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Abstract

The Easy Path Wavelet Transform (EPWT) [19] has recently been proposed by
one of the authors as a tool for sparse representations of bivariate functions from discrete
data, in particular from image data. The EPWT is a locally adaptive wavelet transform.
It works along pathways through the array of function values and it exploits the local
correlations of the given data in a simple appropriate manner. In this paper, we show that
the EPWT leads, for a suitable choice of the pathways, to optimal N -term approximations
for piecewise Hölder continuous functions with singularities along curves.
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1 Introduction

During the last few years, there has been an increasing interest in efficient representations
of large high-dimensional data, especially for signals. In the one-dimensional case, wavelets
are particularly efficient to represent piecewise smooth signals with point singularities. In
higher dimensions, however, tensor product wavelet bases are no longer optimal for the
representation of piecewise smooth functions with discontinuities along curves.

Just very recently, more sophisticated methods were developed to design approximation
schemes for efficient representations of two-dimensional data, in particular for images,
where correlations along curves are essentially taken into account to capture the geometry
of the given data. Curvelets [2, 3], shearlets [12, 13] and directionlets [24] are examples
for non-adaptive highly redundant function frames with strong anisotropic directional
selectivity.
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For piecewise Hölder continuous functions of second order with discontinuities along
C2-curves, Candès and Donoho [2] proved that a best approximation fN to a given function
f with N curvelets satisfies the asymptotic bound

‖f − fN‖2 ≤ C N−2 (log2N)3,

whereas a (tensor product) wavelet expansion leads to asymptotically only O(N−1) [17].
Up to the (log2N)3 factor, this curvelet approximation result is asymptotically optimal
(see [9], Section 7.4). A similar estimate has been achieved by Guo and Labate [12]
for shearlet frames. These results, however, are not adaptive with respect to the assumed
regularity of the target function, and so they cannot be applied to images of less regularity,
i.e., images which are not at least piecewise C2 with discontinuities along C2-curves.

In such relevant cases, one should rather adapt the approximation scheme to the image
geometry, instead of fixing a basis or a frame beforehand to approximate f . During the last
few years, several different approaches were developed for doing so [1, 7, 8, 10, 11, 14, 15,
16, 18, 19, 20, 21, 22, 23]. In [16], for instance, bandelet orthogonal bases and frames are
introduced to adapt to the geometric regularity of the image. Due to their construction,
the utilized bandelets are anisotropic wavelets that are warped along a geometrical flow
to generate orthonormal bases in different bands. LePennec and Mallat [16] showed that
their bandelet dictionary yields asymptotically optimal N -term approximations, even in
more general image models, where the edges may also be blurred.

Further examples for geometry-based image representations are the nonlinear edge-
adapted (EA) multiscale decompositions in [1, 14] (and references therein), being based
on ENO reconstructions. We remark that the resulting ENO-EA schemes lead to an
optimal N -term approximation, yielding ‖f − fN‖2 ≤ C N−2 for piecewise C2-functions
with discontinuities along C2-curves. Moreover, unlike previous non-adaptive schemes,
the ENO-EA multiresolution techniques provide optimal approximation results also for
BV -spaces and Lp spaces, see [1].

In many relevant applications to image denoising and image regularization, the space
BV containing all functions of bounded variation plays an important role. The space
BV seems to be well-adapted to model natural images, since it also allows sharp edges,
unlike the bivariate Besov space B1

1(L1), see [4]. However, in case of BV spaces, there
is no simple data representation, e.g. in terms of wavelet coefficients. For useful relations
between Haar decompositions on dyadic rings and the space BV we refer to [5].

In this paper, we prove optimal N -term approximations for a function class being very
close to the space BV . For this purpose, we use the locally adaptive Easy Path Wavelet
Transform (EPWT) which has recently been explored in our previous paper [19]. The
EPWT applies a one-dimensional wavelet transform along suitable pathways of data vec-
tors, where local correlations of the given data are essentially exploited. As supported by
our numerical experiments in [19], the EPWT leads to an efficient compression method for
two-dimensional digital data, especially for image data. But in this paper we focus on the
approximation properties of the EPWT, particularly for piecewise smooth images. More
precisely, we show that the application of the EPWT leads to an N -term approximation
of the form

‖f − fN‖2
2 ≤ C N−α (1.1)

for piecewise Hölder continuous functions of order α (with 0 < α ≤ 1) with allowing
discontinuities along curves of finite length.
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The outline of this paper is as follows. In Section 2, we first introduce the EPWT
algorithm, before we apply the resulting approximation method to target functions from a
function class to be described. To this end, we recall the basic ideas of the EPWT, where
we show that it generates a data-dependent multiresolution analysis and a corresponding
adaptive Haar wavelet basis. In order to achieve optimal approximation results, we require
specific side conditions for the path vectors that are used in the EPWT algorithm. These
side conditions are derived in Subsection 2.3, and further illustrations are given through a
numerical example in Subsection 2.4. Finally, Section 3 is devoted to error analysis, where
we prove asymptotically optimal N -term error estimates of the form (1.1) for piecewise
Hölder continuous functions.

