI(iel) to be a (rectangular)
matrix containing only those rows from A identified by the index set I(iel). In the same way,
let xI(iel) and bI(iel) define the subvectors of x and b containing only the entries identified by
I(iel). Furthermore we define AI(iel),I(iel) to be the (square) matrix that stems from extracting
only those rows and columns from A identified by I(iel).

Algorithm 4 PSC-Smoother for smoothing an approximate solution to Ax = b

function PSCSmoother(A,x,b,NSM)
for ism = 1,NSM do . NSM smoothing sweeps

for iel = 1 to NEL do . Loop over the elements
xI(iel) ← xI(iel) + ωC−1

iel (bI(iel) − AI(iel)x) . Local Correction
end for

end for
return x . Solution

end function

This notation allows to formulate the basic PSC smoother in space, providing ω ∈ R to
be a damping parameter, see Algorithm 4. Of course, this formulation is not yet complete, as
it is lacking a proper definition of the local preconditioner C−1

iel which is a small square matrix
with as many unknowns as indices in I(iel).

There are two basic approaches for this preconditioner. The first approach, which we enti-
tle by PSCSmootherFull, results in the simple choice of Ciel := AI(iel),I(iel) and calculating
C−1

iel by invoking a LU decomposition, e.g. with the LAPACK package [19]. That approach
is rather robust and still feasible as the system is small; for the Q̃1/Q0 space that is used in
our discretisation (see [21]), the system has 18 unknowns.

The second approach, which we call PSCSmootherDiag, results in taking a different
subset of the matrix A for forming CI(iel). To describe this approach, we define

Â :=




diag(Aprimal) 0 B 0
0 diag(Adual) 0 B
BT 0 0 0
0 BT 0 0






10

where diag(·) refers to the operator taking only the diagonal of a given matrix. The local
preconditioner can then be formulated as Ciel := ÂI(iel),I(iel). Note that this matrix decouples

the primal variables from the dual variables, so that applying Â−1
I(iel),I(iel) decomposes into two

independent subproblems for the primal variables (y, p) and the dual variables (λ, ξ). The
special feature that the velocity blocks are diagonal allows to efficiently use Schur complement
techniques by what this smoother is numerically cheaper than PSCSmootherFull. Nev-
ertheless, the disadvantage of this smoother is the reduced stability. We note that the PSC
approach in general also allows to increase the stability by taking larger local systems. Such
an approach was carried out e.g. in [20] where the degrees of freedom of multiple adjacent
elements were clustered together to form a linear subsystem. For our numerical tests however,
such an approach was not necessary. Most of the numerical tests in the later sections were
carried out using PSCSmootherDiag except where noted.

3.3 Prolongation/Restriction

Our discretisation is based on Finite Differences in time and Finite Elements in space. The op-
erators for exchanging solutions and right hand side vectors between the different levels there-
fore decompose into a time prolongation/restriction [12] and space prolongation/restriction.
Let k ∈ N be the space level. Then, we denote by IS : Vk → Vk+1 the prolongation in space
and RS : Vk+1 → Vk the corresponding restriction. The prolongation for a space-time vector
wk = (wk

0 , ..., w
k
N) can be written as:

P (wk) :=

(
PS(wk

0),
PS(wk

0) + PS(wk
1)

2
, PS(wk

1),
PS(wk

1) + PS(wk
2)

2
, ..., PS(wk

N)

)

and is a composition of the usual Finite Difference prolongation in time and Finite Element
prolongation in space. The corresponding restriction for a defect vector dk = (dk

0, ..., d
k
2N)

follows directly:

R(dk) :=

(
RS(

1

4
(2dk

0 + dk
1)), RS(

1

4
(dk

1 + 2dk
2 + dk

3)), ..., RS(
1

4
(dk

2N−1 + 2dk
2N))

)

Our numerical tests in Section 4 are carried out with the nonconforming Q̃1/Q0 Finite Element
pair in space. For these elements, we use the standard prolongation/restriction operators
which can be found e.g. in [16, 21].

