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Abstract
We present a space-time hierarchical solution concept for optimization problems

governed by the time-dependent Navier–Stokes system. Discretisation is carried out
with finite elements in space and a one-step-θ-scheme in time. By combining a Newton
solver for the treatment of the nonlinearity with a space-time multigrid solver for linear
subproblems, we obtain a robust solver whose convergence behaviour is independent of
the number of unknowns of the discrete problem and robust with regard to the considered
flow configuration. A set of numerical examples analyses the solver behaviour for various
problem settings with respect to the efficiency of this approach.

1 Introduction

In a recent publication [11] we presented a method to solve a fully nonstationary optimal
control problem based on the Stokes equation with a space-time multigrid solver. In this
paper we show, that it is possible to extend this concept to a the active control of the fully
nonstationary Navier–Stokes equation. Such problems appear in many practical applications
like in crystal growth processes [7, 12, 13], where the flow in the melt has a significant impact
on the quality of the crystal.

The underlying mathematical formulation is a minimisation problem with PDE con-
straints. Its first order necessary optimality conditions, the so called Karush-Kuhn-Tucker
(KKT)-system, couples the state equation of the PDE to be controlled by an adjoint and a
dual equation for the control input. By exploiting the special structure of the system, we
were able in [11] to develop a hierarchical solution approach for the optimisation of the Stokes
equation which satisfies

effort for optimisation

effort for simulation
≤ C, (1.1)
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for a constant C > 0 of moderate size. Numerical tests showed a factor of C ≈ 8 − 11,
independent of the refinement level. Here, the effort for the simulation is assumed to be
optimal in that sense, that a solver needs about O(N) operations, N ∈ N denoting the total
number of unknowns for a given computational mesh in space and time. This can be achieved
by utilising appropriate multigrid techniques for the linear subproblems in space. Because of
(1.1), the developed solution approach has also complexity O(N). This is in contrast to the
adjoint-based steepest descent methods used to solve optimisation problems in many practical
applications, which in general do not satisfy this complexity requirement.

In the present work, we propose an extension to this approach for the distributed control
of time-dependent Navier–Stokes flow with O(N) complexity. It is based on a space-time
Newton method combined with a space-time multigrid approach. This combination is applied
to the space-time boundary value problem stemming from the KKT system. First numerical
results indicate that solving the KKT-system with this approach is about C ≈ 10− 30 times
more expensive than the simulation. A related approach can be found, e.g. in [3] where
multigrid methods for the numerical solution of optimal control problems for parabolic PDEs
are developed based on Finite Difference techniques for the discretisation. In [5] a space-time
multigrid method for Hackbusch’s integral equation approach [8] is developed, compare also
[6].

The paper is organised as follows: In Section 2 we describe the discretisation of a flow
control problem and give an introduction to the ingredients needed to design a multigrid
solver. The discretisation is carried out with finite elements in space and finite differences
in time. In Section 3 we propose the basic algorithms that are necessary to construct our
multigrid solver for linear and a Newton solver for nonlinear problems. Finally, Section 4 is
devoted to numerical examples which we present to confirm the predicted behaviour.

2 Problem formulation and discretisation

We consider the optimal control problem

J(y, u) :=
1

2
||y − z||2L2(Q) +

α

2
||u||2L2(Q) +

γ

2
||y(T )− z(T )||2L2(Ω) −→ min! (2.1)

s.t. yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

Here, Ω ⊂ Rd (d = 2, 3) denotes an open bounded domain, Γ := ∂Ω, T > 0 defines the time
horizon, and Q = (0, T ) × Ω denotes the corresponding space-time cylinder with space-time
boundary Σ := (0, T ) × Γ. The function g : Σ → Rd specifies some Dirichlet boundary
conditions, u denotes the control, y the velocity vector, p the pressure and z a given target
velocity field for y. Finally, γ ≥ 0, α > 0 denote constants.

The first order necessary optimality conditions are then given through the so called
Karush-Kuhn-Tucker system



3

yt − ν∆y + y∇y +∇p = u in Q
−div y = 0 in Q
y(t, ·) = g(t, ·) on Γ for all t ∈ [0, T ]
y(0, ·) = y0 in Ω

−λt − ν∆λ− y∇λ + (∇y)tλ +∇ξ = y − z in Q
−div λ = 0 in Q
λ(t, ·) = 0 at Γ for all t ∈ [0, T ]
λ(T ) = γ(y(T )− z(T )) in Ω

u = − 1
α
λ,

where λ denotes the dual velocity and ξ the dual pressure. We eliminate u in the KKT system,
and (ignoring boundary conditions at the moment), we obtain

yt − ν∆y + y∇y +∇p = − 1

α
λ, (2.2)

−div y = 0,

y(0, ·) = y0,

−λt − ν∆λ− y∇λ + (∇y)tλ +∇ξ = y − z, (2.3)

−div λ = 0,

λ(T ) = γ(y(T )− z(T )).

where we call (2.2) the primal and (2.3) the dual equation.

Coupled discretisation in time

In the next step, we semi-discretise in time. For stability reasons (cf. [18]) we prefer implicit
time stepping techniques that allow a large timestep and therefore lead to less unknowns in
time. For the sake of simplicity, we restrict to the standard 1st order backward Euler scheme
as a representative of implicit schemes. Schemes of higher order and non-equidistant time
stepping will be investigated in a forthcoming paper. For the time discretisation of (2.2) this
yields

yn+1 − yn

∆t
− ν∆yn+1 + yn+1∇yn+1 +∇pn+1 = − 1

α
λn+1 (2.4)

−div yn+1 = 0

where N ∈ N, n = 0, ..., N − 1 and ∆t = 1/N . To (2.2), (2.3) we apply the discretisation
recipe from [2]. For this purpose, we define the following operators: Av := −ν∆v, Iv := v,
Gq := ∇q, Dv := −div v, Kiv := K(yi)v := (yi∇)v, Kiv := K(yi)v := (v∇)yi and Civ :=
C(yi)v := Av +K(yi)v for all velocity vectors v and and pressure functions q in space.
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With x := (y0, p0, y1, p1, ..., yn, pn), this yields the nonlinear system of the primal equation,

Hx := H(x)x =


I
∆t

+ C0 G
D
− I

∆t
I
∆t

+ C1 G
D
. . . . . . . . .

− I
∆t

I
∆t

+ Cn G
D







y0

p0

y1

p1
...

yn

pn




=




( I
∆t

+ C0)y
0

0

−λ1

α

0
...

−λn

α

0




, (2.5)

which is equivalent to (2.4) if y0 is solenoidal. In the second step, we focus on the Fréchet
derivative of the Navier–Stokes equation. For a vector (ȳ, p̄) the Fréchet derivative in (y, p)
reads

F(y, p)

(
ȳ
p̄

)
:=

(
ȳt − ν∆ȳ + (ȳ∇y + y∇ȳ) +∇p̄

−div ȳ

)
.

