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Abstract We consider integrated circuits with semiconductors modelled by modi-
fied nodal analysis and 1D drift-diffusion equations. The drift-diffusion equations
are discretized in space using finite element methods. The discretization yields a
high dimensional differential-algebraic equation. We show how POD methods can
be used to reduce the dimension of the model. We compare reduced and fine mod-
els and give numerical results for a basic network with one diode. Furthermore we
discuss an adaptive approach to construct POD models which are valid our certain
parameter ranges. Finally, numerical investigations for the reduction of a 4-diode
rectifier network are presented, which clearly indicate that POD model reduction
delivers surrogate models for the diodes involved, which depend on the position of
the semiconductor in the network.

1 Introduction

In this article we investigate a POD-based model order reduction for semiconduc-
tors in electrical networks. Electrical networks can be efficiently modelled by a
differential-algebraic equation (DAE) which is obtained from modified nodal anal-
ysis. Denoting by e the node potentials and by jL and jV the currents of inductive
and voltage source branches, the DAE reads (see [14])
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AC
d
dt
qC(A�C e, t)+ARg(A�R e, t)+AL jL+AV jV =−AIis(t), (1)

d
dt

φL( jL, t)−A�L e= 0, (2)

A�V e= vs(t). (3)

Here, the incidence matrix A = [AR,AC,AL,AV ,AI ] represents the network topol-
ogy and qC, g and φL are continuously differentiable functions defining the voltage-
current relations of the network components. The continuous functions vs and is
are the voltage and current sources. For example consider the network in Figure 1.
Under the assumption that the Jacobians

DC(e, t) :=
∂qC
∂e

(e, t), DG(e, t) :=
∂g
∂e

(e, t), DL( j, t) :=
∂φL
∂ j

( j, t)

are positive definite, analytical properties (e.g. the index) of DAE (1)-(3) are inves-
tigated in [2] and [3]. In linear networks, the matrices DC, DG and DL are positive
definite diagonal matrices with capacitances, resistances and inductances on the di-
agonal.
Often semiconductors themselves are modelled by electrical networks. These

models are stored in a library and are stamped into the surrounding network in
order to create a complete model of the integrated circuit. Here we use a different
approach which uses the transient drift-diffusion equations as a model for semicon-
ductors. Advantages are the higher accuracy of the model and fewer model param-
eters. On the other hand, numerical simulations are more expensive. For a compre-
hensive overview of the drift-diffusion equations we refer to [7]. Using the notation
introduced there we have the following system of partial differential equations for
the electrostatic potential ψ , the electron and hole concentrations n and p and the
current densities Jn and Jp:

div(ε gradψ) = q(n− p−C),

−q∂tn+divJn = qR(n, p,Jn,Jp),
q∂t p+divJp =−qR(n, p,Jn,Jp),

Jn = μnq(UT gradn−ngradψ),

Jp = μpq(−UT grad p− pgradψ).

The nonlinear function R describes the rate of electron/hole recombination, q is the
elementary charge, ε the dielectricity, μn and μp are the mobilities of electrons and
holes. The temperature is assumed to be constant which leads to a constant thermal
voltage UT . The function C is the doping profile. Additionally there are boundary
conditions for n, p, Jn and/or Jp which depend on the type of contact (e.g. Ohmic
contacts, Schottky contacts).
The coupling between drift-diffusion equations and the electrical network yields

a partial differential-algebraic equation (PDAE). The analytical and numerical anal-
ysis of such systems is subject to current research, see [1, 5, 12, 14].
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This paper is organized as follows. In Section 2 we present the model for the com-
plete coupled system, meaning the network including semiconductors. The coupled
model then is simulated using finite-element methods in Section 3. This gives us
so-called snapshots yi := y(ti), i = 1, . . . ,k, which represent the state of the circuit
and the semiconductors at time ti. Based on these snapshots and POD we construct
a reduced model in Section 4. A numerical investigation of the model is presented
in Section 5 where also advantages and shortcomings of our approach are discussed.