4 Numerical examples

In this section we numerically analyse the proposed multigrid method. We start with exam-
ining the dependence of the convergence behaviour on the two smoothers suggested above.

Basic tests: Convergence properties of the solver

For our investigations, we set up a test example with an analytical solution. As domain,
consider a unit square Ω = [0, 1]2 in R2 on the time domain [0, T ] with T = 1. The optimal
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control problem reads:

J(y, u) :=
1

2
||y − z||2L2(Q) +

α

2
||u||2L2(Q) +

γ

2
||y(T )− z(T )||2L2(Ω) −→ min! (4.1)

s.t. yt − ν∆y +∇p = f + u in Ω

−div y = 0 in Ω

y(0, ·) = y0 in Ω

y(·, 0) = 0 at Γ := ∂Ω

with a slight modification in the right hand side of the Stokes equation that allows us to set
up an analytical solution. The corresponding KKT system reads after the elimination of u:

yt − ν∆y +∇p + 1
α
λ = f in Ω

−div y = 0 in Ω
y(t, ·) = g(t, ·) at Γ for all t ∈ [0, T ]
y(0, ·) = 0 in Ω

−λt − ν∆λ +∇ξ − y = −z in Ω
−div λ = 0 in Ω
λ(t, ·) = 0 at Γ for all t ∈ [0, T ]

λ(T )− γy(T ) = −γz(T ) in Ω

We choose γ = 0, α = 0.01, ν = 1. As analytical solution, we choose for the primal velocity
ȳ := ȳ(x, y, t) := (y1, y2) · s(t) with y1 := y1(x1, x2, t) := sin2(πx1) sin(πx2) cos(πx2), y2 :=
y2(x1, x2, t) := − sin2(πx2) sin(πx1) cos(πx1) and p̄ := p̄(x1, x2, t) := sin(2πx1) sin(2πx2)s(t).
Here we use s(t) := 1− 4(t− 1

2
)2. As dual velocity/pressure, we use the same as the primal,

i.e. λ̄ := ȳ, ξ̄ := p̄. This choice of primal and dual solution leads to a right hand side
f = ȳt −∆ȳ +∇p̄ + 100λ̄ and a target flow z = λ̄t + ȳ + ∆λ̄−∇ξ̄. Figure 4.1 depicts y1 at
time t = 0.5.

∆t 1/4 1/8 1/16 1/32 1/64
h 1/4 1/8 1/16 1/32 1/64

||y − ȳ||L2(Q) 2.69E-02 1.16E-02 6.14E-03 3.34E-03 1.76E-03
||p− p̄||L2(Q) 2.08E-01 1.16E-01 5.90E-02 3.00E-02 1.51E-02
||λ− λ̄||L2(Q) 2.49E-02 9.12E-03 4.61E-03 2.62E-03 1.43E-03
||ξ − ξ̄|L2(Q) 1.98E-01 1.11E-01 5.79E-02 2.95E-02 1.49E-02

Table 4.1: L2 error reduction in the different velocity/pressure components upon refinement
in space and time, for the test problem with the analytical solution.

The next step is to set up a mesh in space and time. We choose as coarse grid the once
refined unit cube in space-time, i.e. ∆t = h = 1/2. The space-time multigrid approach
solves the system up to a relative residual of εOptMG = 10−10, the coarse grid solver solves
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∆t 1/4 1/16 1/64 1/256
h 1/4 1/8 1/16 1/32

||y − ȳ||L2(Q) 2.69E-02 8.68E-03 2.41E-03 6.16E-04
||p− p̄||L2(Q) 2.08E-01 1.18E-01 5.91E-02 2.94E-02
||λ− λ̄||L2(Q) 2.49E-02 7.77E-03 2.19E-03 5.52E-04
||ξ − ξ̄|L2(Q) 1.98E-01 1.14E-01 5.83E-02 2.92E-02

Table 4.2: L2 error reduction in the different velocity/pressure components with 2 refinement
steps in time upon one refinement step in space, for the test problem with the analytical
solution.

exactly. As smoother, we use only postsmoothing with JacSmoother(ω = 0.7,NSM=2)
and FBSORSmoother(ω = 1.0,NSM=1). With this setting, the effort for one multigrid
iteration is roughly the same for both types of smoothers.