We again carry out the time discretisation as above. For vectors x := (y0, p0, y1, p1, ..., yn, pn)
and x̄ := (ȳ0, p̄0, ȳ1, p̄1, ..., ȳn, p̄n) this results in the scheme

Mx̄ := M(x)x̄ =




I
∆t

+N0 G
D
− I

∆t
I
∆t

+N1 G
D
. . . . . . . . .

− I
∆t

I
∆t

+Nn G
D







ȳ0

p̄0

ȳ1

p̄1
...

ȳn

p̄n




(2.6)

with the additional operator Ni := N (yi) := A + K(yi) + K(yi). The time discretisation of
the dual equation corresponding to H is now defined as the adjoint M∗ of M,

(Mx̄, λ) = (x̄,M∗λ),

where λ := (λ0, ξ0, λ1, ξ1, ..., λn, ξn). With N ∗
i := N ∗(yi) = A − K(yi) + K∗(yi), K∗(yi)v =

(∇y)tv for all velocity vectors v, this reads

M∗λ = M∗(x)λ =


I
∆t

+N ∗
0 G − I

∆t

D
I
∆t

+N ∗
1 G − I

∆t

D
. . . . . . . . .

I
∆t

+N ∗
n G

D







λ0

ξ0

λ1

ξ1
...

λn

ξn




=




0
0

y1 − z1

0
...

(1 + γ
∆t

)(yn − zn)
0




(2.7)
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which corresponds to the time discretisation scheme

λn − λn+1

∆t
− ν∆λn − yn∇λn + (∇yn)tλn +∇ξn = yn − zn (2.8)

−div λn = 0.

of (2.3). Here we have used D∗ = G and A∗ = A. Now let us define wi := (yi, pi, λi, ξi) and
w := (w0, w1, ...) := (y0, p0, λ0, ξ0, y1, p1, λ1, ξ1, y2, p2, λ2, ξ2, ...). After shifting the terms with
λn+1 and yn in (2.4) and (2.8) from the right hand side to the left hand side and mixing the
two matrices stemming from H and M∗, we obtain a semi-discrete system

G(w)w = f. (2.9)

Here,

G = G(w) =




I
∆t + C0 G 0 0 0
D 0 0 0 0
−I 0 I

∆t +N ∗
0 G − I

∆t
0 0 D 0 0
− I

∆t
I
∆t + C1 G I

α 0 0
0 D 0 0 0 0

0 −I 0 I
∆t +N ∗

1 G − I
∆t

0 0 0 D 0 0
. . . . . . . . .

− I
∆t

I
∆t + Cn G I

α 0
0 D 0 0 0

0 −(1 + γ
∆t )I 0 I

∆t +N ∗
n G

0 0 0 D 0




and the right hand side is given by

f =

(
(I/∆t + C0)y

0, 0, 0, 0︸ ︷︷ ︸, 0, 0,−z1, 0︸ ︷︷ ︸, ..., 0, 0,−zn−1, 0︸ ︷︷ ︸, 0, 0,−(1 + γ/∆t)zn, 0︸ ︷︷ ︸
)

.

At this point, we discretise in space with a finite element approach. The fully discrete version
of the KKT system is defined by replacing the operators I, A, D, G, K, K, Ci and N ∗

i by their
finite element versions Ah, Ih, Gh, Dh, Kh, K∗,h, Ch

i and N ∗,h
i and by incorporating boundary

conditions into the right hand side f . We finally end up with the nonlinear system

Gh(wh)wh = fh (2.10)

with the vector wh := (wh
0 , wh

1 , ...) and wh
i := (yh

i , ph
i , λh

i , ξh
i ). Note that the system matrix

is obviously a block tridiagonal matrix of the form

Gh = Gh(wh) =




G0 M̂0

M̃1 G1 M̂1

. . . . . . . . .

M̃N GN
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where N ∈ N denotes the number of timesteps, and thus the solver for optimal control
problem reduces to a solver for a sparse block tridiagonal system where the diagonal blocks
Gn = Gn(wh) correspond to the timesteps of the fully coupled KKT system. This system does
not have to be set up in memory in its complete form: Utilising defect correction algorithms
reduces the solution process to a sequence of matrix vector multiplications in space and time.
A matrix-vector multiplication of a solution wh with the space-time matrix Gh on the other
hand reduces to N +1 local matrix-vector multiplication sequences, one in each timestep with
subsequent M̃n, Gn and M̂n.

Discretisation of the Newton system

The Newton algorithm in space and time can be written in defect correction form as follows:

wi+1 := wi + F (wi)
−1(f −G(wi)wi), i ∈ N

with F (w) being the Frechét derivative of the operator G(w). Ignoring for the moment
the continuity equations and the boundary conditions, we remember that the coupled KKT
system based on the Navier–Stokes equation has the following form:

yt − ν∆y + y∇y +∇p + 1
α
λ = 0 in Ω

−λt − ν∆λ− y∇λ + (∇y)tλ +∇ξ − y = −z in Ω

For two vectors (y, p, λ, ξ) and (ȳ, p̄, λ̄, ξ̄) the Frechét derivative of this system is given by

F̃(y, p, λ, ξ)




ȳ
p̄
λ̄
ξ̄


 :=

(
ȳt − ν∆ȳ + (ȳ∇y + y∇ȳ) +∇p̄ + 1

α
λ̄

−λ̄t − ν∆λ̄− y∇λ̄ + (∇y)tλ̄ +∇ξ̄ − ȳ − ȳ∇λ + (∇ȳ)tλ

)
.

Correspondingly, the Fréchet derivative of the operator G(w) is given by the Newton matrix

F (w) =




I
∆t

+N0 G 0 0 0
D 0 0 0 0

−I +R0 0 I
∆t

+N ∗
0 G − I

∆t
0 0 D 0 0

− I
∆t

I
∆t

+N1 G 1
α
I 0 0

0 D 0 0 0 0

0 −I +R1 0 I
∆t

+N ∗
1 G − I

∆t
0 0 0 D 0 0

. . .
. . .

. . .

− I
∆t

I
∆t

+Nn G 1
α
I 0

0 D 0 0 0

0 −(1 + γ
∆t

)I + Rn 0 I
∆t

+N ∗
n G

0 0 0 D 0




with the additional operator Riv := R(λi)v := −(v∇)λi + (∇v)tλi for all velocity vectors v.
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3 The multigrid and the Newton solver

The KKT-system represents a boundary value problem in the space-time cylinder. It is shown
e.g. in [5] that, assuming sufficient regularity on the state (y, p) and the adjoint state (λ, ξ),
it can equivalently be rewritten as higher-order elliptic equation in the space-time cylinder
for either the state or the adjoint state. This indicates that multigrid could be used to solve
the (linearised) KKT system as it is an ideal solver for elliptic PDEs.

We formally define the solution approach as outer nonlinear loop that has to solve a linear
subproblem in each nonlinear step.

3.1 The outer defect correction loop

To treat the nonlinearity in the underlying Navier–Stokes equation, we use a standard non-
linear fixed point iteration as well as a space-time Newton iteration. Both algorithms can be
written down as fully discrete defect correction loop,

wh
i+1 := wh

i + C(wh
i )−1

(
fh −Gh(wh

i )wh
i

)
, i ∈ N.