2 Complete coupled system

In the present section we develop the complete system in 1D. The ns semiconductors
are diodes with length Lk, k = 1, . . . ,ns. For the sake of simplicity we assume that
the contacts are Ohmic, and that the dielectricities εk are constant over the whole
domain Ω := [0,Lk]. Furthermore we focus on the Shockley-Read-Hall recombina-
tion

R(n, p) =
np−η2

τp(n+η)+ τn(p+η)

which does not depend on the current densities. Here, η denotes the intrinsic con-
centration, τn and τp are the average lifetimes of electrons and holes.
The simulation of the complete coupled system is expensive and numerically

difficult due to bad scaling of the drift-diffusion equations. The numerical issues
can be significantly reduced by the unit scaling procedure discussed in [10], e.g. by
substituting

x= Lx̃, ψ =UT ψ̃, n= ‖C‖∞ñ, p= ‖C‖∞ p̃, C = ‖C‖∞C̃,

Jn =
qUT‖C‖∞μn

L
J̃n, Jp =

qUT‖C‖∞μp
L

J̃p, η = η̃‖C‖∞.

The scaled complete coupled system is constructed as follows. (We neglect the
tilde-sign over the scaled variables.) Let jS be the currents through the diodes. Con-
sequently, a term AS jS is added in equation (1), e.g.

AC
d
dt
qC(A�C e, t)+ARg(A�R e, t)+AL jL+AV jV +AS jS =−AIis(t), (4)

d
dt

φL( jL, t)−A�L e= 0, (5)

A�V e= vs(t). (6)

The voltage-current relation for the semiconductor k is established by the couplings
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jS,k(t) =
aqUT‖C‖∞

L
(μnJn(t,1)+ μpJp(t,1))− aεUTL

∂
∂ t

∂ψ
∂x

(t,1), (7)

ψ(t,0) = 0, (8)

ψ(t,1) =
A�S,ke(t)+ψbi

UT
, (9)

where a is the size of the contact of the diode and ψbi is the build-in potential.
Equation (7) states that the current is the integral of the total current density over
the interface area. In order to simplify the presentation, we neglect the index k for
the semiconductors wherever possible. The scaled drift-diffusion equations for each
semiconductor now read

λ∂xxψ = n− p−C, (10)
−∂tn+νn∂xJn = R(n, p), (11)

∂t p+νp∂xJp =−R(n, p), (12)
Jn = ∂xn−n∂xψ, (13)
Jp =−∂x p− p∂xψ (14)

with λ := εUT
L2q‖C‖∞

, νn := UT μn
L2 and νp :=

UT μp
L2 . Finally we have the boundary values

at the Ohmic contacts

n(t,0) =
1
2

(√
C(0)2+4η2+C(0)

)
, n(t,1) =

1
2

(√
C(1)2+4η2+C(1)

)
,

p(t,0) =
1
2

(√
C(0)2+4η2−C(0)

)
, p(t,1) =

1
2

(√
C(1)2+4η2−C(1)

)
.

Fig. 1 Basic test circuit with
one diode. The network is
described by

AV =
(
1, 0

)�
,

AS =
(−1, 1

)�
,

AR =
(
0, 1

)�
,

g(A�R e, t) =
1
R
e2(t).
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3 Simulation of the full system

Classical approaches for simulation of drift-diffusion equations (e.g. Gummel iter-
ations [4]) approximate Jn and Jp by piecewise constant functions and then solve
equations (13) and (14) with respect to n and p explicitly. This helps reducing the
computational effort and increases the numerical stability. For the proposed model
order reduction this method admits the disadvantage, that it introduces additional
non-linearities, since the discrete solution of (13) and (14) is build up in terms of
expψ , see [12].
Here we consider two finite element approaches to the drift-diffusion equations,

namely standard Galerkin and mixed finite element methods. We start with a stan-
dard Galerkin approach. For the sake of simplicity we use an equally distributed
finite element mesh with N elements and mesh width h := 1/N. The functions ψ ,
n and p are approximated by piecewise linear and globally continuous functions, Jn
and Jp are approximated by piecewise constant functions, e.g.