2 EPWT and Adaptive Haar Wavelet Bases

2.1 The EPWT Algorithm

Suppose that F ∈ L2([0, 1)2) is a piecewise regular image, being uniformly regular over a
finite set of regions {Ωi}1≤i≤K , each of whose boundaries ∂Ωi is continuous and of finite
length. Moreover, the set {Ωi}1≤i≤K is assumed to be a disjoint partition of [0, 1)2, so
that

K
⋃

i=1

Ωi = [0, 1)2,

where each closure Ωi is assumed to be a connected subset of [0, 1]2, for i = 1, . . . ,K.
Furthermore, we assume that F satisfies a Hölder condition in each region Ωi, 1 ≤ i ≤ K,
i.e.,

|F (x) − F (x+ h)| ≤ C‖h‖α
2 , for x, x+ h ∈ Ωi (2.1)

for some α ∈ (0, 1] and C > 0 which do not depend on i. But F may be discontinuous
across the boundaries between adjacent regions.

With assuming that F represents a digital image, the image is given by uniform samples
of F over a rectangular grid. For a suitable given integer J > 1, let {F (2−Jn)}n∈IJ

be the
given samples of F , where IJ := {n = (n1, n2) : 0 ≤ n1 ≤ 2J − 1, 0 ≤ n2 ≤ 2J − 1}. We
regard the piecewise constant function

F 2J(x) :=
∑

n∈IJ

F (2−Jn)χ[0,1)2(2
Jx− n) for x ∈ [0, 1)2

as an approximation to F in L2([0, 1)2). Moreover, by

ΓJ
i :=

{

n ∈ IJ :
n

2J
∈ Ωi

}

for 1 ≤ i ≤ K

we denote the index set of grid points that are contained in region Ωi, for 1 ≤ i ≤ K.
Obviously,

K
⋃

i=1

ΓJ
i = IJ .

Furthermore, for the size #ΓJ
i of ΓJ

i we have #ΓJ
i ≤ 22J . Consequently, (2.1) yields the

error bound
|F 2J(2−Jn) − F 2J(2−Jm)| ≤ C 2−Jα ‖n−m‖α

2 , (2.2)
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provided that n,m ∈ ΓJ
i for some 1 ≤ i ≤ K.

Remark. Note that the data F 2J is obtained from F by interpolation, rather than
by its L2-projection onto the linear space

span{χ[0,1)2(2
J · −n) : n ∈ IJ}

of piecewise constant functions. We prefer to work with interpolation of F in order to
derive the error estimate (2.2) from the Hölder continuity of F in (2.1). �

Now let us briefly recall the EPWT algorithm from our previous work [19]. For the
sake of simplicity, we use the (one-dimensional) Haar wavelet basis. To this end, let

φj,k(t) := 2j/2 φ(2jt− k) and ψj,k(t) := 2j/2 ψ(2jt− k), (2.3)

with φ(t) := χ[0,1)(t) and ψ(t) := χ[0,1/2)(t) − χ[1/2,1)(t), where for any interval [a, b) ⊂ R,
χ[a,b) denotes its characteristic function.

The EPWT is a wavelet transform that works along path vectors through index subsets
of IJ . For the characterization of suitable path vectors (in Subsection 2.3), we first need
to introduce neighborhoods of indices and index sets. For any index n = (n1, n2) ∈ IJ , we
define its neighborhood by

N(n) := {m = (m1,m2) ∈ IJ \ {n} : |n1 −m1| ≤ 1 and |n2 −m2| ≤ 1}.

Hence, an interior index, i.e., an index that does not lie on the boundary of the index
domain IJ , has eight neighbors. A boundary index has either five neighbors (when it is
not a corner point of the domain) or three neighbors (when it is a corner point).

We consider disjoint dyadic partitions {Ij
ℓ : ℓ = 0, . . . , 2j − 1} of IJ for j = 0, . . . , 2J ,

where #Ij
ℓ = 22J−j , Ij

ℓ ∩ Ij
r = ∅ for ℓ 6= r, and

⋃2j−1
ℓ=0 Ij

ℓ = IJ for all j = 0, . . . , 2J . These
partitions are adaptively chosen during the performance of the EPWT. For fixed j, we say
that two subsets Ij

ℓ and Ij
r , with ℓ 6= r, are neighbors,

Ij
r ∈ N(Ij

ℓ ),

iff there exists an index n ∈ Ij
ℓ and an index m ∈ Ij

r such that m ∈ N(n).

Now the EPWT algorithm is performed as follows. At the first level, where j = 2J ,
the EPWT is applied along a path vector p2J (of length 22J) which consists of all indices
from IJ in a specific order: the vector p2J is built by concatenating K path vectors p2J

i ,
i = 1, . . . ,K, such that each p2J

i is a connected vector containing all grid points from ΓJ
i .

We say that a path vector p2J
i of length #ΓJ

i is connected, iff for ℓ = 0, . . . , ⌊#ΓJ
i /2 − 1⌋

the two neighboring indices 2ℓ and 2ℓ + 1 are connected, i.e., p2J
i (2ℓ + 1) ∈ N(p2J

i (2ℓ)).
Note that by this construction, the complete path vector p2J has only a finite number of
at most K − 1 interruptions, i.e., there are at most K − 1 indices 2ℓ, where the condition
p2J(2ℓ+ 1) ∈ N(p2J(2ℓ)) is not satisfied.