For the fixed point method, we choose C(wh) := Gh(wh) as preconditioner, while the space-
time Newton method is characterised by C(wh) := F h(wh) with F h(wh) being the discrete
analogon to F (w) from Section 2. C(wh)−1 is applied by the following space-time multigrid
method.

3.2 The multigrid solver

To formulate the multigrid solver, let Ω1, ..., Ωk for k ∈ N be a conformal hierarchy of
triangulations of the domain Ω, with Ωi+1 stemming from a regular refinement of Ωi (i.e. new
vertices, cells and edges are generated by connecting opposite midpoints of edges). We use
V1, ..., Vk to refer to the different Finite Element spaces in space built upon these meshes.
Furthermore, let T1, ..., Tk be a hierarchy of decompositions of the time interval [0, T ], where
each Ti+1 stems from Ti by bisecting each time interval. For each i, the above discretisation
in space and time yields a solution space Wi = Vi × Ti and a space-time system

Giwi = f i, i = 1, ..., k

of the form (2.10) with fk = fh, wk = wh and Gk = Gh identifying the discrete right hand
side, the solution and system operator on the finest level, respectively.

To describe the multigrid solver, we need prolongation and restriction operators. Let
us denote by I : Wi → Wi+1 the prolongation and by R : Wi → Wi−1 the corresponding
restriction. Furthermore, let S : Wi → Wi define a smoothing operator (see the following
sections for a definiton of these operators) and let us denote with NSMpre, NSMpost ∈ N
the numbers of pre- and postsmoothing steps, respectively. With these components and
definitions, Algorithm 1 implements a basic multigrid V-cycle; for variations of this algorithm
which use the W- or F-cycle, see [1, 9, 22].
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Algorithm 1 Space-time multigrid

function SpaceTimeMultigrid(w;f ;k)
if (k = 1) then

return (Gk)−1f . coarse grid solver
end if
while (not converged) do

w ← S(Gk, w, f, NSMpre) . presmoothing
d ← R(f −Gkw) . restricion of the defect
w ← w + I(SpaceTimeMultigrid(0; d; k − 1)) . coarse grid correction
w ← S(Gk, w, f, NSMpost) . postsmoothing

end while
return w . solution

end function

3.3 Prolongation/Restriction

Our discretisation is based on Finite Differences in time and Finite Elements in space. The op-
erators for exchanging solutions and right hand side vectors between the different levels there-
fore decompose into a time prolongation/restriction [10] and space prolongation/restriction.
Let k ∈ N be the space level. Then, we denote by IS : Vk → Vk+1 the prolongation in space
and RS : Vk+1 → Vk the corresponding restriction. The prolongation for a space-time vector
wk = (wk

0 , ..., w
k
N) can be written as:

P (wk) :=

(
PS(wk

0),
PS(wk

0) + PS(wk
1)

2
, PS(wk

1),
PS(wk

1) + PS(wk
2)

2
, ... , PS(wk

N)

)

and is a composition of the usual Finite Difference prolongation in time and Finite Element
prolongation in space. The corresponding restriction for a defect vector dk = (dk

0, ..., d
k
2N)

follows directly:

R(dk) :=

(
RS(

1

4
(2dk

0 + dk
1)), RS(

1

4
(dk

1 + 2dk
2 + dk

3)), ... , RS(
1

4
(dk

2N−1 + 2dk
2N))

)

Our numerical tests in Section 4 are carried out with the nonconforming Q̃1/Q0 Finite Element
pair in space. For these elements, we use the standard prolongation/restriction operators
which can be found e.g. in [14, 18].

3.4 Smoothing operators

The special matrix structure of the global space-time matrix (2.10) allows to define iterative
smoothing operators for this algorithm based on defect correction. Note that every smoother
usually can also be used as coarse grid solver to solve the equation (Gk)−1f in the first
step of the algorithm by replacing the fixed number of iterations by a terminating condition
depending on the residuum.
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We introduce two basic iterative block smoothing algorithms. Let ω ∈ R be a damping
parameter. Then, the special matrix structure suggests the use of a Block-Jacobi method of
the following form, see Algorithm 2.

Algorithm 2 Space-time Block-Jacobi smoother

function JacSmoother(Gk,w,f ,NSM)
for j = 0 to NSM do

d ← f −Gkw . Defect
for i = 0 to N do

di ← (Gk
i )
−1di . Block-Jacobi preconditioning

end for
w ← w + ωd

end for
return w . Solution

end function

Algorithm 3 Forward-Backward Block-SOR smoother

function FBSORSmoother(Gk,w,f ,NSM)
r ← f −Gkw . Defect
x ← 0 . Initial correction vector
for istep = 1 to NSM do

xold ← x
for i = N downto 0 do . Backward in time

di ← ri − M̃ix
old
i−1 −Gk

i x
old
i − M̂i

(
ωxi+1 + (1− ω)xold

i+1

)
xi ← xold

i + (Gk
i )
−1di

end for
xold ← x
for i = 0 to N do . Forward in time

di ← ri − M̃i

(
ωxi−1 + (1− ω)xold

i−1

)−Gk
i x

old
i − M̂ix

old
i+1

xi ← xold
i + (Gk

i )
−1di

end for
end for
w ← w + x . Correction
return w . Solution

end function

Similar to a Block-Jacobi algorithm, it is possible to design a forward-backward block
SOR algorithm for smoothing, see Algorithm 3. (For the sake of notation, we define x−1 :=
xN+1 := 0, M̃0 := M̂N := 0.) Again, let ω ∈ R be a damping parameter; for ω = 1 the
algorithm reduces to a standard block Gauß-Seidel algorithm. In contrast to Block-Jacobi,
this algorithm respects the solutions backward and forward in time, so a stronger time coupling
is reached without more additional costs.
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Note that the key feature of both algorithms is the solution of the system Gk
i ci = di which

means to solve fully coupled KKT system in one time step. The full space-time algorithm
therefore reduces to an algorithm in space. It can be carried out without the necessity of
setting up and saving the whole space time matrix in memory. The system Gk

i ci = di is a
coupled saddle point problem for primal and dual velocity and pressure. For solving it, one
can use e.g. direct solvers (as long as the number of unknowns in space is not too large) or
sophisticated techniques from computational fluid dynamics, namely a space multigrid with
Pressure-Schur-Complement based smoothers. A typical approach can be seen in the next
section.

3.5 Coupled multigrid solvers in space

As mentioned above, in each time step a system of the form Gk
i ci = di must be solved, e.g.

with a multigrid solver in space. Since the used prolongation and restriction operators based
on the applied Finite Element spaces are standard and well known (see e.g. [1, 4, 9, 18, 22]),
we restrict here to a short introduction into the pressure Schur complement (‘PSC’) approach
for CFD problems (see also [17, 20, 21]) which is used as a smoother, acting simultaneously on
the primal and dual variables. A complete overview and in-depth description of the operators
and smoothers will be given in [15].