ψ(t,x) :=
N

∑
i=0

ψi(t)φi(x), n(t,x) :=
N

∑
i=0
ni(t)φi(x), p(t,x) :=

N

∑
i=0
pi(t)φi(x),

Jn(t,x) :=
N

∑
i=1
Jn,i(t)ϕi(x), Jp(t,x) :=

N

∑
i=1
Jp,i(t)ϕi(x),

where the functions {φi} and {ϕi} are the corresponding ansatz or trial functions.
For ψ , n and p only the interior coefficients, e.g. ψ(t) = (ψ1, . . . ,ψN−1)�, are
variable, the coefficients corresponding to the boundary elements are given by the
Dirichlet boundary conditions. Note that the time is not discretized at this point
which refers to the so-called method of lines. The finite element method leads to the
following DAE for the unknown vector-valued functions of time ψ , n, p, Jn, Jp for
each semiconductor:

0= λSψ(t)+Mn(t)−Mp(t)−Ch+bψ(e(t)),

−Mṅ(t) =−νnD�Jn(t)+hR(n(t), p(t)),

Mṗ(t) =−νpD�Jp(t)−hR(n(t), p(t)),
0= hJn(t)+Dn(t)−diag(Bn(t)+ b̃n

)
Dψ(t)+bn,

0= hJp(t)−Dp(t)−diag
(
Bp(t)+ b̃p

)
Dψ(t)+bp,

(15)

where S,M ∈ R
(N−1)×(N−1) and D,B ∈ R

N×(N−1) are assembled finite element ma-
trices. The vectors bψ(e(t)), bn, b̃n, bp and b̃p implement the boundary conditions
imposed on ψ , n and p, which are given by
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ψ0(t) = 0, ψN(t) =
A�S,ke(t)+Vbi

UT
,

n0(t) =
1
2

(√
C(0)2+4η2+C(0)

)
, nN(t) =

1
2

(√
C(1)2+4η2+C(1)

)
,

p0(t) =
1
2

(√
C(0)2+4η2−C(0)

)
, pN(t) =

1
2

(√
C(1)2+4η2−C(1)

)
.

Discretization of the coupling condition for the current completes the discretized
system:

jS,k(t) =
aqUT‖C‖∞

L
(μnJn,N(t)+ μpJp,N(t))− aεUT

Lh
(ψ̇N(t)− ψ̇N−1(t)) ,

Supposing that the fluxes Jn and Jp as well as the gradient of ψ play a dominant
role in (10)-(14) one might argue, that they should be resolved better, than as piece-
wise constant functions. This directly leads to the Raviart-Thomas finite element
approach, where the concentrations n and p and the potential ψ are approximated
by piecewise constant functions, but the fluxes ∇ψ , Jn and Jp are elements of the
Raviart-Thomas space of order zero. In one space dimension, the Raviart-Thomas
approach leads to piecewise linear, continuous approximations to these functions,
so that the ansatz space is just span{φ0, . . . ,φN}. The ansatz space for ψ , n and
p is given by span{ϕ1, . . . ,ϕN}. The idea is now not to discretize (10)-(14) sepa-
rately, but instead to discretize variable-flux pairs together. For example the equa-
tions (11,13)

−∂tn+νn∂xJn = R(n, p),
Jn = ∂xn−n∂xψ,

define the variable n and its flux Jn. The first equation is tested with ϕ , the second is
tested with φ and integrated by parts to obtain

−
∫

Ω
∂tnϕ +νn

∫
Ω

ϕ∂xJn =
∫

Ω
R(n, p)ϕ,∫

Ω
Jnφ =−

∫
Ω
n∂xφ −

∫
Ω
n∂xψ +[nφ ]10.