Note that the components of the path vector p2J lie in IJ , and so p2J contains 2d integer
entries, whereas the path vectors pj , with j ≤ 2J − 1, contain 1d integer entries. This is
in contrast to the notation in [19].
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We regard the univariate function

f̃2J(t) :=
22J−1
∑

ℓ=0

F 2J
(

p2J (ℓ)
2J

)

φ(22J t− ℓ) =
22J−1
∑

ℓ=0

f2J(p2J(ℓ))φ2J,ℓ(t) for t ∈ [0, 1)

along the path vector p2J = ((p2J
1 )T , . . . , (p2J

K )T )T , with φ2J,ℓ = 2Jφ(22J ·−ℓ) in (2.3), and
f2J(p2J(ℓ)) := 2−JF 2J(2−Jp2J(ℓ)). By using (2.2), the estimate

|f̃2J(2−2J+1ℓ) − f̃2J(2−2J(2ℓ+ 1))| =
∣

∣

∣
F 2J

(

p2J (2ℓ)
2J

)

− F 2J
(

p2J (2ℓ+1)
2J

)
∣

∣

∣
≤ C 2(−J+1/2)α

(2.4)
holds for ℓ ∈ {0, . . . , 22J−1 − 1}, as long as p2J(2ℓ) and p2J(2ℓ + 1) are connected and
contained in the same index set ΓJ

i for some 1 ≤ i ≤ K. Now we apply a one-dimensional

Haar wavelet transform to the given data set {F 2J(2−Jn)}n∈IJ
= {f̃2J(2−2Jℓ)}22J−1

ℓ=0 along
the path vector p2J , and so we obtain the scaling and wavelet coefficients

f2J−1(ℓ) := 〈f̃2J , φ2J−1,ℓ〉 = 2−J−1/2
(

F 2J
(

p2J (2ℓ)
2J

)

+ F 2J
(

p2J (2ℓ+1)
2J

))

(2.5)

= 2−1/2
(

f2J(p2J(2ℓ)) + f2J(p2J(2ℓ+ 1)
)

,

g2J−1(ℓ) := 〈f̃2J , ψ2J−1,ℓ〉 = 2−J−1/2
(

F 2J
(

p2J (2ℓ)
2J

)

− F 2J
(

p2J (2ℓ+1)
2J

))

= 2−1/2
(

f2J(p2J(2ℓ)) − f2J(p2J(2ℓ+ 1)
)

,

for ℓ = 0, . . . , 22J−1 − 1, where we used the identities

〈φ(22J · −r), φ2J−1,ℓ〉 = 2−J〈φ2J,r, 2−1/2(φ2J,2ℓ + φ2J,2ℓ+1)〉
= 2−J−1/2(δr,2ℓ + δr,2ℓ+1)

and
〈φ(22J · −r), ψ2J−1,ℓ〉 = 2−J−1/2(δr,2ℓ − δr,2ℓ+1)

with δr,ℓ denoting the usual Kronecker symbol. For the wavelet coefficients, (2.4) yields
the estimate

|g2J−1(ℓ)| ≤ 1
2 C 2(−J+1/2)(α+1),

if p2J(2ℓ) and p2J(2ℓ+1) are connected and contained in the same index set ΓJ
i for some i.

The path vector p2J determines a partition of IJ into index sets

I2J−1
ℓ := {p2J(2ℓ), p2J(2ℓ+ 1)} for ℓ = 0, . . . , 22J−1 − 1.

Now we consider the “low-pass” image

F 2J−1(x) :=
22J−1−1

∑

ℓ=0

f2J−1(ℓ)h2J−1,ℓ(x) for x ∈ [0, 1)2 (2.6)

with the L2-normalized characteristic functions

h2J−1,ℓ(x) := 2J−1/2
(

χ[0,1)2(2
Jx− p2J(2ℓ)) + χ[0,1)2(2

Jx− p2J(2ℓ+ 1))
)
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corresponding to the index sets I2J−1
ℓ , for ℓ = 0, . . . , 22J−1 − 1.

As regards the performance of the EPWT at the second level, where j = 2J − 1, we

first locate a second (almost) connected path vector p2J−1 = (p2J−1(ℓ))2
2J−1−1

ℓ=0 through

the index sets I2J−1
ℓ , ℓ = 0, . . . , 22J−1 − 1, i.e., the entries of p2J−1 are a permutation

of the index set {0, . . . , 22J−1 − 1}, and we require I2J−1
p2J−1(2r+1)

∈ N(I2J−1
p2J−1(2r)

) for all

r ∈ {0, . . . , 22J−2 − 1} (up to a finite set of indices whose size does not depend on J).
Then, we apply the (one level) Haar wavelet transform to

f̃2J−1(t) :=
22J−1−1

∑

ℓ=0

f2J−1(p2J−1(ℓ))φ2J−1,ℓ(t) for t ∈ [0, 1)

which yields the scaling and wavelet coefficients

f2J−2(ℓ) := 〈f̃2J−1, φ2J−2,ℓ〉, g2J−2(ℓ) := 〈f̃2J−1, ψ2J−2,ℓ〉, ℓ = 0, . . . , 22J−2 − 1.