To formulate the corresponding algorithm, we first introduce some notations. Let iel ∈ N
denote the number of an arbitrary element in the mesh. On this mesh, a linear system Ax = b
is to be solved; in our case, this system can be written in the form




Aprimal Mdual B 0
Mprimal Adual 0 B
BT 0 0 0
0 BT 0 0







y
λ
p
ξ


 =




by

bλ

bp

bξ




which is a typical saddle point problem for primal and dual variables, with Aprimal, Adual ve-
locity submatrices, Mprimal and Mdual coupling matrices between the primal and dual velocity
and B and BT clustering the gradient/divergence matrices.

Now let I(iel) identify a list of all degrees of freedom that can be found on element iel,
containing numbers for the primal and dual velocity vectors in all spatial dimensions and
the primal and dual pressure. With this index set, we define AI(iel) to be a (rectangular)
matrix containing only those rows from A identified by the index set I(iel). In the same way,
let xI(iel) and bI(iel) define the subvectors of x and b containing only the entries identified by
I(iel). Furthermore we define AI(iel),I(iel) to be the (square) matrix that stems from extracting
only those rows and columns from A identified by I(iel).

This notation allows to formulate the basic PSC smoother in space, providing ω ∈ R to
be a damping parameter, see Algorithm 4. Of course, this formulation is not yet complete, as
it is lacking a proper definition of the local preconditioner C−1

iel which is a small square matrix
with as many unknowns as indices in I(iel).

There are two basic approaches for this preconditioner. The first approach, which we enti-
tle by PSCSmootherFull, results in the simple choice of Ciel := AI(iel),I(iel) and calculating
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Algorithm 4 PSC-Smoother for smoothing an approximate solution to Ax = b

function PSCSmoother(A,x,b,NSM)
for ism = 1,NSM do . NSM smoothing sweeps

for iel = 1 to NEL do . Loop over the elements
xI(iel) ← xI(iel) + ωC−1

iel (bI(iel) − AI(iel)x) . Local Correction
end for

end for
return x . Solution

end function

C−1
iel by invoking a LU decomposition, e.g. with the LAPACK package [16]. That approach

is rather robust and still feasible as the system is small; for the Q̃1/Q0 space that is used in
our discretisation (see [18]), the system has 18 unknowns.

The second approach, which we call PSCSmootherDiag, results in taking a different
subset of the matrix A for forming CI(iel). To describe this approach, we define

Â :=




diag(Aprimal) 0 B 0
0 diag(Adual) 0 B
BT 0 0 0
0 BT 0 0




where diag(·) refers to the operator taking only the diagonal of a given matrix. The local
preconditioner can then be formulated as Ciel := ÂI(iel),I(iel). Note that this matrix decouples

the primal variables from the dual variables, so that applying Â−1
I(iel),I(iel) decomposes into two

independent subproblems for the primal variables (y, p) and the dual variables (λ, ξ). The
special feature that the velocity blocks are diagonal allows to efficiently use Schur complement
techniques by what this smoother is numerically cheaper than PSCSmootherFull. Nev-
ertheless, the disadvantage of this smoother is the reduced stability. We note that the PSC
approach in general also allows to increase the stability by taking larger local systems. Such
an approach was carried out e.g. in [17] where the degrees of freedom of multiple adjacent
elements were clustered together to form a linear subsystem. For our numerical tests however,
such an approach was not necessary. Most of the numerical tests in the later sections were
carried out using PSCSmootherDiag except where noted.

4 Numerical examples

In this section we numerically analyse the proposed solver strategy. The nonlinearity is cap-
tured by a space-time fixed point and Newton iteration, both preconditioned by the proposed
space-time multigrid. We define the following test cases:

4.1 Example (Driven-cavity configuration). Let a domain Ω = [0, 1]2 be given. On the four
boundary edges Γ1 := {0} × (0, 1), Γ2 := [0, 1]× {0}, Γ3 := {1} × (0, 1), Γ4 := [0, 1]× {1} we
describe Dirichlet boundary conditions as u(x) = (0, 0) for x ∈ Γ1 ∪Γ2 ∪ Γ3 and u(x) = (1, 0)
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Figure 4.1: Driven-cavity example, Stokes (target-) flow. Streamlines of the flow at time
t = 0.5 (left), t = 1 (center) and t = 8 (right)

Figure 4.2: Driven-cavity example, uncontrolled Navier–Stokes flow. Streamlines of the flow
at time t = 0.5 (left), t = 1 (center) and t = 8 (right).

Figure 4.3: Flow-around-cylinder example. Stokes (target-) flow at time t = 0.5 (top) and
t = 1 (bottom). Left: Velocity magnitude field. Right: Streamlines around the cylinder.
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Figure 4.4: Flow-around-cylinder example. Uncontrolled Navier–Stokes flow at time t = 0.5
(top) and t = 1 (bottom). Left: Velocity magnitude field. Right: Streamlines around the
cylinder. Note: The nonsymmetry stems from the nonsymmetric position of the cylinder.

Figure 4.5: Top: Uncontrolled Navier–Stokes flow in the flow-around-cylinder example. Ve-
locity magnitude, fully developed stationary flow. Bottom: Underlying mesh, coarse grid.

Figure 4.6: Flow-around-cylinder example, 3D topography map of the pressure. Stokes
(target-) flow at time t = 0.5 (top) and t = 1 (bottom).
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Figure 4.7: Flow-around-cylinder example, 3D topography map of the pressure. Uncontrolled
Navier–Stokes flow at time t = 0.5 (top) and t = 1 (bottom).

Driven-cavity: simulation optimisation
∆t h #DOF space #DOF total #DOF space #DOF total
1/8 1/8 352 3 168 704 6 336

1/16 1/16 1344 22 848 2 688 45 696
1/32 1/32 5248 173 184 10 496 346 368
1/64 1/64 20736 1 347 840 41 472 2 695 680

Flow-around-cylinder: simulation optimisation
∆t Space-Lv. #DOF space #DOF total #DOF space #DOF total

1/10 2 2704 29 744 5 408 59 488
1/20 3 10608 222 768 21 216 445 536
1/40 4 42016 1 722 656 84 032 3 445 312
1/80 5 167232 13 545 792 334 464 27 091 584

Table 4.1: Problem size we use in our numerical tests in the simulation and the optimisation
on different refinement levels. ‘#DOF space’ describes the number of degrees of freedom in
space, i.e. in every timestep. ‘#DOF total’ refers to the total number of degrees of freedom
on the whole space-time cylinder including the initial condition.
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for x ∈ Γ4. The coarse grid consists of only one quadratic element. As time domain we
define the interval [0, T ] with T = 1. The viscosity parameter is set to ν = 1/400. On
the whole space-time cylinder, we generate a target flow z by computing a simulation of the
nonstationary Stokes equation with right hand side f := 0, viscosity parameter ν = 1/400 as
well and the initial flow at t = 0 at rest. A picture of the streamlines of the target flow can
be seen in Figure 4.1 while Figure 4.2 shows the uncontrolled Navier–Stokes flow. For better
visualisation, the streamlines of the big vortex correspond to the value interval [−0.1, 0] while
the streamlines of the small vortices in the bottom corners highlight the value interval [0, 1e-6]
in figure 4.1 and [0, 4e-4] in Figure 4.2.