The discretisation in space is carried out with the nonconforming Rannacher-Turek ele-
ment Q̃1 for the velocity and the piecewise constant element Q0 for the pressure. Discretisation
and the solution of the linear system Gk

i ci = di in each timestep is realised with the described
modified flow solver based on the FeatFlow package (http://www.featflow.de). A multi-
grid solver in space solves the system up to a relative residual of εSpaceMG = 10−5 using a
BiCGStab smoother with PSC preconditioner in accordance to the algorithm described in
section 3.2. We note here that the solver behaviour is relatively insensitive to the stopping
criterion εSpaceMG.

Table 4.1 depicts the L2-error over the space-time cylinder in the primal and dual velocity

Figure 4.1: The analytical test solution y1 at time t = 0.5.
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JACSmoother FBSORSmoother
∆t h #DOF #ite ρ #ite ρ
1/4 1/4 960 10 9.18E-02 3 4.76E-05
1/8 1/8 6336 10 9.27E-02 3 1.03E-04

1/16 1/16 45696 10 8.65E-02 3 1.04E-04
1/32 1/32 346368 10 8.46E-02 3 2.91E-04
1/64 1/64 3244800 10 9.64E-02 3 2.93E-04
1/4 1/8 2112 10 8.65E-02 3 3.89E-05
1/8 1/16 24192 10 8.51E-02 3 1.04E-04

1/16 1/32 178432 10 8.42E-02 3 2.05E-04
1/32 1/64 1647360 10 8.40E-02 3 2.91E-04
1/4 1/16 8064 10 8.45E-02 3 3.91E-05
1/8 1/32 94464 10 8.41E-02 3 1.04E-04

1/16 1/64 848640 10 8.39E-02 3 2.04E-04
1/32 1/128 5440512 10 8.48E-02 3 2.96E-04
1/4 1/32 31488 10 8.37E-02 3 4.13E-05
1/8 1/64 449280 10 8.38E-02 3 1.04E-04

1/16 1/128 2802688 10 8.47E-02 3 2.04E-04

Table 4.3: Convergence rates of the time and the space-time multigrid for the two smoothers.
#DOF indicates the number of degrees of freedom of the complete space-time system.

as well as in the primal and dual pressure upon refinement of the space-time mesh. The error
of all these four solution components reduce nicely with a factor of at least 2 on simultaneous
decreasing of h and ∆t; a higher factor for the error reduction in the velocity cannot be
expected due to the first order discretisation in time. This behaviour changes in Table 4.2
where the time resolution is twice increased per refinement in space. Here, the L2 error
reduction factor of 4 for the velocity and 2 for the pressure can be seen, which is the expected
behaviour for the Stokes equation.

We continue with the numerical analysis of the multigrid solver itself. Table 4.3 lists
the number of iterations as well as the convergence rate of the multigrid solver for different
settings for ∆t and h on the finest space-time mesh.

The convergence rates are obviously independent of the space-time level and do not dete-
riorate if ∆t is much larger than the space resolution h. This behaviour is of course highly
favourable, as higher order implicit timestepping methods are planned to be used in future to
reduce the number of timesteps. The forward-backward block SOR smoother shows a much
better convergence behaviour than the Block-Jacobi method as expected from the additional
time coupling.

Numerical effort: Optimisation vs. Simulation

As already indicated in the introduction, a key point in the design of solvers for optimal control
problems is the numerical effort of the algorithm in comparison to a ’similar’ simulation:
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Starting from an efficient flow solver that solves a CFD problem in reasonable time, an
optimisation algorithm using these flow solver techniques is intended to do the optimisation
with a work amount which is a (preferably small) multiple of the costs that were necessary
for one simulation. It is important that this factor is independent of the problem size, thus
making the optimisation approach feasible also for large problems.

To illustrate the amount of additional effort of the optimisation algorithm in comparison
to a simulation, we define the following test configurations:

1.) We solve a distributed control problem for the Stokes equation up to a relative residual
of εOptMG = 10−10. In each timestep of the smoother, the linear system in space is solved to a
relative residuum of εSpaceMG = 10−5. The settings utilised here reflect the configuration that
was used to calculate the values in Table 4.3.