This formulation avoids derivatives of n. The pairs of equations (12,14) and (10,16)
are treated in a similar way. By using {ϕi} and {φi} as test and trial functions and
by substituting ∂xψ by

gψ = ∂xψ , (16)

we arrive at the following finite dimensional system of equations:



POD Model Order Reduction of Drift-Diffusion Equations in Electrical Networks 7

0= λDgψ(t)+hn(t)−hp(t)+Ĉh
hṅ(t) = νnDJn(t)+hR(n(t), p(t))
hṗ(t) = νpDJp(t)+hR(n(t), p(t))

0= D�ψ(t)+Mgψ(t)− b̂ψ(e(t))

0=−D�n(t)+MJn(t)+diag
(
B̂gψ(t)

)
n(t)− b̂n

0=−D�p(t)+MJp(t)+diag
(
B̂gψ(t)

)
p(t)− b̂p

with sparse matrices D ∈R
N×(N+1),M ∈R

(N+1)×(N+1) and B̂ ∈R
N×(N+1) and vec-

tors Ĉh ∈ R
N and b̂ψ(e(t)), b̂n, b̂p ∈ R

N+1.

The discretized equations are implemented in MATLAB, and the DASSL soft-
ware package [9] is used to integrate the high dimensional DAE. Initial values are
stationary states obtained by setting all time derivatives to 0. A basic test circuit with
one diode is depicted in Figure 1, where the model parameters are presented in Ta-
ble 1. The input vs(t) is chosen to be sinusoidal with amplitude 5V . The numerical
results in Figure 2 show the capacitive effect of the diode for high input frequencies.
Similar results are obtained in [11] using the simulator MECS.

Table 1 Diode model parameters.

Parameter Value Parameter Value

L 10−4 [cm] ε 1.03545 ·10−12 [F/cm]
UT 0.0259 [V ] η 1.4 ·1010 [1/cm3]
μn 1350 [cm2/(Vsec)] τn 330 ·10−9 [sec]
μp 480 [cm2/(Vsec)] τp 33 ·10−9 [sec]
a 10−5 [cm2] C(x), x< L/2 −9.94 ·1015 [1/cm3]

C(x), x≥ L/2 4.06 ·1018 [1/cm3]

Fig. 2 Current jV through the basic network for input frequencies 1 MHz, 1 GHz and 5 GHz. The
capacitive effect is clearly demonstrated.
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4 Model reduction

Now we want to reduce the computational effort of repeated dynamical simulations
by applying proper orthogonal decomposition (POD) to the drift-diffusion equa-
tions. The POD reduction procedure is formulated in the Appendix, and from here
onwards is used with X := L2(Ω). As an example we discuss the reduction based
on the standard finite element approximation (15), Raviart-Thomas elements are
treated analogously.
The test functions for a standard Dirichlet problem are expected to vanish at the

boundary. Hence, in the standard finite element case, before performing the POD of
the state space, we relate the solution to a reference state (not necessarily a solution),
e.g. a stationary solution or a mean value, that fulfills the boundary conditions. The
functions

ψ̃ = ψ−ψr , ñ= n−nr , p̃= p− pr
then satisfy homogeneous boundary conditions. The reference ψr is an exception
in so far, that in general it cannot be a stationary state, since ψ underlies varying
boundary conditions. Here, we use the stationary state, scaled in such a way that the
boundary conditions are satisfied, e.g.

ψr(t,x) =
ψ(t,1)
ψ(t0,1)

ψr(t0,x) =
A�S e(t)+ψbi
A�S e(t0)+ψbi

ψr(t0,x).

We further set
J̃n = Jn− Jrn , J̃p = Jp− Jrp .

In the case of the Raviart-Thomas approach the relation to a reference state is not
necessary, since the boundary values are included more naturally through the varia-
tional formulation.
The time-snapshot POD procedure described in the Appendix delivers Galerkin

ansatz spaces for ψ̃ , ñ, p̃, J̃n and J̃p. This leads to the ansatz

ψPOD(t) = ψr(t)+UψHψ(t) ,
nPOD(t) = nr(t)+UnHn(t) , pPOD(t) = pr(t)+UpHp(t) ,
JPODn (t) = Jrn(t)+UJnHJn(t) , JPODp (t) = Jrp(t)+UJpHJp(t) .