Like in the above construction, a corresponding “low pass” image

F 2J−2(x) :=

22J−2−1
∑

ℓ=0

f2J−2(ℓ)h2J−2,ℓ(x) for x ∈ [0, 1)2

is obtained, with h2J−2,ℓ being the L2-normalized characteristic functions of the index sets

I2J−2
ℓ := I2J−1

p2J−1(2ℓ)
∪ I2J−1

p2J−1(2ℓ+1)
for ℓ = 0, . . . , 22J−2 − 1,

i.e.,

h2J−2,ℓ := 2−1/2
(

h2J−1,p2J−1(2ℓ) + h2J−1,p2J−1(2ℓ+1)

)

.

We continue by iteration over the remaining levels 2J− j, for j = 2J−2, 2J−3, . . . , 0,
where at any level 2J − j we first locate a path vector pj+1 = (pj+1(ℓ))2

j+1−1
ℓ=0 through

the index sets Ij+1
ℓ := Ij+2

pj+2(2ℓ)
∪ Ij+2

pj+2(2ℓ+1)
, ℓ = 0, . . . , 2j+1 − 1, before the Haar wavelet

transform is applied to

f̃ j+1(t) :=
2j+1−1
∑

ℓ=0

f j+1(pj+1(ℓ))φj+1,ℓ(t),

yielding

f j(ℓ) := 〈f̃ j+1, φj,ℓ〉, and gj(ℓ) := 〈f̃ j+1, ψj,ℓ〉, for ℓ = 0, . . . , 2j − 1.

2.2 Adaptive Haar Wavelet Bases

The EPWT algorithm of the previous subsection can be viewed as a tool for adaptive
multiresolution analysis. We can further explain this as follows. Let us consider the space
V2J of piecewise constant functions

V2J = span {h2J,ℓ : ℓ = 0, . . . , 22J − 1},
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where each h2J,ℓ is the L2-normalized characteristic function on one square with edge
length 2−J , i.e.,

h2J,ℓ := 2Jχ[0,1)2(2
J · −p2J(ℓ)) for ℓ = 0, . . . , 22J − 1.

Obviously, the function set {h2J,ℓ : ℓ = 0, . . . , 22J − 1} forms an orthonormal basis of
V2J , and the function F 2J , as defined in the last subsection, can be written as

F 2J(x) =
22J−1
∑

ℓ=0

2−JF (2−Jp2J(ℓ))h2J,ℓ(x) =
22J−1
∑

ℓ=0

f2J(p2J(ℓ))h2J,ℓ(x) for x ∈ [0, 1)2

with f2J(p2J(ℓ)) := 2−J F (2−Jp2J(ℓ)). By applying the first level of the EPWT with Haar

filters along the path vector (p2J(ℓ))2
2J−1

ℓ=0 , we determine the coarser function spaces

V2J−1(F ) := span
{

h2J−1,ℓ := 2−1/2 (h2J,2ℓ + h2J,2ℓ+1) for ℓ = 0, . . . , 22J−1 − 1
}

,

W2J−1(F ) := span
{

Ψ2J−1,ℓ := 2−1/2 (h2J,2ℓ − h2J,2ℓ+1) for ℓ = 0, . . . , 22J−1 − 1
}

.

Note that the space V2J−1(F ) (resp. W2J−1(F )) is generated by piecewise constant func-
tions whose support usually consists of two neighboring squares of edge length 2−J . We
have V2J−1(F ) ⊂ V2J and W2J−1(F ) ⊂ V2J . Moreover,

V2J−1(F ) +W2J−1(F ) = V2J , V2J−1(F ) ⊥W2J−1(F ).

Hence, the first step of the EPWT yields an orthonormal decomposition of F 2J into
F 2J−1 ∈ V2J−1(F ) and G2J−1 ∈W2J−1(F ), with F 2J−1 in (2.6), and

G2J−1(x) =
22J−1−1

∑

ℓ=0

g2J−1(ℓ)Ψ2J−1,ℓ(x) for x ∈ [0, 1)2.

Proceeding further along these lines, we obtain for j = 2J − 1, 2J − 2, . . . , 0 the adaptive
scaling and wavelet spaces from the path vectors (pj+1(ℓ))2

j+1−1
ℓ=0 ,

Vj(F ) := span
{

hj,ℓ := 2−1/2
(

hj+1,pj+1(2ℓ) + hj+1,pj+1(2ℓ+1)

)

for ℓ = 0, . . . , 2j − 1
}

,

Wj(F ) := span
{

Ψj,ℓ := 2−1/2
(

hj+1,pj+1(2ℓ) − hj+1,pj+1(2ℓ+1)

)

for ℓ = 0, . . . , 2j − 1
}

.

The support of the orthogonal basis functions hj,ℓ ∈ Vj(F ) (resp. Ψj,ℓ ∈Wj(F )) usually
consists of connected areas generated by 22J−j squares with edge length 2−J . Obviously,
we have Vj(F ) +Wj(F ) = Vj+1(F ), Vj(F ) ⊥Wj(F ), and the function set

{h0,0} ∪ {Ψj,ℓ : j = 0, . . . , 2J − 1, ℓ = 0, . . . , 2j − 1}

forms an orthonormal basis of V2J .
The application of 2J levels to a function F 2J ∈ V2J by using the EPWT algorithm

finally yields a unique orthonormal decomposition

F 2J = F 0 +
2J−1
∑

j=0

Gj
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with F 0 = f0(0)h0,0 = f0(0)χ[0,1)2 , where

f0(0) =

∫

[0,1)2
F 2J(x) dx = 2−2J

22J−1
∑

ℓ=0

F 2J(p2J(ℓ))

and

Gj(x) :=
2j−1
∑

ℓ=0

gj(ℓ)Ψj,ℓ(x) for x ∈ [0, 1)2 for j = 0, . . . , 2J − 1.

