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Abstract: We consider a parabolic optimal control problem with pointwise state constraints. The
optimization problem is approximated by a discrete control problem based on a discretization of the
state equation by linear finite elements in space and a discontinuous Galerkin scheme in time. Error
bounds for control and state are obtained both in two and three space dimensions. These bounds follow
from uniform estimates for the discretization error of the state under natural regularity requirements.
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1 Introduction

Optimal control of time-dependent production processes plays an important role in many
practical applications such as crystal growth [8, 12, 13] and cooling of glass melts [4, 16].
These processes are frequently described by systems of partial differential equations involv-
ing the temperature as a system variable. A need to avoid overheating of the device or to
prevent solidification/melting at the wrong places then naturally leads to pointwise bounds
on the temperature variable. The introduction of pointwise state conditions however yields
adjoint variables and multipliers which only admit low regularity complicating the analysis
of the necessary first order conditions. These problems need to be taken into account in the
numerical approximation and necessitate the development of tailored discrete concepts.

In the present work we consider an optimal control problem for the heat equation and with
pointwise bounds on the state. The optimization problem is approximated using variational
discretization [10] combined with linear finite elements in space and a discontinuous Galerkin
scheme in time for the discretization of the state equation, compare [11, Chapter 3]. Our main
result are L?-error estimates for the optimal state and the optimal control. To derive these
bounds, uniform estimates for the discretization error of the state under natural regularity
requirements are proved. For the numerical analysis of the optimal control problem we use an
approach which avoids error estimates for the adjoint state and which was developed in [5],
[11, Chapter 3] for the analysis of elliptic optimal control problems with state and gradient
constraints.

To the best of the authors knowledge numerical analysis of parabolic optimal control problems
with pointwise bounds in space-time for the state has not yet been considered in the literature.
In this work we present the numerical analysis for our result of Theorem 4.1 which we already
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announced in [9]. However, there are some contributions on the analysis of related control
problems. In [14] Lavrentiev regularization of state constrained parabolic control problems is
investigated, optimal control problems with pointwise state constraints in time and averaged
state constraints in space are considered in [1]. We note that numerical analysis for this
particular setting is announced by Vexler in [9]. Optimality conditions for parabolic optimal
control problems in the presence of state constraints are investigated in [6], where further
references on analysis aspects of state constrained parabolic control problems can be found.

2 The optimal control problem

Let Q C R? (d = 2,3) be a bounded convex polygonal domain, T' > 0, Q7 := Q x (0,T) and
I'p :=09Q x (0,T). Let us consider the initial boundary value problem
y—Ay = f inQp (2.1)
0
8—5 = 0 onlrp (2.2)
y(-n0) = y inQ. (2.3)

It is well-known that for a given f € L%(0,T;L?(Q2)),y0 € H'(Q) problem (2.1)-(2.3) has a
unique solution y € C°([0,T]; H'(2)) N L?(0,T; H*(R)). In what follows we shall keep the
initial datum yo fixed and denote by y the solution of (2.1)—(2.3) corresponding to f = 0.
This allows us to write the solution of (2.1)—(2.3) in the form

y=G(f)=09+%(f), (2.4)

where Go(f) is the linear operator that assigns to f the solution of (2.1)—(2.3) for yo = 0.
Note that if f € L*(0,T; H'(2)) and

yo € H2(Q) with % =0 ondQ, (2.5)

then we have
yeW :={we C%0,T]; H*(Q)) | w; € L*(0,T; H*(Q))}

and

T T
s WO+ [ @ Bde < CQluollye + [ 170)Enat) (2.6
SUS 0 0

We remark that W C C°(Q7) since we have the continuous embedding H?(Q2) — C°() for
d=2,3.

Next, suppose that the functions fi,..., f,m, € HY(2) N L®() are given and define U :=
L2(0,T;R™) as well as B : U — L2(0,T; H'(Q)) by

(Bu)(z,t) =Y _wi(t)fi(z), (x,t) € Q.
=1

This parametrization of the control is motivated by practical considerations. The functions
fi represent given practical control actuations, whose impact is controlled through the time-
dependent amplitudes u; which in our context play the role of control functions.