4.2 Example (Flow-around-cylinder configuration). As spatial domain, we prescribe a rect-
angle without an inner cylinder Ω := [0, 2.2]× [0, 0.41]\Br(0.2, 0.2), r = 0.05, cf. [18]. We de-
compose the boundary of this domain into five parts: Γ1 := {0}× [0, 0.41], Γ2 := (0, 2.2]×{0},
Γ3 := {2.2} × (0, 0.41), Γ4 := [0, 2.2] × {0.41} and Γ5 := ∂Br(0.2, 0.2). As boundary condi-
tions, we define u(x) := (0, 0) for x ∈ Γ2 ∪ Γ4 ∪ Γ5. On Γ3 we prescribe do-nothing boundary
conditions while on Γ1 a parabolic inflow profile with maximum velocity Umax := 0.3 is used.
The time interval for this test case we define as [0, T ] with T = 1. To generate a target
flow z, we compute a nonstationary simulation using the Stokes equation, the initial flow at
t = 0 at rest. The right hand side is set to f := 0 and viscosity parameter to ν = 1/1000
(resulting in Re=20). Figure 4.3 shows the velocity field of the reference Stokes flow as well
as the streamlines around the cylinder at time t = 0.5 and t = 1, while in Figure 4.4 visualises
those of a corresponding simulation with the Navier–Stokes equation. The fully developed
stationary Navier–Stokes flow as well as the underlying mesh can be seen in Figure 4.5.

4.3 Example (Flow-around-cylinder with pulsating inflow). The spatial domain is the same
as in Example 4.2. We use the time cylinder [0, T ] with T = 8 and a viscosity parameter
ν = 1/1000. As boundary conditions, we again define u(x) := (0, 0) for x ∈ Γ2 ∪ Γ4 ∪ Γ5

and do-nothing boundary conditions on Γ1 ∪Γ3. To generate a target flow z, we define on Γ1

an oscillating Dirichlet inflow boundary condition as parabolic profile with maximum inflow
velocity Umax(t) := 0.15(1 + sin( (t+3)

2
π))/2 and compute a full Navier–Stokes simulation with

f := 0 as right hand side, the initial flow at t = 0 at rest.

All problems are tested for a various refinements in space and time. Table 4.1 lists the
number of degrees of freedom in space and time for the different refinement levels we analyse
based on Example 4.1 and 4.2, for a pure forward simulation as well as for optimal control.
Discretisation in space is carried out with the Q̃1/Q0 finite element pair [18] while implicit
backward Euler is used for the time discretisation. All computations are carried out on an
AMD Opteron 64 dual core machine with 2.8 GHz and 8 GB RAM running on SUSE Linux.

4.4 Tests with the Driven-cavity example

In the first couple of tests we analyse the behaviour of our solver when being applied to the
Driven-cavity example. For our tests, we choose the regularisation parameters in the KKT-
system to be α = 0.01 and γ = 0 and start with defining a basic coarse mesh in space and
time. For simplicity, we choose ∆t = h = 1.0, although any other relation between ∆t and h
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would be suitable as well. This mesh is simultaneously refined by regular refinement in space
and time. On each space-time level, we perform the following tests: 1.) We calculate a pure
simulation with a fully implicit Navier–Stokes solver in time. In each timestep the norm of
the residual was reduced by εSimNL = 10−5. The linear multigrid subsolver in each nonlinear
iteration reduces the norm of the residual by εSimMG. 2.) We calculate an optimal control
problem with the target flow as specified above. The nonlinear space-time solver reduces
the norm of the residual by εOptNL = 10−5, the linear space-time multigrid in each nonlinear
iteration by εOptMG. The convergence criterion of the innermost spatial multigrid solver in
each timestep was set to reduce the norm of the residual by εSpaceMG.

General tests

In the first couple of tests we analyse the behaviour of the nonlinear space-time solver for
optimal control. We fix the space-time mesh to ∆t = h = 1/16, the convergence criterion of
the innermost solver to εSpaceMG = 10−2; this criterion was already proven to be useful in [11].
The smoother in space is BiCGStab with PSCSmootherDiag preconditioner, the space-
time smoother FBSORSmoother(ω = 0.9). Table 4.2 shows the norms of the residuals in
the nonlinear steps, for the standard fixed point solver as well as for the Newton solver and for
different settings of the convergence criterion of our space-time multigrid. The Newton-solver
shows the typical quadratic convergence behaviour in the last iterations when being used with
εOptMG = 10−6, although it does hardly need less nonlinear steps, as one would expect, due
to the global convergence criterion. The global fixed point shows no strong dependence on
εOptMG but needs of course more nonlinear steps than the Newton solver.

The next test analyses the influence of the innermost stopping criterion εSpaceMG. For the
two space-time smoothers JACSmoother(ω = 0.7, NSM = 4) and FBSORSmoother(ω =
0.9, NSM = 1) we fix the convergence criterion of the space-time multigrid to εOptMG = 10−6

fixed point Newton
Step \ εOptMG 10−2 10−6 10−2 10−6

0 5.59E-04 5.59E-04 5.59E-04 5.59E-04
1 1.35E-04 1.35E-04 9.90E-05 9.81E-05
2 3.43E-05 3.34E-05 3.18E-06 2.99E-06
3 9.80E-06 9.10E-06 7.95E-09 2.70E-09
4 3.01E-06 2.69E-06 3.91E-11
5 9.91E-07 8.51E-07
6 3.33E-07 2.73E-07
7 1.09E-07 8.52E-08
8 3.43E-08 2.54E-08
9 1.03E-08 7.25E-09
10 2.98E-09 1.98E-09

Table 4.2: Driven-cavity example. Behaviour of the space-time fixed point and Newton solver
for different settings of εOptMG for the linear space-time subproblems.
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JACSmoother(NSM=4) FBSORSmoother(NSM=1)
Nonl. Solv. εSpaceMG #NL #MG Time #NL #MG Time
fixed point 10−1 10 110 590.0 10 69 285.9

10−2 10 110 617.0 10 68 296.3
10−3 10 110 735.8 10 68 349.5
10−6 10 110 1207.3 10 68 528.3

Newton 10−1 3 34 219.8 3 23 99.8
10−2 3 34 228.1 3 23 102.7
10−3 3 34 322.7 3 23 123.6
10−6 3 34 541.7 3 23 179.0

Table 4.3: The global nonlinear solver is not influenced by the convergence criterion of the
multigrid solver in space. ‘#NL’ describes the number of iterations in the nonlinear solver,
‘#MG’ the number of iterations in the space-time multigrid solver, ‘Time’ the computational
time in seconds; Driven-cavity example.

εOptMG: 10−2 10−6

Nonl. Solv.: fixed point Newton fixed point Newton
∆t h #NL #MG #NL #MG #NL #MG #NL #MG
1/8 1/8 6 13 4 12 6 46 3 27

1/16 1/16 10 20 4 11 10 68 3 23
1/32 1/32 8 16 4 10 8 53 3 21
1/64 1/64 6 12 4 8 6 40 3 18

Table 4.4: Number of iterations in the nonlinear (#NL) and linear (#MG) space-time solver,
for various levels of refinement and different settings for εOptMG. The smoother is FBSOR-
Smoother(ω = 0.9); Driven-cavity example.