The matrices

Uψ ∈ R
(N−1)×kψ , Un ∈ R

(N−1)×kn Up ∈ R
(N−1)×kp

UJn ∈ R
N×kJn , UJp ∈ R

N×kJp ,

contain the POD-functions as columns as in Equation (17), the vectors H(·) the cor-
responding time-variant coefficients. The number k(·) is the respective number of
POD basis functions included. Assembling the POD system then leads to a DAE
system similar to (15),
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0 = λ S̃Hψ +U�ψ (M(UnHn−UpHp)−Ch)+ c1+ c̃1(e),

−M̃nnḢn = −νnD̃�n HJn +hU�n R
(
nr+UnHn, pr+UpHp

)
+ c2,

M̃ppḢp = −νpD̃�p HJp −hU�p R
(
nr+UnHn, pr+UpHp

)
+ c3,

0 = hHJn + D̃nHn+B(Hn,Hψ)+LnHψ + c4,
0 = hHJp − D̃pHp+B(Hp,Hψ)+LpHψ + c5 .

Here
S̃= U�ψ SUψ , M̃nn = U�n MUn , M̃pp = U�p MUp ,

D̃n = U�JnDU
n , D̃p = U�JpDU

p ,

where the matrices M, S, and D and the vector Ch are the same as in equation (15).
The constant vectors ci and matrices Ln, Lp arise from the reference states, and can
be computed offline together with the other matrices and the bi-linear map B; c2
and c3 vanish in case of stationary reference states nr and pr. The vector c̃1(e(t))
includes the boundary condition on ψ .

5 Numerical investigation

Figure 3 shows the development of the error between the reduced and the unreduced
numerical solutions, plotted over the neglected information Δ (see (18)), which is
measured by the relative error between the non-reduced states ψ , n, p, Jn, Jp and
their projections onto the respective reduced state space. The number of POD basis
functions for each variable is chosen so that the indicated approximation quality is
reached, i. e.

Δ := Δψ � Δn � Δp � ΔJn � ΔJp .

Fig. 3 L2 error of jV for
standard and Raviart-Thomas
FEM.
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Fig. 4 Time consumption for
simulation runs for Figure 3.
The fine lines indicate the
time consumption for the
simulation of the original full
system.

Since we compute all POD basis functions anyway, this procedure does not involve
any additional costs.
In Figure 4 the simulation times are plotted versus the neglected information

Δ . As one can see, the simulation based on standard finite elements takes twice as
long as that based on RT elements. However, this difference is not observed for the
simulation of the corresponding reduced models.
The whole POD approach in the present situation makes sense only, if the sin-

gular values would decay rapidly. Else one would have to use too many POD basis
functions and would end up with a rather large and dense POD Galerkin system. To
illustrate, that the singular values are indeed decaying exponentially, Figure 5 shows
the total number of singular vectors k= kψ +kn+kp+kJn +kJp required to undercut

Fig. 5 The number of re-
quired singular values grows
only logarithmically with the
requested accuracy.
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Fig. 6 Reduction error plotted
over the frequency parameter
space. The reduced model was
created with 1 to 3 reference
frequencies.

a given state space cut-off error Δ . While the number of singular vectors included
increases only linearly, the cut-off error tends to zero exponentially.
Although POD model order reduction often works well, it is clearly a drawback

of the method that the reduced system depends on the inputs and on the parameters
of the system under consideration. A possible remedy consists in performing simu-
lations over a certain input and/or parameter range and then to collect all simulations
in a global snapshot matrix Y := [Y 1,Y 2, . . .]. Here, each Y i represents the snapshots
taken for a certain input/parameter pair. In this context now the question pops up
which inputs/parameters to choose in order to obtain a reduced model, which is
valid over the whole input/parameter range. Let us elaborate on this complex of
questions with the following example.
For the basic circuit we choose the frequency of the input voltage vs as parameter.