Note that (2.6) implies that y = G(Bu) € W for u € U with

T T
s IO+ [ @) Bnde < CQluolle + [ lu(o)Pde), (2.7)
SUS 0 0
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where the constant C' depends in addition on the H'norms of fi,..., fm.
Let us denote by M(Qr) the space of regular Borel measures on Q. Given p € M(Qr) we
consider the following backward parabolic problem

—pr—Ap = po, inQp (2.8)
dp

5, — Mrroon I'r (2.9)

o(\T) = pr inQ. (2.10)

]:—Iere7 BQp = M‘QT7 UDp = I[,LIFT and M = N‘Qx{T}

Theorem 2.1. There erxists a unique function ¢ that belongs to L*(0,T; W19 (Q)) for all
s,0 € [1,2) with 2 + g > d+ 1 and which solves (2.8)—-(2.10) in the sense that

T T aw
/ (wy — Aw, ) +/ / —p= / wdp Yw € Wy, (2.11)
0 o Joo Ov Qr

where W§° = {w € W|w(-,0) = 0 in Q,w; — Aw € L®(Qr), 2% € L>®(Ty)}. Here, (.,.)
denotes the inner product in L*(9).

Proof. See [6], Theorem 6.3. |

Note that ¢ € L'(0,7; WH1(Q)) so that all integrals in (2.11) exist.
We consider the optimization problem

T T
apy | mimerd@= 5 [ st o § [

s.t. y = G(Bu), and y(z,t) >0, (z,t) € Qr,

(2.12)

where § € HY(0,T;L*(Q)) is given. From now on we shall assume (2.5) and that
min,cq yo(x) > 0. It is not difficult to verify with the help of a comparison argument that
the function ¢ in (2.4) satisfies

g(z,t) > 0, (z,t) € Qr. (2.13)

Since the state constraints form a convex set and the set of admissible controls is closed and
convex one obtains the existence of a unique solution v € U to problem (2.12) by standard
arguments.

Theorem 2.2. Let u € U denote the unique solution of (2.12). Then there exist u € M(Qr)
and a function p € L*(0,T; W1 (Q)) for all s,0 € [1,2) with 2 + g > d+ 1, such that with
y = G(Bu) there holds

T T ow T
/ (wy — Aw, p) + / P = / (y — 7, w) +/ wdp  Yw e Wy°, (2.14)
0 0 Joa OV 0

Qp
au(t) + ((p( 1) f1) =y =0 a.e. in (0,T), (2.15)

u<0, y(z,t) >0,(x,t) € Qr and / ydu = 0. (2.16)
Qr

Proof. We apply Theorem 5.2 in [3] (compare also [2, Theorem 2|) with the choices U =
L%(0,T;R™), Z = C°Qr), K = U and

C={zcZ|z(x,t) >0 V(x,t)€Qr}.



Furthermore, let G : U — Z,G(v) := G(Bv) = § + Go(Bwv). Clearly, DG(u)v = Go(Bv) so
that we obtain in particular with the choice ug =0

G(u) + DG(u)(up — u) = § + Go(Bu) — Go(Bu) = g € int(C)

by (2.13). According to Theorem 5.2 in [3] there exists pu € (C’O(Q_T))/ = M(Q7) such that

/_(2 —y)dp < 0 VzeC(, (2.17)
Qr
J'(w)v + (DG(u)*p,v)y = 0 YveU. (2.18)

Standard measure theoretic arguments imply that p < 0 and that suppy C {(z,t) €
Qr|y(z,t) = 0} giving (2.16). Since yo > 0 in § this yields in particular that suppu C
2 x (0,T). Next, we calculate

T T
J (u)v = /0 (Y — Yy yo) + a/o u-v, v €U, wherey, = Go(Bv). (2.19)

Furthermore, since DG (u)v = y, we have

(DG ()", v)r = / ol

Qrp
Hence, combining (2.18) and (2.19) we derive
T T
/ (y—ﬂ,yv)-l-a/ u-v+/yvd,u:0 Vv e U. (2.20)
0 0 Qr

In view of Theorem 2.1 there exists a unique solution p € L*(0,T; W9 (2)) (s, o € [1,2) with
% + g > d + 1) of the backward parabolic problem

—pt—Ap = y—y+poe, inQr (2.21)
dp

5, — HKrr on Ip (2.22)

p(,T) = pr in (2.23)

so that

T T ow T
/ (wy — Aw, p) —I—/ / —p= / (y —g,w) + /wd,u Yw € Wge. (2.24)
0 0 Joa Ov 0 Qr