Nonl. Solv. ∆t h #NL #MG
Newton 1/16 1/64 3 6

1/32 1/64 3 6
1/64 1/64 4 8

Table 4.5: Number of iterations in the nonlinear (#NL) and linear (#MG) space-time solver,
for various levels of refinement in time. εOptMG was fixed to 10−2. The smoother is FBSOR-
Smoother(ω = 0.9); Driven-cavity example.
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and calculate the fixed point and Newton iteration for different settings of εSpaceMG. As one
can see from Table 4.3, the solver behaves very robust against this parameter. We choose
εSpaceMG = 10−2 for all later tests. Furthermore one can see, that JACSmoother is by far
less efficient than FBSORSmoother: Although there are 4 times more smoothing steps
used, the iteration needs more iterations and more computational time. Therefore, we drop
JACSmoother in our future tests.

Table 4.4 reveals the dependence of the nonlinear space-time solver on the convergence
criterion of the space-time multigrid solver. The number of linear and nonlinear iterations
stays constant1 upon increasing the resolution of the space-time mesh which shows the linear
complexity of the algorithm. More precisely, the number of iterations even reduces with
increasing space-time level – an effect which was also observed and proven in [5].

Furthermore, for a convergence criterion of εOptNL = 10−5, a reduction of εOptMG from
10−2 to 10−6 has no visible influence to the nonlinear solver but increases the number of
linear iterations by a factor of approx. 3. Thus we take εOptMG = 10−2 for all further
numerical tests.

Table 4.5 finally shows what happens when ∆t is changed against h. We fixed h = 1/64
and reduced ∆t. We cannot expect the number of iterations of the space-time multigrid to
stay constant in this case as this is only guaranteed if ∆t and h changes simultaneously upon
refinement, but as can be seen in the table, increasing ∆t for a fixed h does not have a great
influence to the solver. This effect suggests that it is feasible to use higher order timestepping
techniques that allow to use large timesteps, but as higher order timestepping techniques is
a topic of its own, we will not discuss this topic in the scope of this paper.

Optimisation vs. Simulation

In the following tests we want to compare the behaviour of the solver for the optimal con-
trol problem with a pure simulation. As convergence criterion for the solver we choose
εSimNL = εOptNL = 10−5 and εSimMG = εOptMG = 10−2. Table 4.6 depicts the result of a
set of forward simulations for various settings of ∆h and t. As nonlinear solver in each time
step of the simulation, we use on the one hand a simple nonlinear fixed point iteration, on
the other hand a Newton iteration. The linear solver used here was multigrid in space with
a PSCSmootherDiag-type smoother.

The columns ®NL and ®MG in this table describe the average number of linear/nonlinear
iterations per time step. When comparing these numbers with the number of iterations of
the nonlinear/linear space-time solver in Table 4.4 one can see that they are rather similar.
Focusing on the Newton iteration, the space-time Newton solver needs about the same number
of global nonlinear iterations like the nonlinear solver in each timestep of the simulation. The
total number iterations of the space-time multigrid solver in the optimisation solver differs
to the total number of iterations of the space multigrid solver by a factor of approx. 2-3,
which means that the effort for both, the simulation and the optimisation, grows with same
complexity when increasing the problem size. This fact encourages us to directly compare the

1We note that there would of course be a difference in #NL and #MG if we choose a stronger convergence
criterion than εOptNL = 10−5 in combination with the Newton solver; this is already indicated by the size of
the last nonlinear residuum in Table 4.2.
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Nonl. Solv. ∆t h #NL #MG ®NL ®MG
fixed point 1/8 1/8 51 165 6 21

1/16 1/16 94 525 6 33
1/32 1/32 159 1009 5 32
1/64 1/64 265 1925 4 30

Newton 1/8 1/8 25 79 3 10
1/16 1/16 50 302 3 19
1/32 1/32 99 762 3 24
1/64 1/64 196 1669 3 26

Table 4.6: Total and mean number of nonlinear and linear iterations per timestep for a forward
simulation on different levels of refinement; Driven-cavity-example.

Nonl. Solv. ∆t h Tsim Topt
Topt

Tsim

fixed point 1/8 1/8 0.46 14.21 31.0
1/16 1/16 2.20 74.83 34.0
1/32 1/32 15.76 351.21 22.3
1/64 1/64 132.43 1568.97 11.8

Newton 1/8 1/8 0.36 14.25 39.2
1/16 1/16 2.27 48.14 21.2
1/32 1/32 18.73 301.99 16.1
1/64 1/64 233.34 1348.12 5.8

Table 4.7: Comparison of the execution time for a simulation and a corresponding optimisa-
tion; Driven-cavity-example.

Nonl. Solv. ∆t h #NL #MG Topt
Topt with T = 8

Topt with T = 1

fixed point 1/8 1/8 6 14 125 5.41
1/16 1/16 11 23 878 11.37
1/32 1/32 8 16 2946 7.78
1/64 1/64 6 12 15127 9.06

Newton 1/8 1/8 4 14 244 15.04
1/16 1/16 4 12 473 8.33
1/32 1/32 4 11 2600 8.83
1/64 1/64 4 8 13879 8.90

Table 4.8: Driven-cavity-example on the longer time interval [0, T ] with T = 8. The optimi-
sation takes approx. 8× longer than the optimisation on the time interval [0, 1].
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time that was necessary for the simulation against the time necessary for the corresponding
optimisation.

Table 4.7 compares the different execution times of the simulation and optimisation solver.
While the fraction of the execution times is still inaccurate for ‘small’ mesh resolutions (∆t, h
≤ 1/16) in conjunction with the fixed point method, using the Newton method clearly shows
that the execution time of the optimisation is a bounded multiple of the execution time of the
simulation. One can see a factor of C ≈ 10−30, even being better for higher mesh resolutions.
We note here that the high factors for small meshes are merely an effect of acceleration due to
cache effects and can be expected: A simulation with only some hundreds of unknowns is able
to rather completely run in the cache of a modern PC, while a higher mesh resolution leads
to cache misses and therefore to a slowdown in the computational speed. The optimisation
of a nonstationary PDE furthermore has not only twice as many unknowns in space but also
to simultaneously work on all unknowns in space and time. Therefore, such an optimisation
problem can hardly exploit any cache effects, even for problem sizes where the corresponding
simulation works still in-cache. A more detailed analysis and exploitation of the computer
cache and its effects can be found in [19].

Optimisation on a longer time interval

The above test case was prototypically carried out on a time interval [0, T ] with T = 1. To
test whether there is any impact onto the solver for longer time intervals, we modified test
problem 4.1 to calculate nonstationary target Stokes flow on the time interval [0, T ] with
T = 8, the initial flow at rest, and repeat the optimisation for different refinement levels in
space and time. From Table 4.8 one can see that a longer time interval has obviously no
impact to the global solver. The number of linear and nonlinear iterations are similar. The
time that was necessary for the optimisation is now roughly 8 − 9× longer in comparison to
the optimisation carried out on the time interval [0, 1]. This factor represents exactly the
expected behaviour as the problem has now 8× more unknowns.