2.3 Conditions for the Path Vectors

In this subsection, we fix two specific side conditions for the path vectors. The side
conditions are required for our error analysis in the following Section 3. The two side
conditions are termed (a) region condition and (b) diameter condition, as stated below.

To introduce the two conditions, let J > 0 be an arbitrary fixed integer. Suppose
that the path vectors (pj(ℓ))2

j−1
ℓ=0 , j = 1, . . . , 2J , are iteratively chosen at the levels of the

EPWT algorithm. We assume that their corresponding index sets Ij
ℓ , ℓ = 0, . . . , 2j − 1,

I2J
ℓ := {p2J(ℓ)} for ℓ = 0, . . . , 22J − 1,

Ij
ℓ := Ij+1

pj+1(2ℓ)
∪ Ij+1

pj+1(2ℓ+1)
for ℓ = 0, . . . , 2j − 1, 1 ≤ j < 2J,

are satisfying the following two conditions for every J > 0.

(a) Region condition. After the performance of the (2J − j)th level of the EPWT,
j ∈ {2J − 1, . . . , 0}, there are at most C1K index sets Ij

ℓ , whose components are not
completely contained in one region index set ΓJ

i for some i ∈ {1, . . . ,K}, and the
constant C1 does not depend on J or j.

(b) Diameter condition. After the performance of the (2J − j)th level of the EPWT,
j ∈ {2J − 1, . . . , 0}, almost all index sets Ij

ℓ , ℓ ∈ {0, . . . , 2j − 1}, whose components
are completely contained in one region index set ΓJ

i , for some i ∈ {1, . . .K}, possess
an almost optimal “diameter”, i.e., there is a constant D < ∞, being independent
of J and j, such that

diam Ij
ℓ = max

k1,k2∈Ij
ℓ

‖k1 − k2‖2 ≤ D 2J−j/2. (2.7)

Moreover, the number of index sets with Ij
ℓ ⊂ ΓJ

i , for some i, that do not satisfy
this optimal diameter condition, is bounded by a constant C2 < ∞ which does not
depend on J or j.

For notational simplicity, we denote by Λj the set of all indices ℓ ∈ {0, . . . , 2j − 1} for
which the index set Ij

ℓ is contained in ΓJ
i , for some i, and which satisfies the diameter

condition (2.7). By assumptions (a) and (b), at each level 2J − j, the number of indices
ℓ being not contained in Λj is bounded by C1K + C2.

Remark. Since each index set Ij
ℓ has by definition 22J−j elements, the diameter

condition can for instance be satisfied for even j, if the indices in Ij
ℓ are arranged in a

square of length 2J−j/2. In this case, condition (2.7) holds with D =
√

2. �
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2.4 Example

For the purpose of illustration, we consider one specific example for an image of size 16×16.
This numerical example demonstrates the efficacy of the EPWT algorithm. Furthermore,
it helps explain the region condition and the diameter condition of the previous subsection.
To this end, we consider a piecewise Hölder continuous function F and its interpolation
F 2J for J = 4, see Figure 1(a). The image F 2J consists of three regions, and we assume
that condition (2.2) (with a suitable constant C) is satisfied in each of these regions.

We aim to apply the EPWT algorithm such that the region condition (a) and the
diameter condition (b) are satisfied with small constants C1, D, and C2. In a first step,
we determine a path p8 of length 256 that is built by concatenating three connected
pathways p8

1 (background), p8
2 (approximation of circle) and p8

3 (approximation of sloping
bar), see Figure 1(b). The first indices of the pathways p8

1, p
8
2 and p8

3 are indicated by small
circles. In this example, the vectors p8

ν , for ν = 1, 2, 3, are even completely connected,
i.e., we have p8

ν(ℓ + 1) ∈ N(p8
ν(ℓ)), for ν = 1, 2, 3 and for ℓ = 0, . . . ,#Γ4

ν − 2. The path
vector p8 determines a low-pass image F 7, where we have also indicated the index sets
I7
ℓ , ℓ = 0, . . . , 127 that are determined by p8, see Figure 1(c).

There is only one index set, which does not satisfy the region condition, see the last
index (0, 15) of p8

1 in the right upper corner and the first index (2, 4) of p8
2 in Figure 1(c).

Hence, we have C1 = 1/3. Since there are index sets I7
ℓ of the form {m, n} with ‖m−n‖2 =√

2, the diameter condition (2.7) is satisfied with D = 1, and we have C2 = 0.

At the second level of the EPWT, a suitable path vector p7 determines a low-pass
image F 6, see Figure 1(d), with indicated index sets of size 4. There are only two index
sets, which do not satisfy the region condition, i.e., C1 = 2/3. Furthermore, there are
two index sets at the bottom of the image, which satisfy the diameter condition (2.7) only
with the constant D = 3/2, wheras all other index sets satisfy (2.7) with D ≤

√
5/2.