It remains to verify (2.15). If v € C§°(0,T'; R™) then y,, = Go(Bv) belongs to Wi° because we
have assumed that f; € L>°(Q),i = 1,...,m. Hence we deduce from (2.20), (2.24) and the
definition of y, that

T T T T
0 = / (y_y7yv)+a/ u'”""/_yvdﬂz/ (yv,t_Ayvyp)+a/ u-v
0 0 Qr 0 0
m T
=1

Since v € C§°(0,T;R™) is arbitrary we obtain (2.15). 1



3 Discretization

Let 73, be a quasi-uniform triangulation of  with maximum mesh size h := maxgc7, diam(S).
Let us denote by x1,...,z; the set of nodes of 7;,. We consider the space of linear finite
elements

X = {on € C°(Q)| éy is a linear polynomial on each S € 7,}.

We denote by I, the usual Lagrange interpolation operator and by Py, : L?(2) — X} the
L2 projection, i.e.
(z,0n) = (Prz,¢n)  You € Xp.

Furthermore, let Ry, : H'(Q2) — X}, be the Ritzprojection, defined by the relation
(VRpz,Von) + (Brz, ¢n) = (V2,Vén) + (2,0n) Vo € X (3.1)
It is well-known that
|z — Rpz|| + hl|V(z — Rp2)|| < ChR™||z|gm Vz € H™(), m =1,2. (3.2)

We shall also require a uniform bound on z — Ry z. Using interpolation and inverse estimates
together with (3.2) we find for z € H?(Q) that

||Z — RhZHLoo < ||Z — IhZHLoo + ||Ihz — RhZHLoo (3.3)
< Ch¥2||z|| g2 + Ch™2|[Inz — Rpz| < ChE 2|2 .

Furthermore, we have the following estimate for functions ¢, € X,

[6nllLoe < Cp(d, b)||onll (3-4)

where

Vl]loghl|, d=2,
1

p(d,h) = .
K"z, d=S3.

Next, let 0 =tg <t; < ... <ty_1 <ty =T a time grid with 7, := ¢, —t,_1,n=1,...,N
and 7 := maxj<,<nN Tp. We set
Wiy ={®:Qx[0,T]|®(-,t) € X}, is constant in t € (tn_1,tn),1 <t < N}.

For Y, ® € W}, » we let

N N
AY, @) =) r (VY™ VO") + > (V" Y"1 e7) + (v, 0}),
n=1 n=2

where ®" := ®" &% = lim, o+ (¢, + s). Given u € U, our approximation Y € W}, . of the
solution y of (2.1)—(2.3) is obtained by the following discontinuous Galerkin scheme:

N prtn
Av.8) =Y [ (Bu@. e+ 08 vee W, (35)
n=1"tn-1

The above solution will be denoted by Y = Gy, -(Bu). We have the following uniform error
estimate.



Theorem 3.1. Let u € U,y = G(Bu),Y = Gy -(Bu). Then

eyt ta) = Y7l < Cpld W+ V) (ol + lullo)
Proof. We begin by deriving an error relation using standard arguments. Take ® € W), ;,
multiply (2.1) by ®” € X}, and integrate over Q X (t,—1,t,): Abbreviating y" := y(-,t,) we
have

tn tn
(y" —y" L, o") —I—/ (Vy, VO"™)dt = / (Bu(t), ®")dt, 1<n<N. (3.6)
th—1 tn—1
Next, let us introduce Y € Wi by
Y (-,t) := Rpy™, t € (th_1,tn),1 <n < N. (3.7)

Using (3.6) along with (3.1) we derive by straightforward calculation

A(Y, ®) Z/t (Bu(t), ®") + (yo, ®%) + r(®) Vo e Wy, -,

tn—1

where
N tn
Z (Vy" — T— Vydt, V") + Zm y" — Ruy", @") (3.8)
n=1 tn—1 n=1
N 4
A (R =y ) = " =y ), ") + (Ruy' —y @Y = ) (@)
n=2 j=1

As a consequence, the error E:=Y —Y € Wi, satisfies
A(E,®) =r(P) Vo € Wy, (3.9)

Let us fix [ € {2,..., N} and define ® € W}, ; by

0, n=1orn>lI,
P = E" — En—l
—  2<n<lL
Tn
Inserting @ into (3.9) yields
- B! 2, 2 1 12, L l 112
anll 17+ HVE 1" = SIVES" + 5 DIVE" =B =r(@).