2.) We solve a Stokes flow of the form

yt −∆y +∇p = f in Q (4.2)

−div y = 0 in Q

y = 0 at Σ

y(·, 0) = y0 := 0 in Ω

with f being the same as in the case of the optimisation. Each timestep was solved up to a
relative residuum of εSpaceMG = 10−10 with a multigrid solver in space using 4 postsmoothing
steps of a ‘diagonal’ PSC smoother.

Based on this configuration, we now define the performance measure

µ :=
time for the optimisation solver

time for the simulation solver

and use this to compare the execution time, see Table 4.4. Using the Block-Jacobi smoother,
the optimisation algorithm is about 20−25 times more expensive, while the forward-backward
block SOR algorithm reduces the costs to about 7 − 9 times the costs of the simulation,
independent of the problem size. Of course, the value of the performance measure is largely
influenced by the setting of the linear solver in each time step of the optimisation algorithm.
Another reasonable setting would be to reduce the stopping criterion of the spatial solver
in each time step to εSpaceMG = 10−1 instead of εSpaceMG = 10−5, so the ’inner’ solvers are
intended to gain one digit per iteration, while the ’outer’ solver solves for 10 digits. As can
be seen in the Table, this modification is indeed possible and reduces e.g. the factor µ for the
FBSORSmoother on reasonable refinement levels by its half. One can also see that this
modification has only a minor impact to the global space-time multigrid solver: The number
of iterations stays nearly constant.

Flow Control for a Driven Cavity configuration

We proceed with an optimal control problem in a nonstationary case without a given analytical
solution. For that purpose, we set up a destination flow by using the Driven Cavity problem:
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εSpaceMG = 10−5 εSpaceMG = 10−1

JacSmoother FBSORSm. JacSmoother FBSORSm.
∆t h #iteOptMG µ #iteOptMG µ #iteOptMG µ #iteOptMG µ
1/4 1/4 10 16 3 7 10 19 3 8
1/8 1/8 10 23 3 9 10 23 4 10

1/16 1/16 10 22 3 9 10 20 4 7
1/32 1/32 10 20 3 8 10 10 4 5
1/64 1/64 10 25 3 8 10 9 4 4

Table 4.4: Number of iterations of the space-time multigrid and quotient of the CPU time of
the optimisation algorithm against a simulation for the different smoothers.

For (x1, x2) ∈ Γ, we define y(x1, 1, t) := (1, 0) and y(x1, x2, t) := (0, 0) for all (x1, x2) ∈ Γ with
x2 6= 1. By simulating the flow for t ∈ [0, 1] using the nonstationary Stokes equation (4.2)
with f := 0 and ν = 1, we generate a flow z which is to be used as target flow in the above
optimisation setting.

The optimal control problem aims now at simultaneously tracking this flow and reducing
fluctuations introduced by boundary conditions. We set the right hand side f := 0 and
y(x1, x2, t) := (0, 0) for all (x1, x2) ∈ Γ with x2 6= 1. The boundary condition at x2 = 1 is now
defined by y(x1, 1, t) := (1+ 1

2
cos(4πt−π), 0) which introduces a fluctuation. The calculation

itself is carried out with a viscosity of ν = 1/100.

εSpaceMG = 10−10 εSpaceMG = 10−5 εSpaceMG = 10−2 εSpaceMG = 10−1

∆t h #MG time #MG time #MG time #MG time
1/4 1/4 10 6.1 10 5.4 10 4.9 10 4.9
1/8 1/8 12 24.2 12 17.5 12 14.5 12 14.4

1/16 1/16 11 102.5 11 58.5 11 37.1 11 37.3
1/32 1/32 8 528.8 8 219.7 8 111.8 8 113.1
1/64 1/64 7 2914.5 7 1241.0 7 659.0 7 667.8

Table 4.5: Number of iterations and CPU time for different space and time resolutions and
different stopping criteria of the multigrid in space; Driven cavity configuration.