At the third level of the EPWT, a path vector p6 determines the low-pass image F 5,
see Figure 1(e), where we have also indicated the index sets of size 8. An appropriate
concatenation of those two index sets of size 4 that did not meet the region condition in
F 6 now leads to only one exception of the region condition, i.e., C1 = 1/3. We observe
that all other index sets in Figure 1(e) satisfy the diameter condition (2.7) with D =√

18/
√

8 = 3/2.

At the fourth level of the EPWT, we obtain the low-pass image F 4 in Figure 1(f) with
only one index set violating the region condition. Five index sets satisfy the diameter
condition with D =

√
45/4 ≈ 1.67705. The remaining index sets satisfy (2.7) with D ≤√

40/4 ≈ 1.58114. In this case, (level-independent) constants are C1 = 2/3, D =
√

45/4,
and C2 = 0.

3 Approximation Properties of the EPWT Algorithm

Recall that for given integer J > 0, the function F 2J is assumed to be the piecewise
constant approximation of the image F satisfying (2.2). In this section, we shall prove the
optimal N -term approximation to F by a suitably chosen EPWT, where the path vectors
are required to satisfy the region condition and the diameter condition of Subsection 2.3.

Let us first prove suitable estimates for the scaling and the wavelet coefficients.

9



(a) (b)

(c) (d)

(e) (f)

Figure 1: Application of the EPWT algorithm to a 16× 16 image. (a) interpolated image
F 8, (b) connected path p8 for F 8, (c) low-pass image F 7 with index sets of size 2, (d)
low-pass image F 6 with index sets of size 4, (e) low-pass image F 5 with index sets of size
8, (f) low-pass image F 4 with index sets of size 16.
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Theorem 3.1 Let F 2J be an image in V 2J satisfying (2.2) for each index set ΓJ
i , i =

1, . . . ,K, as determined in Subsection 2.1. For the application of the EPWT to F 2J

(according to Section 2), we assume that the path vectors (pj+1(ℓ))2
j+1−1

ℓ=0 , j = 2J−1, . . . , 0,
satisfy the region condition (a) and the diameter condition (b) of Subsection 2.3. Let
f2J(p2J(ℓ)) := 2−JF 2J(2−Jp2J(ℓ)), ℓ = 0, . . . , 22J − 1, and let f j(ℓ) = 〈f̃ j+1, φj,ℓ〉, j =
2J − 1, 2J − 2, . . . , 0, ℓ = 0, . . . , 2j − 1 be the scaling coefficients that are obtained by the
EPWT. Then, for all j = 2J, . . . , 0 and ℓ ∈ Λj−1, the estimate

|f j(pj(2ℓ)) − f j(pj(2ℓ+ 1))| ≤ 2α/2C Dα 2−j(α+1)/2 (3.1)

holds, where D > 1 is the constant of the diameter condition (2.7), and where C and
α are the Hölder constant and the Hölder exponent in (2.2). Furthermore, for all ℓ ∈
{0, . . . , 2j−1 − 1} \ Λj−1, we find the estimate

|f j(pj(2ℓ)) − f j(pj(2ℓ+ 1))| ≤ C ′ 2−j/2 (3.2)

with some constant C ′ being independent of J and j.

Proof. For j = 2J , estimate (3.1) follows directly from (2.4). By using the represen-
tation φ2J−1,ℓ = 2−1/2(φ2J,2ℓ + φ2J,2ℓ+1) we find

f2J−1(ℓ) = 2−J−1/2
(

F 2J
(

p2J (2ℓ)
2J

)

+ F 2J
(

p2J (2ℓ+1)
2J

))

= 2−J−1/2
∑

n∈I2J−1
ℓ

F 2J
(

n
2J

)

,

see (2.5). Hence,

|f2J−1(p2J−1(2ℓ)) − f2J−1(p2J−1(2ℓ+ 1))|
= 2−J−1/2

∣

∣

∣

∑

n∈I2J−1

p2J−1(2ℓ)

F 2J
(

n
2J

)

− ∑

n∈I2J−1

p2J−1(2ℓ+1)

F 2J
(

n
2J

)
∣

∣

∣

≤ 2−J−1/2 2C
(

2D
2J

)α
= 2α/2C Dα 2−(J−1/2)(α+1),

follows by I2J−2
ℓ = I2J−1

p2J−1(2ℓ)
∪ I2J−1

p2J−1(2ℓ+1)
and (2.2), where we note that the sets I2J−1

p2J−1(2ℓ)

and I2J−1
p2J−1(2ℓ+1)

contain only two indices and, moreover, the diameter condition

diam I2J−2
ℓ ≤ 2D

holds. Likewise, for general j ∈ {1, . . . , 2J − 1} we observe that f j(ℓ), as obtained by the
application of the (2J − j)th level of the EPWT algorithm, can be viewed as a weighted
average of function values F 2J(2−Jn) with n ∈ Ij

ℓ , i.e.,

f j(ℓ) = 2−J 1
2J−j/2

∑

n∈Ij
ℓ

F 2J
(

n
2J

)

,

where #Ij
ℓ = 22J−j . Hence, by using the diameter property for ℓ ∈ Λj−1, we obtain

|f j(pj(2ℓ)) − f j(pj(2ℓ+ 1))| = 2−2J+j/2

∣

∣

∣

∣

∣

∣

∣

∑

n∈Ij

pj(2ℓ)