4.5 Tests with the flow-around-cylinder example

Flow-around-cylinder with stationary inflow

In a similar way as above, we now carry out a set of tests for the more complicated flow-around-
cylinder problem. Our basic mesh (marked as ‘level 1’) is the one shown in Figure 4.5, regular
refinement in space leads to higher mesh levels 2..5. For the time discretisation, we choose
N = 5 timesteps on time level 1 which leads to 10, 20, 40 and 80 timesteps for all higher time
levels. On these space-time-levels, we calculate a simulation and a corresponding optimisation,
using the nonstationary Stokes flow from above as target flow. The convergence criteria for
the solvers are defined as εSimNL = εOptNL = 10−5, εSimMG = εOptMG = εSpaceMG = 10−2

and we again focus on the difference in the execution time between the simulation and a
corresponding optimisation. Figure 4.8 shows a picture of the velocityand streamline field,
Figure 4.9 the pressure of the controlled flow at t = 0.5 and t = 1.0. The velocity field and the
streamlines are similar to the target flow, the pressure peaks around the cylinder are reduced
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Figure 4.8: Flow-around-cylinder example. Velocity magnitude (left) and streamlines around
the cylinder (right) controlled solution at t = 0.5 (top) and t = 1 (bottom).

Figure 4.9: Flow-around-cylinder example. 3D topography of the pressure. Controlled solu-
tion at t = 0.5 (top) and t = 1 (bottom).

Simulation Optimisation
Nonl. Solv. ∆t Space-Lv. #NL #MG ®NL ®MG #NL #MG
fixed point 1/20 3 100 486 5 24 5 24

1/40 4 167 946 4 24 5 15
1/80 5 309 1900 4 24 4 11

Newton 1/20 3 63 312 3 16 4 24
1/40 4 123 709 3 18 4 14
1/80 5 246 1589 3 20 4 13

Table 4.9: Total and mean number of nonlinear and linear iterations per timestep for a forward
simulation and a corresponding optimisation on different levels of refinement; flow-around-
cylinder example.
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Nonl. Solv. ∆t Space-Lv. Tsim Topt
Topt

Tsim

fixed point 1/20 3 22.1 739.27 33.5
1/40 4 167.9 3509.51 20.9
1/80 5 1721.7 26741.82 15.5

Newton 1/20 3 27.0 852.33 31.6
1/40 4 209.6 4037.21 19.3
1/80 5 2227.1 37217.81 16.7

Table 4.10: Comparison of the execution time for a simulation and a corresponding optimi-
sation. Flow-around-cylinder example.

fixed point Newton
∆t Space-Lv. #NL #MG #NL #MG

1/20 4 5 13 3 11
1/40 4 5 21 4 21
1/80 4 5 28 4 27

Table 4.11: Flow-around-cylinder example. Convergence behaviour of the solver for fixed
space-level and different ∆t.

by approx. 30% in comparison to the uncontrolled flow.
Table 4.9 depicts the total number of nonlinear (#NL) and linear (#MG) iterations as well

as the mean number of nonlinear and linear iterations per timestep for both, the optimisation
and the simulation. Like in the Driven-cavity example, the number of nonlinear iterations for
the optimisation is comparable to the mean number of nonlinear iterations in the simulation,
and so it does for the number of linear iterations. Table 4.10 again confirms that the execution
time of the simulation and the optimisation2 differs by only a constant factor, which is better
for higher levels of refinement. The table indicates a factor C ≈ 15− 30.

Table 4.11 now analyses the effect to the solver when modifying ∆t against h. We fixed
the space level to 4 and used 20, 40 and 80 timesteps. The nonlinear solver is obviously not
influenced by this modification. Nevertheless there is a slight impact to the linear solver, which
is even a little bit worse when the timestep size is reduced. The fact that larger timesteps
do not influence the solver, as it was the case in the Driven-cavity example, is therefore not
correct for general grids with a large difference in the size between the smallest and largest
cells in the mesh.

We continue with a numerical comparison of the solutions we obtained via simulation and

2In the table, the execution time using the fixed point algorithm is usually lower than the execution time
with the Newton algorithm. This stems from the fact that when using Newton, the effort for solving the
spatial system in every timestep is much higher, and due to the convergence criterion εOptNL < 10−5 the
Newton and the fixed point method need approximately the same number of linear/nonlinear iterations.
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Figure 4.10: Drag coefficients in the flow-around-cylinder example; α = 0.01, γ = 0.
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Figure 4.11: Drag coefficients in the flow-around-cylinder example, α = 0.01, γ = 0.1.
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Figure 4.12: Drag coefficients in the flow-around-cylinder example, α = 0.01, γ = 0.5.
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Figure 4.13: Drag coefficients for flow-around-cylinder ; γ = 0, α = 0.005, 0.01 and 0.05.
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Figure 4.14: Drag coefficients for flow-around-cylinder ; γ = 0.1, α = 0.005, 0.01 and 0.05.
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Figure 4.15: Drag coefficients for flow-around-cylinder ; γ = 0.5, α = 0.005, 0.01 and 0.05.



25

||y − z||L2(Q) ||u||L2(Q) ||y(T )− z(T )||Ω J(y,u) rel. err. CD

Initial 1.39E-01 0.00E+00 1.43E-01 1.06E-02 at t = 1
γ = 0 α = 0.05 1.95E-02 7.27E-01 9.28E-03 2.23E-04 47%

α = 0.01 1.60E-02 8.43E+00 4.79E-03 1.64E-04 26%
α = 0.005 1.48E-02 2.26E+01 3.42E-03 1.41E-04 19%

γ = 0.1 α = 0.05 1.94E-02 7.54E-01 7.42E-03 2.26E-04 41%
α = 0.01 1.60E-02 8.50E+00 2.94E-03 1.65E-04 18%
α = 0.005 1.48E-02 2.27E+01 1.85E-03 1.41E-04 11%

γ = 0.5 α = 0.05 1.93E-02 8.17E-01 4.26E-03 2.32E-04 27%
α = 0.01 1.60E-02 8.60E+00 1.30E-03 1.66E-04 7%
α = 0.005 1.48E-02 2.28E+01 8.11E-04 1.41E-04 2%

Table 4.12: Flow-around-cylinder example. Initial and final values of the functional and its
components used for minimisation in the optimisation process. Right: Maximum relative
error in CD at time t=1.

optimisation. For that purpose, we calculate the drag coefficient

CD =
2

(2
3
Umax)2 · 0.1

∫

Γ5

ν
∂yt

∂n
ny − pnx dS

(with n = (nx, ny) the normal and t = (ny,−nx) the tangential vector of Γ5) around the circle
in every timestep, for the results of the simulation, the reference flow and multiple refinement
levels of the optimisation. Figure 4.10 visualises these drag coefficients; the topmost curve
shows the simulation with Navier–Stokes and the bottommost the target flow. The curves
obtained by optimisation follow the curve of the reference flow and converge with increasing
space-time level. The maximum relative error on the time interval [0.1, 1] is approx. 30% and
appears at the end of the time interval, where (because of γ = 0) the terminal condition has
no influence to the flow. On the time interval [0.1, 0.8] the relative error is less than 20%.