Let the parameter space be the interval [108Hz,1012Hz]. We start the investigation
with a reduced model where the snapshot matrix is created from the simulation
of the full model at a frequency of 1010 Hz. The difference between simulations
of the full model and the reduced model is the reduction error plotted in Figure
6 (dotted line). A second reduced model is constructed by adding snapshots from
the full simulation at a frequency of 108 Hz, which is the frequency for which the
error is maximal. Note that we do not alter the number of singular values for the
second model. One can see that the error is significantly reduced in the second model
(dashed line). A third model is constructed analogously (solid line).
Of course this adaptive reduction method is only academical, since it is based

on full model integrations over the whole parameter space. For practical purposes
we will need to develop a-posterior error estimators in the parameter space. It may
be possible to apply the methods of [8] to the problem under consideration. In the
present situation also a parameter POD along the lines of [6] could be applied. The
parameter snapshots are chosen as simulations of the quasi-stationary drift-diffusion
model related to the respective parameter value (here: frequency of voltage source).
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Finally we note that the presented reduction method does not create reduced
models for semiconductors as such, but accounts for the position of the semicon-
ductors in a given network. The modes or POD basis functions of two identical
semiconductors may be different due to their different operating states. To demon-
strate this fact, we consider the rectifier network in Figure 7 and measure the dis-
tance between the spacesU1 andU2 which are spanned, e.g., by the POD-functions
U1ψ of the diode S1 andU2ψ of the diode S2 respectively, by

d(U1,U2) := max
u∈U1
‖u‖2=1

min
v∈U2
‖v‖2=1

‖u− v‖2.

Exploiting the orthonormality of the bases U1ψ andU2ψ and using a Lagrange frame-
work, we find

d(U1,U2) =

√
2−2

√
λ ,

where λ is the smallest eigenvalue of the positive definite matrix SS� with Si j =
〈u1ψ,i,u2ψ, j〉2. The distances for the rectifier network are given in Table 2. While the
reduced model for the diodes S1 and S3 are almost equal, the models for the diodes
S1 and S2 are significantly different. Similar results are obtained for the reduction of
n, p, etc.

Fig. 7 Rectifier network and simulation results. The input vs is sinusoidal with offset +1.5[V ].

Table 2 Distances between reduced models in the rectifier network.

Δ d(U1,U2) d(U1,U3)

10−4 0.61288 5.373 ·10−8
10−5 0.50766 4.712 ·10−8
10−6 0.45492 2.767 ·10−7
10−7 0.54834 1.211 ·10−6
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Appendix: Proper Orthogonal Decomposition (POD)

Let y : Ω × [0,T ]→ R be a function, which in the situation of Section 4 represents
the time continuous finite element approximation of ψ , n, p, gψ , Jn and Jp, respec-
tively. For t ∈ [0,T ] let y(·, t) ∈ YN := span{φ1, . . . ,φN}, where φi (i = 1, . . . ,N)
denote linearly independent elements of a Hilbert space X .
The snapshot variant of POD introduced in [13] works as follows; let Y =

[y1, . . . ,yl ] ∈ R
N×l contain as columns the coefficient vectors of l time-snapshots

y(·, ti) taken at time instances ti ∈ [0,T ], i.e.

y(·, ti) =
N

∑
j=1
yijφ j.

Furthermore, let M := (〈φm,φn〉X )m,n=1,...,N with its Cholesky factorization M =

LL�. Let (Ũ ,Σ ,Ṽ ) denote the singular value decomposition of Ỹ := L�Y , i.e. Ỹ =
ŨΣṼ� with Ũ ∈R

N×N , Σ ∈R
N×l , and Ṽ ∈R

l×l and Σ a diagonal matrix containing
the singular values 0≤ σi in decreasing order for 1 ≤ i≤ l, where we assume l ≤N.
We set

U := L−�Ũ(:,1:k) ≡ [u1, . . . ,uk]. (17)

Then, the k-dimensional POD basis of span{
N
∑
j=1
yijφ j, i= 1, . . . , l} ⊆ YN is given by

span{
N

∑
j=1
uijφ j, i= 1, . . . ,k}.

Note that one chooses k ≤ m, where σm > 0 denotes the smallest non-vanishing
singular value. The expression 1−Δ(k)2 is a measure of the information content of
the subspace spanned by the first k POD basis functions, where

Δ(k) =

√
1− ∑ki=1σ2i

∑li σ2i
. (18)
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