F 2J
(

n
2J

)

− ∑

n∈Ij

pj(2ℓ+1)

F 2J
(

n
2J

)

∣

∣

∣

∣

∣

∣

∣

≤ 2−2J+j/2 22J−j C
(D 2J−(j−1)/2

2J

)α

= 2α/2C Dα 2−j(α+1)/2.
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Finally, since F (resp. F 2J) is bounded, we obtain

|f j(pj(2ℓ)) − f j(pj(2ℓ+ 1))| ≤ C ′ 2−j/2

for all indices ℓ ∈ {0, . . . , 2j−1 − 1} \Λj−1, with some constant C ′ being independent from
j. Note that the last estimate follows from the previous one by letting α = 0. �

We are now in a position to estimate the wavelet coefficients obtained by the EPWT.

Theorem 3.2 For j = 2J − 1, . . . , 0, let gj(ℓ) = 〈f̃ j+1, ψj,ℓ〉, ℓ = 0, . . . , 2j − 1, denote
the wavelet coefficients that are obtained by applying the EPWT algorithm to F 2J ∈ V2J

(according to Section 2), where we assume that F 2J satisfies (2.2). Further assume that

the path vectors (pj+1(ℓ))2
j+1−1

ℓ=0 , j = 2J − 1, . . . , 0, in the EPWT algorithm satisfy the
region condition (a) and the diameter condition (b) of Subsection 2.3. Then, for all j =
2J − 1, . . . , 0 and ℓ ∈ Λj, the estimate

|gj(ℓ)| ≤ 1
2 C D

α 2−j(α+1)/2 (3.3)

holds, where D > 1 is the constant of the diameter condition (2.7), and where C and
α are the Hölder constant and the Hölder exponent in (2.2). Furthermore, for all ℓ ∈
{0, . . . , 2j − 1} \ Λj, we find the estimate

|gj(ℓ))| ≤ 1
2 C

′ 2−j/2 (3.4)

with some constant C ′ being independent of J and j.

Proof. The proof follows from Theorem 3.1, with observing that the one-dimensional
Haar wavelet satisfies ψj,ℓ = 2−1/2 (φj+1,2ℓ−φj+1,2ℓ+1), and by using 〈φj+1,r, φj+1,ℓ〉 = δr,ℓ.
By (3.1), we obtain

|gj(ℓ)| = |〈f̃ j+1, ψj,ℓ〉|

=
∣

∣

∣

2j+1−1
∑

r=0

f j+1(pj+1(r)) 〈φj+1,r, 2−1/2 (φj+1,2ℓ − φj+1,2ℓ+1)〉
∣

∣

∣

= 2−1/2 |f j+1(pj+1(2ℓ)) − f j+1(pj+1(2ℓ+ 1))|
≤ 2−1/2 2α/2C Dα 2−(j+1)(α+1)/2 = 1

2 C D
α 2−j(α+1)/2.

Likewise, for all ℓ ∈ {0, . . . , 2j − 1} \ Λj

|gj(ℓ)| ≤ 2−1/2C ′ 2−(j+1)/2 = C ′ 2−(j+2)/2

follows from (3.2). �

Observe that the complete image F 2J is now covered by the vector of wavelet coeffi-
cients (as generated by the EPWT)

g = ((g2J−1)T , . . . , g0, g−1)T

with gj = (gj(ℓ))2
j−1

ℓ=0 for j = 0, . . . , 2J − 1, and the mean value

g−1 = g−1(0) := f0(0) = 2−2J
∑

n∈IJ

F 2J(2−Jn),
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together with the side information on the path vectors in each iteration step

p = ((p2J)T , . . . , (p1)T )T ∈ R
2(22J−1).

In order to find a sparse representation of the digital image F 2J , we apply a shrinkage
procedure to the EPWT wavelet coefficients gj(ℓ), using the hard threshold function

sσ(x) =

{

x |x| ≥ σ,
0 |x| < σ.

We now study the error of a sparse representation using only the N wavelet coefficients
with largest absolute value for an approximative reconstruction of F 2J . For convenience,
let S2J

N be the set of indices (j, ℓ) of the N wavelet coefficients with largest absolute value.
Using the orthogonal decomposition of F 2J of Subsection 2.2, the L2-error can be

represented as

ǫN = ‖F 2J − F 2J
N ‖2

2 =
∑

(j,ℓ) 6∈S2J
N

|gj(ℓ)|2, (3.5)

where F 2J
N is the approximation of F 2J that is reconstructed from the N wavelet coeffi-

cients gj(ℓ), (j, ℓ) ∈ S2J
N with largest absolute value.

Now we prove the main result of this paper, by showing the optimal N -term approxi-
mation of the EPWT algorithm.

Theorem 3.3 Let F 2J
N be the N -term approximation of F 2J as constructed above, and let

the assumptions of Theorem 3.2 be satisfied. Then the estimate

ǫN = ‖F 2J − F 2J
N ‖2

2 ≤ C̃ N−α (3.6)

holds for all J ∈ N, where the constant C̃ <∞ does not depend on J .