The influence of the terminal condition introduced by different values for γ can be seen
in Figure 4.11 and 4.12. A value of γ = 0.1 seems to be appropriate for this test example. A
value γ = 0.5 shows an even better aggreement with the reference flow but introduces a strong
bending in the curve of the drag coefficients (which we note was leading to worse convergence
rates of all linear solvers, see also Table 4.13). This effect is obviously independent of the
refinement of the space-time mesh!

In a last set of tests with this configuration we want to clarify whether there is a strong
dependence of the solution when both α and γ are modified. For that purpose, we at first
calculate the values of the functional J(·) and its components on space-time level 4 for α =
0.005, 0.01 and 0.05 and γ = 0, 0.1 and 0.5. Table 4.12 compares the results. The table shows
the initial values for J(·) and its components, the final values computed by the result of the
of the nonlinear iteration and the maximum relative error in CD to the drag of the target flow
at the end of the time interval at time t=1. In all cases, the errors are reduced, usually by
an order of magnitude. A lower value of α results in a better approximation, indicated by a
lower ||y− z||L2(Q) value. The norm ||y− z||L2(Q) is rather insensitive to the choice of γ, but γ
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has a major influence to the error at the end of the time interval ||y(T )− z(T )||Ω. α = 0.005
and γ = 0.5 result in the best overall values.

To show the effect of modifying α and γ on the solution more clearly, we visualise the
calculated drag coefficients calculated in this test. For a fixed γ, Figure 4.13, 4.14, and 4.15,
depict the behaviour of the drag coefficients if α is changed. One can see a slight dependence
on α: For γ = 0, all curves bend the same way up to the reference solution calculated with the
Navier–Stokes equation while for γ = 0.5 all curves bend down. For smaller α, the bending
is slightly stronger and begins later than for larger values of α. Nevertheless the dependence
is weak: For γ = 0.1 there is nearly no bending, independent of the value of α. We can
therefore state that α and γ can be chosen rather independent without noticable influence to
each other with respect to the solution.

The impact on the solver when modifying α and γ can be seen in Tablle 4.13. Although the
nonlinear solver is not influenced, larger values for α and γ have obviously an impact onto the
space-time solver which needs more iterations to solve the linear subproblems. Furthermore,
the difficulty for solving the linear subproblems in space increases: For α = 0.005 and γ =
0.5 we had to use the stronger PSCSmootherFull smoother in space to calculate the
corresponding optimisation problem. For γ = 0.1 the convergence was the best, the number
of linear iterations being independent of the value of α. A deeper analysis of the impact of α
and γ to the solver s a subject of future research and will help to improve the efficiency and
robustness of the solver components.

α 0.05 0.01 0.005
γ #NL #MG #NL #MG #NL #MG
0 5 15 5 15 5 15

0.1 5 15 5 15 5 15
0.5 5 15 5 40 5 79

Table 4.13: Flow-around-cylinder example. Number of nonlinear and linear steps of the solver
when modifying α and γ.

Flow-around-cylinder with pulsating inflow

The last set of tests focuses on Example 4.3 to analyse the behaviour of the solver as well as
the accuracy of the solution in a fully nonstationary case with oscillating boundary conditions.
The target flow z was generated by a simulation of the Navier–Stokes equation with pulsat-
ing Dirichlet inflow boundary conditions. For the optimisation, we now prescribe Neumann
boundary conditions on both ends of the domain, i.e. Γ1 and Γ3, so the uncontrolled flow
would be at rest. Introducing the control therefore aims to imitate the effect of a pump in
the flow by using volume forces.

As we now calculate on a time cylinder [0, T ] with T = 8, we increase the number of
timesteps on the coarsest time level to N = 20, leading to 40, 80, 160 and 320 timesteps
on space-time level 2, 3, 4 and 5, respectively. The regularisation parameters are chosen as
α = 0.01 and γ = 0.1, the solver configuration is the same as in the previous section. Table
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Nonl. Solv. ∆t Space-Lv. #NL #MG
Newton 1/10 2 3 7

1/20 3 3 9
1/40 4 3 9
1/80 5 3 8

Table 4.14: Flow-around-cylinder example with oscillating flow. Convergence behaviour of
the solver.
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Figure 4.16: Drag coefficients in the flow-around-cylinder example with oscillating inflow
boundary conditions. The solid black line shows the target solution obtained by simulation.

4.14 shows the convergence behaviour of the Newton optimisation solver. For all levels of
refinement, the number of nonlinear iterations stays constant at a value of 3 and the number
of linear iterations at 9, which means that we have about 3 multigrid iterations per nonlinear
iteration.

For checking the solution quality, we measure the drag coefficients on the circular boundary
component Γ5. Figure 4.16 visualises the drag coefficients around the cylinder for the time
interval under consideration. The black line belongs to the drag coefficients in the simulation
while the dashed and dotted lines depict the results from optimisation at different space/time
refinement levels. The maximum drag coefficient increases with increasing refinement level
and has a relative error to the maximum reference drag of approx. 25%. The frequencies
of both curves, those from the simulation and those from the optimisation, are identical,
although the curve obtained by optimisation is slightly time-shifted by a time difference of
∆t ≈ 0.5. Nevertheless, the optimisation solver successfully controlled the fully nonstationary
flow by volume force to imitate pulsating Dirichlet inflow boundary conditions.
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5 Conclusions

Optimal control of the time-dependent Navier–Stokes equation can be carried out with it-
erative nonlinear and linear solution methods that act on the whole space-time cylinder. A
nonlinear Newton approach allows fast convergence of the global solution. Because of the spe-
cial structure of the system matrix a space-time multigrid algorithm can be formulated for the
linear subproblems in the Newton iteration. All matrix vector multiplications and smoothing
operations can be reduced to local operations in space, thus avoiding the necessity of storing
the whole space-time matrix in memory. Problems in space can be tackled by efficient space-
multigrid and Pressure-Schur-Complement techniques from Computational Fluid Dynamics.
The overall solver works with optimal complexity, the numerical effort growing linearly with
the problem size. The execution time necessary for the optimisation is a bounded multiple
of the execution time necessary for a ‘similar’ simulation, where numerical tests indicate a
factor of C ≈ 10 − 30. Being based on finite elements, the solver can be applied to rather
general computational meshes.

This article concentrated on the basic ingredients for the nonlinear solver, namely the dis-
cretisation of the system for the Newton iteration, the discretisation of the global linear space
time systems, the basic nonlinear iteration and the ingredients of the underlying space-time
multigrid solver which is used for preconditioning. For simplicity, we restricted to first order
implicit Euler discretisation in time and ignored any restrictions on the controls. Higher order
schemes like Crank-Nicolson and bounds on the control will be focused on in a forthcoming
publication. Algorithmic details about memory management, other possible preconditioners
in space as well as space and time, basic approaches for optimisation as well as parallelisation
will be the main focus of [15].
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