Let us estimate the integrals in the remainder term r(®). To begin,

A

r (@) < ZIIW ——/ (B)dt|| |V (E" — E" )

IN

1 3 T
LS S - B o JRLRE
n=2



We infer from Young’s inequality and (3.2) that

n—

l
1 E" - F
< n _ n n_ gpn-l) < = 2 4
@) < Yol — Ry B~ B < 3 3l O mas,

Finally, again by (3.2),

r3(®) |<Chz—lly —y" Ml E" - EMY|
n=2

! 1 tn 5 L 1 1 ! Ev _— pn—1 ) ) T )
< Ch / Ll ) FEn — B < DS 2R e oy / el
;ﬂ( - Hl) 4; n T 0 H!

Since 74(®) = 0 we obtain upon combining the above inequalities and recalling (2.7) that

—_

— En— 1
5 ZTnH 1>+ HVEIH2 < SIVE'? + C(h® + 1) (lyoll e + lullf).  (3.10)

[\

It remains to estimate |[VE!|?. We insert ® € W), , with ®! = ¢, € X}, ®" = 0,n > 2 into
the error relation (3.9). After straightforward calculations we obtain

1M
m(VELVén) + (Bay' =Y, én) =mi(Vy' = — | Vydt, Vén) +71(y" — Ray', on)
to
for all ¢5, € Xj. Choosing ¢y, = Pyt — Y = E' + (Pyy' — Rpy') we have

1M
n||[VEY? + || Py’ = YH? = 71 (Vy' — — |Vt VE' + V(Pyy' — Rpy"))
to

+71(VEL, V(Rpy' — Poy')) + 1i(y' — Rpy', Py’ — Y1)

IN

3
T (/t [Vye|[*dt) 2 (HVElﬂ +IV(Rpy' — PuyH)l) + 1l VEY [|V(Ruy* — Puyh)||
+O71|ly" — Ry | Puyt — Y

1 h
< S(IVEP + [Pt = YUR) + Oribly e + O [ |Vl
to
Hence, recalling (2.7),
1
IVE? + T—lllthy1 Y2 <O+ 1) (Ilyoll e + llulif)- (3.11)

Inserting (3.11) into (3.10) we deduce that
ZTnH e I+ max [[VE"|[> < C(h* +7)(llyoll32 + llullf)- (3.12)
1<n<N - =
Furthermore, we infer from (3.11) and (3.12) for 1 <n < N,

n
IE™| < IEY -+ IE —E7Y|
=2
n

1Pay' = Y+ | Bay' — Pyl + (37l

i=2 i=1
C(h+v7)(llyollz + llullv)-

Ei _ Ei—l 5

IN

IN
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Combining this estimate with (3.12) we obtain

Cmax Bl < O(h+v) (ol + lully). (3.13)

Finally, we infer with the help of (3.3), (3.4), (2.7) and (3.13) that

—dyn n
ly" =Y < " = Rpy"llzee + | E" |1 < CR*2||y" || 2 + Cp(d, k)| E™|| 1
< Cp(d h)(h +V7) (lvoll gz + llullv),
which completes the proof. |

Remark 3.2. Note that the error bound in Theorem 3.1 is derived under the condition that
the right hand side and hence the time derivative of the solution is only square integrable in
time. Classical results known from the literature require higher regularity requirements, see
e.g. [7, Theorem 1.2] and thus are not applicable in our case. A situation that is comparable
to ours in that the time derivative only belongs to some LP—space is considered in [15]. For a
function

y € W2 Q) = {z € LP(0.T;sW?P(Q)), 2 € LP(0,T; LX)} (p>2)

with y = 0 on I'y the following parabolic projection is analyzed: Y = Ij,59 and
1 - n 1 n n— —n
;(Yn -Y" 17 th) + (VY ,VQSh) = ;(y -y 17 ¢h) + (Vy 7V¢h)

for all ¢y, € Xpo := X5, N HY(Q),1 < n < N. Here, y" = y(-,t,,) and " = % ti;il y(-, t)dt. Tt
is shown in [15, Theorem 4.1] that

Y. < 2-4/p | 11-2/p
Jmax [ly" = Y|z < Cp?llog AP (W77 + 712) [yl (3.14)

provided that d = 2 and 7 > C*|log h|>h?. We expect that the techniques in [15] can be
applied to the scheme (3.5) and Neumann boundary conditions provided that the solution
has the necessary regularity.