Proof. We organize the proof into two parts.
1. Let the sequence of all wavelet coefficients gj(ℓ), j = 0, . . . , 2J−1, ℓ = 0, . . . , 2j −1,

and g−1 = g−1(0) be sorted in decreasing order, such that we obtain the new sequence

(gµ)2
2J−1

µ=0 with |gµ| ≥ |gµ+1| for µ = 0, . . . , 22J − 2.

We first show that
∑22J−1

µ=0 |gµ|p with 1
2 <

1
p <

α+1
2 is bounded independently from the

choice of the integer J > 1. For that purpose, we use the estimates in Theorem 3.2, where
we distinguish between type I wavelet coefficients gj(ℓ) satisfying the estimate (3.3) and
type II wavelet coefficients satisfying only the estimate (3.4). From the region condition (a)
and the diameter condition (b) on the path vectors pj , it follows that there are at most
C1K + C2 wavelet coefficients of type II in each level j and the sum of these type II
coefficients is bounded by

∑

gµ of type II

|gµ|p ≤ |g−1(0)|p + (C1K + C2)
2J−1
∑

j=0

(
1

2
C ′2−j/2)p

= |g−1(0)|p + (C1K + C2)(C
′/2)p

2J−1
∑

j=0

2−jp/2

≤ |g−1(0)|p + (C1K + C2)(C
′/2)p(1 − 2−p/2)−1

13



for all p > 0, independently from J .
For the type I coefficients we obtain the bound

∑

gµ of type I

|gµ|p ≤
2J−1
∑

j=0

2j |(C Dα/2) 2−j(α+1)/2|p

= (C Dα/2)p
2J−1
∑

j=0

2−j(p(α+1)/2−1)

by using (3.3). This expansion is finite (independent from J), if p(α + 1)/2 > 1, i.e., if
1
p <

α+1
2 .

2. We now estimate the error ǫN as follows. For k ≤ 22J−1, we consider the partial
sums

SJ
k :=

2k−1
∑

µ=k

|gµ|p.

Since
∑22J−1

µ=0 |gµ|p <∞ for arbitrary J > 1, it follows that SJ
k is bounded (independently

from J). By |g2k| ≤ |gm| for k ≤ m ≤ 2k − 1, we now find

SJ
k ≥ k |g2k|p and SJ

k ≥ k |g2k−1|p

for k < 22J−1 and so |g2k| ≤ |g2k−1| ≤
(

SJ
k
k

)1/p
, i.e.,

|gk| ≤
(SJ

⌈k/2⌉

k/2

)1/p
=

(2

k
SJ
⌈k/2⌉

)1/p
.

For arbitrary J > 1 we obtain

22J−1
∑

µ=N+1

|gµ|2 ≤
(

sup
µ>N

|SJ
⌈µ/2⌉|2/p

) ∞
∑

µ=N+1

(

2
µ

)2/p

= 22/p
(

sup
µ>N

|SJ
⌈µ/2⌉|2/p

)

∞
∑

µ=N+1

µ−2/p.

Finally, since supµ>N |SJ
⌈µ/2⌉|2/p is bounded for each J > 1, the assertion of the theorem

follows for p→ 2/(α+ 1) by using

∞
∑

µ=N+1

µ−2/p ≤
∞
∫

N

x−2/p dx = 1
(2/p−1)N

1−2/p.

�

Let us conclude by stating the following corollary.

Corollary 3.4 Let F ∈ L2([0, 1)2) be piecewise Hölder continuous (as assumed in Sub-
section 2.1). Then, for any ǫ > 0 there exists an integer J(ǫ), such that for all J ≥ J(ǫ)
the N -term estimate

‖F − F 2J
N ‖2

L2 < C̃N−α + ǫ

holds, where C̃ is the constant in (3.6).

14



Proof. For given J > 0 and n = (n1, n2) ∈ IJ let

AJ
n := [2−Jn1, 2

−J(n1 + 1)) × [2−Jn2, 2
−J(n2 + 1)).

Then,

‖F − F 2J‖2
L2 =

∑

n∈IJ

∫

AJ
n

|F (x) − F (2−Jn)|2 dx.

We consider two types of indices n ∈ IJ . If AJ
n∩∂Ωi = ∅ for all i ∈ {1, . . . ,K}, we say that

n belongs to the subset I ′J of IJ . Otherwise, it belongs to I ′′J . With assuming finite length
for ∪K

i=1∂Ωi, there exists a constant L being independent of J , such that #I ′′J ≤ L 2J for
all J . For the indices in I ′J we can use the Hölder condition (2.1) and find

∑

n∈I′J

∫

AJ
n

|F (x) − F (2−Jn)|2 dx ≤
∑

n∈I′J

2−2J(C2(−J+1/2)α)2 ≤ C2 2(−2J+1)α

with using #I ′J ≤ #IJ = 22J . Since the image F is bounded, i.e., |F (x)| < C ′ for some
C ′ > 0, we also have

∑

n∈I′′J

∫

AJ
n

|F (x) − F (2−Jn)|2 dx <
∑

n∈I′′J

2−2J(2C ′)2 < 2−J+2 LC ′.

Hence, ‖F−F 2J‖2
L2 < C22(−2J+1)α+2−J+2LC ′ holds. Moreover, for any ǫ > 0 we can find

an integer J(ǫ), such that ‖F − F 2J‖2
L2 < ǫ holds for all J ≥ J(ǫ). This in combination

with (3.6) concludes our proof. �
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