Figure 4.2 to 4.4 illustrate the target flow as well as the uncontrolled and the controlled
flow at t = 0.5 and t = 0.75. Figure 4.4 visualises the reference flow. From Figure 4.3 one can
see, that the optimiser successfully calculated a controlled flow that shows only minor visual
difference to the reference flow.

Table 4.5 and 4.6 show the convergence rates and number of iterations for different mesh
sizes in space and time as well as for different stopping criteria of the inner linear solver. The
smoother used in these tests was FBSORSmoother with 1 postsmoothing step, damped by
ω = 0.9. From Table 4.5 one can see that the convergence of the global solver barely depends
on the convergence criterion of the linear solver in space. The solver always converges with the
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Figure 4.2: Uncontrolled Stokes flow at t = 0.5 (left) and t = 0.75 (right)

Figure 4.3: Controlled Stokes flow at t = 0.5 (left) and t = 0.75 (right)

Figure 4.4: Target Stokes flow at t = 0.5.
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FBSORSmoother JacSmoother
(ω = 0.9) (ω = 0.7)

∆t h #ite ρ #ite ρ
1/4 1/4 2 2.46E-06 23 3.54E-01
1/8 1/8 12 1.45E-01 21 3.30E-01

1/16 1/16 11 1.10E-01 21 3.28E-01
1/32 1/32 8 5.01E-02 22 3.48E-01
1/64 1/64 7 3.05E-02 23 3.60E-01
1/4 1/8 9 7.58E-02 22 3.48E-01
1/8 1/16 12 1.33E-01 25 3.85E-01

1/16 1/32 10 9.47E-02 21 3.32E-01
1/32 1/64 8 4.55E-02 22 3.42E-01
1/4 1/16 9 6.78E-02 22 3.42E-01
1/8 1/32 11 1.17E-01 22 3.50E-01

1/16 1/64 10 8.67E-02 20 3.14E-01
1/4 1/32 9 6.04E-02 21 3.22E-01
1/8 1/64 11 1.08E-01 21 3.30E-01

Table 4.6: Convergence rate and number of iterations for different space and time resolutions
for the Driven cavity configuration.

same number of iterations1, only the absolute CPU time is different. This clearly indicates
the robustness of our space-time MG solver. In the following numerical tests we choose
εSpaceMG = 10−2.

Table 4.6 now depicts the convergence rates for FBSORSmoother(ω = 0.9, NSM = 1)
JacSmoother(ω = 0.7, NSM = 2) – so one multigrid iteration with Block-Jacobi smoother
is roughly as expensive as one iteration with our forward-backward block SOR smoother.
Similar to the case of the test problem with the prescribed analytical solution above, the
convergence rates remain constant when refining the mesh simultaneously in space and time,
clearly visible when FBSORSmoother is used. The convergence rates are slightly worse
than in the analytical test problem but still in most cases < 0.1. When reducing h, the
convergence rates of the solver slowly reduce (except for very coarse grids), thus a finer
spatial mesh leads to better convergence rates of the solver. This behaviour is independent
of whether ∆t is changed with h or kept fixed which was also observed in [6] for the case of
the optimal control of a heat equation with a space-time multigrid solver.

Optimisation in a complex spatial domain

In the last test we want to exploit the flexibility of Finite Elements to apply optimal control
onto a more complex problem of ’flow around cylinder’ type. In this test case, our domain as

1We note that the CPU times of εSpaceMG = 10−1 were a little bit higher than those of εSpaceMG = 10−2

because of a slightly worse behaviour of the space-time coarse grid solver. This had no influence to the overall
iteration.
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defined as a rectangle without an inner cylinder: Ω = [0, 2.2]× [0.0.41]\Br(0.2, 0.2), r = 0.05.
On the left edge of the domain Γ4 we induce an oscillating parabolic inflow profile with
maximum velocity Umax = Umax(t) = 0.3(1 + sin

(
(t− 1)π/2

)
. On the right edge Γ2 we define

natural boundary conditions and the boundary conditions at the circle are defined as no-slip.
As problem, we consider again the Stokes problem with a viscosity parameter ν = 1/250
and a time horizon of [0, T ] = [0, 10]. The target flow z is generated by a simulation of
the corresponding Navier–Stokes equation, also with ν = 1/250. A proper optimisation will
therefore ’emulate’ the effect of the nonlinear term y∇y with the right hand side and produce
the same flow field as in the Navier–Stokes case.