Remark 3.3. In what follows we shall assume that the time step is coupled to the spatial
grid size h in such a way that 7 = o(p(d,h)™2) as h — 0. With this choice we infer from
Theorem 3.1 that

max ly(tn) =¥z =0, h—0.

We use the variational approach of [10] in order to discretize our optimal control problem as
follows:

T
it Jn (1) : }jfnnY" I+ [ P
0

s.t. Y =Gy - (Bu) and Y"(:Ej) >0,1<j<J,1<n<N.

(TP, (3.15)

As a minimization problem for a quadratic functional over a closed and convex domain, (T'P)p,
has a unique solution uj, € U. Furthermore, using [3, Theorem 5.2] again, we conclude that



there exist ,u;-‘ €R,1<n<N,1<j<Jaswell as P e Wy, such that

N N J
P) = ZTn( —qg", ") Z Z Ty Vo e Wy -, (3.16)
n=1 n=1j=1

o (t ) =0 a.e. in (tp_1,t,), (3.17)

N
pp <0, Y™(x;) >0, and Z (3.18)

IIM&
|

Let us define the measure up, » € M(Qr) by

N J
/Qfdlu’hﬂ' = Z Zf(xj,tn)u?, fec®@Qr).

n=1 j=1

As a first result for (3.15) we prove that the sequence of optimal controls, states and measures
fth,r are uniformly bounded.

Lemma 3.4. Let up, € U be the optimal solution of (3.15) with corresponding state Y =
Gh~(Buy) and adjoint variables P € Wi, » and pp, - € M(Qr). Then there exists hg > 0 such

that N
Sl + / fun(8)] dt+ZZ|uj| <C  forall0<h<h
n=1

n=1 j=1

Proof. We infer from (2.13) that there exists 6 > 0 such that

~g(0)>6 O

<

Theorem 3.1 then implies that ¥ := G +(0) € W), ; satisfies

- o
Y'(rj) 25, 1<n<N1<j<J0<h<h. (3.19)
Using (3.18) and (3.16) we obtain
N J N J
DoV il =0 > (Y () = Y (5))u
n=1 j=1 n=1 j=1
N
= = BTy Y"-Y") + AY -V, P)
n=1
N m
- Y L2y gy g7 + 303 st (P )
n=1 n=1 =1

1 n||2 T 2
< —gnz_jlmuy o [ uPa+c

recalling that Y = gth(Buh),Y = Gp+(0) as well as (3.17). Combining this estimate with
(3.19) implies the result. 1



4 Error estimate
Theorem 4.1. Let u be the solution of (T'P), uy the solution of (T'P); with corresponding
states y = G(Bu) and Y = Gy, -(Buy). Then

N T
> Tally(ta) = Y7 + /0 lu(t) — up(t)*dt < Cp(d, h)(h +/7) + CT.
n=1

Proof. Let us write

T T T
o / () — un(O)Pdt = a / w(t) - (u(t) — un(t))dt — a / wn(t) - (ult) — un(t))de
0 0 0
= I+11. (4.1)

In order to deal with I we choose a sequence (vg)gen,vr € C§°(0,T;R™) such that vy, — u—up
in L2(0,T;R™) as k — oo. Furthermore, let y" := G(Buy,) and 2, := Go(Buvy,). Note that
2z, € W§° in view of the smoothness of v, and the fact that f; € L>(Q),i = 1,...,m. In
addition, (2.7) yields

Iy = ") = 2tllcor) < € max 1y = y") (@) = 2 () 2 (4.2)

< C(/OT\(u—uh)(t) — v/Lc(t)lzdt>é — 0,k — o0.

Hence, we infer from (2.15), the definition of zx, (2.14) and (4.2) that

T T m
I = « klim u(t) - v (t)dt = — klim Z vi(t) (p(-, 1), fi)dt
T T

= — lim (Bug,p)dt = — lim (2t — Azg, p)

k—oo Jo k—oo Jq

T T , .