FBSORSmoother(ω = 0.9)
∆t space-lv. #ite ρ µ ||y − z||L2(Q)

0.625 2 3 2.13E-02 11.84 1.19E-02
0.3125 3 4 3.43E-02 11.00 9.72E-03

0.15625 4 5 7.17E-02 10.70 6.57E-03
0.078125 5 6 9.32E-02 7.99 3.73E-03

0.625 3 4 2.51E-02 30.47 9.85E-03
0.3125 4 4 3.91E-02 20.39 6.65E-03

0.15625 5 5 6.71E-02 11.83 3.52E-03

Table 4.7: Convergence rate ρ and number of iterations #ite of the space-time multigrid as
well as the space multigrid for the ’flow around cylinder’ problem.

The discrete KKT system in this test is solved up to a relative residual of 10−5 utilising
a V-cycle with 1 postsmoothing step with FBSORSmoother. The spatial solver in each
time step is again a multigrid algorithm that solves up to a relative residual of 10−1 and uses
a PSC like smoother as described above.

In Figure 4.5, we entitle the coarse grid by ’space level 1’, each higher space level is
generated by regular refinement. Figure 4.6 shows the target and uncontrolled flow, Figure
4.7 the controlled flow field which can hardly be distinguished from the destination flow field
in Figure 4.6. Figure 4.8 finally visualises the control u; it can be seen that, as expected,
the nonlinearity is most active around the object while there is no influence in the region far
behind where the flow turns to Poiseuille flow. Table 4.7 depicts the results of the convergence
of the multigrid solver for different levels of refinement in space and time. The full space-time
multigrid solver works well for all refinement levels in space and time, the error ||y − z||L2(Q)

to the target flow reduces with increasing level. The column entitled by µ again shows the
additional effort of the optimisation in comparison to a simulation. For the simulation, we used
in each timestep a multigrid solver with 4 smoothing steps of the ’diagonal’ PSC smoother,
reducing the residuum in each timestep by 10−5. As can be seen, the additional effort of the
optimisation is roughly 10 − 12 times the effort for the simulation on reasonable refinement
levels.
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Figure 4.5: Domain and basic coarse mesh, Flow around Cylinder configuration

Figure 4.6: Velocity field of the (Navier–Stokes) target flow z (left) and the uncontrolled
Stokes flow at t = 10 (right).

Figure 4.7: Controlled Stokes flow; primal velocity field at t = 10.0.
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Figure 4.8: Controlled Stokes flow; control u at t = 10.0.

5 Conclusions

Optimal control of the time dependent Stokes equation can be carried out with iterative
solution methods that act on the whole space-time cylinder. Because of the special structure
of the space-time matrix, matrix-vector multiplications and preconditioners can be reduced
to local operations in space, thus avoiding the necessity of storing the whole space-time
matrix in memory. For preconditioning in space, the Pressure-Schur-Complement concept
implemented in the FeatFlow package (http://www.featflow.de) can be extended to a
coupled primal-dual problem and leads in combination with block-oriented solvers to efficient
space-time preconditioners. Using such preconditioners as smoothers in a multigrid algorithm
allows to formulate a solver with optimal efficiency, as the convergence rates are independent
of the refinement of the space-time mesh. This is one of the key ingredients in the design
of an optimisation-type solver where the effort for solving an optimisation problem is only a
small multiple of the effort necessary for the simulation of a flow problem.

This article focuses on the basic ingredients of such a multigrid solver and illustrates the
feasibility using a simple Stokes equation. The realisation of this solver as preconditioner in a
nonlinear Newton-type solver for the full Navier–Stokes equations and its numerical analysis
in combination with higher order time-stepping schemes will be analysed in [18, 17].
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