= — lim {/ (y—g,Zk)+/zkdu} = -9y —y)+/(y — y)dp.

—00 0 Qr 0 Qp

Recalling (2.16) we may continue

N
I = Y m@" =g " =y + /(yh)‘du
n=1 Qr

N rtn
+Z/ (=0.9"—y) — W =gy =y =L+ L+ 1.
n=1 t

n—1

Here, we have abbreviated y~ = min(y, 0). Let us start with the second term. For (z,t) €
Q % (tp—1,tn) we deduce upon recalling (3.3), (3.4), Theorem 3.1 and the fact that Y™ (z) >

10



0,z €

(") (@, O < 1" (@ t) = ") (2, t)] + (") (2, t0) — (V™) (2)]

< I ) = )] Iy @ ) = Y7 (@)
< 2 max [ly(,5) = Ruy’ (2 8) [z + 1By (1) = B (ot o+ 7 = Y"1
< On*73 ma [y ()l + Cold, W|Ray" 1) = Ba ()

+Cp(d: 1)+ /) (ol + 1) (13)
< Cpld, )+ V) (ol + llunllr) + Cplds ) / Rl )

< Cp(d,h)(h+ v7)(llyollu= + lunllv) < Cp(d, h)(h + V)

in view of (2.7) and Lemma 3.4. By continuity this estimate also holds at the points ¢ =
tn,mn=0,...,N. An elementary calculation shows that

N tn
5] < CTZ/t (el + el =+ gelt) (Il + Ny + Wizl e
n=1""‘n-1
< Cr. (4.4)

Inserting the estimates (4.3) and (4.4) into our formula for I we have

N
Z (" — 7",y —y™) + Cp(d, h)(h + /T) + CT. (4.5)

Next, let us introduce Y = Gy, ,(Bu). Then, (3.17), (3.16) and (3.18) imply that

Il = ZZP"fZ/

n=1 i=1 -

N J
= ZTH(Y”—Q",?"—Y”)—FZZ (Y™ (x;) — Y™( (z5))15
n=1 n=1 j=1

tn ~
i — up)(t)dt = Z/ (P",B(u—up)) = A(Y —Y, P)
tn—1

IA

N

n_ =n yn__yn n
Zlm(Y gLYT =Y 4 max (Y %IZZI%
n—=

n=1 j=1
Recalling that y > 0 in Q7 we have for 1 <n < N,1<j<J
(V™) (25) =y~ (a5, t0)| < [Y™(25) = yl(aj, tn)]

< Y™ =y tn)llee < Cp(d, h)(h+v/7) (Ilyoll a2 + lullv)
< Cp(d, h)(h+ V1)

[(Y")™ ()]

again by Theorem 3.1. As a result,

N
IT<Y 7Y =g Y™ = Y™) + Cp(d, h)(h+ /7). (4.6)

11



Inserting (4.5) and (4.6) into (4.1) we have
T
a/ [u(t) — up (t)2dt
0

N N
< D m =T ) D (YT =g Y = Y™) + Cp(d, h) (b + v/7T) + CT
n=1 n=1

N
— ZTH/Q { _ (yn _ Yn)2 + (Yn _ gn)(?n _ yn) + (yn _ gn)(yh,n _ Yn)}
n=1
+Cp(d,h)(h ++/T) +CT

N
< = mllyt = Y|P+ +Cp(d, h)(h + v/7) + CT

n=1

where we once more used Theorem 3.1. The proof is complete. |

The order of convergence obtained in Theorem 4.1 is essentially determined by the error
bound in Theorem 3.1, which in turn is limited by our regularity assumptions on the control
u. A situation in which one can expect better error bounds occurs when additional control
constraints of the form

a<ui(t)<b ae. in (0,7),i=1,...,m

are prescribed. Here, a < b are given constants. Then, Bu € L*°({27) so that parabolic
regularity theory implies that y € WI? ’1(QT) for all p < oo. Recalling Remark 3.2 it seems
possible to us that an error bound of the form

N T
S rullyota) = Y7+ [ Jut) — un0)Pd < C (#4717 (>0
n=1 0

can be proved in this situation.
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