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POLYNOMIALS AND VANDERMONDE MATRICES OVER THE FIELD OF
QUATERNIONS *

GERHARD OPFER

Abstract. Itis known that the space of real valued, continuous funeti¢( B) over a multidimensional compact
domainB C RF , k > 2 does not admit Haar spaces, which means that interpolatiigms in finite dimensional
subspace¥ of C(B) may not have a solutions i@(B). The corresponding standard short and elegant proof does
not apply to complex valued functions ovBrC C. Nevertheless, in this situation Haar spates. C(B) exist. We
are concerned here with the case of quaternionic valuedincous functionsC(B) where B C H andH denotes
the skew field of quaternions. Again, the proof is not appliea However, we show that the interpolation problem
is not unisolvent, by constructing quaternionic entriesafandermonde matri¥ such thatV will be singular for
all ordersn > 2. In addition, there is a section on the exclusion and inolusif all zeros in certain balls iH for
general quaternionic polynomials.

Key words. Quaternionic interpolation polynomials, Vandermonderiran quaternions, Location of zeros of
quaternionic polynomials.
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1. Introduction. Let B be a compact topological Hausdorff space and= C(B)
the normed vector space of all real valued, continuous fonstdefined onB with norm
[If]| :== max.ep|f(z)|. Consider the set of all-dimensional subspaces &f with n > 2
(let B contain sufficiently many points). We investigate whettieare is aHaar spacein
this set. This is a spadé with the following property: Given arbitrary, but pairwiskstinct
pointst; € B and arbitrary real numbers;, there is a unique € V, such that(t;) =
uj, 7 = 1,2,...,n. Thus, in Haar spaces of dimensiorall interpolation problems in the
above sense can be solved uniquely, regardless of the abii¢eandw;, j = 1,2,...,n.
The only restriction on the; is that they be pairwise distinct. This type of space is also
calledunisolvent The prototype of a Haar spacelis, 1, the space of all real polynomials
of degree at most — 1 on a compact interval of positive length. A counterexamglthe
span(z,z?,--- ,2™) on a compact interval containing the origin. The fact thaaHspaces
do not exist ifB is a subset oR* with & > 2 is known for a long time, Haal| p. 311]. For
a proof we refer to the original paper. The essential ingnetdiof the proof are properties of
the determinant of the matrix which describes the intergimigoroblem and the intermediate
value theorem for real valued, continuous functions.

Since there is no intermediate value theorem for complesedafunctions, the proof
does not carry over to the cage C C, thoughB may be regarded as two dimensional in
this case. However, as is also well knowr,B) contains Haar spaces B ¢ C and if
C(B) is now the space of complex valued functions®nThe set of complex polynomials,
also denoted byI,,_; is again a prototype. A more precise information on what stgbaf
C allow the definition of Haar spaces is given by MairhubEt][ In the quaternionic case
all essential ingredients of the proof are missing. Themoisleterminant, Far2], and no
intermediate value theorem. The quaternionic case is fbie td the next sections.

A comprehensive bibliography on quaternions ordered vésipect to subjects has been
published by Gsponeb].
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2. Quaternionic polynomials. By H we denote the (skew) field of quaternions. A poly-
nomial onH is already a very complicated item. thonomial of degreg¢ > 0 is a mapping
m; : H — H defined by

m; (.%') = A0 LA1;XA25T ¢ - Aj—1,jTAj5, X, A0j, A1, - - -5 Qjj € H.

A polynomial of degree: is any finite sum of monomials of degree n. Therefore, the
space of all polynomials of degree n has no finite dimension. According to Eilenberg
and Niven [] a polynomialp of degree> 1 with the property that the monomial with the
highest degree ip occurs exactly once, has at least one zero. This is calied-undamental
Theorem of Algebra for Quaterniofy the two mentioned authors. And there is no hope
that the restriction on the monomial with the highest degegebe weakened, sinp¢r) :=

ax™ — z"a — 1 has no zero. This follows by application of the real pashich is linear and
commutative, hencé&p(z) = —1, implying thatp cannot have a zero. This example is taken
from Pumpliin and Walchefifl], which also contains a review and expansion of some results
on the number of zeros of polynomials on quaterniBing he Fundamental Theorem can be
applied to the polynomial(z) := (r—a)? = 22 —za—ar+a?, a € H\{R} and shows that,

in general, we cannot expect more than one zero. This appl&Esto polynomials without
repetition of monomials of the same degree. Examplep@rg:= 2> — z(i +j) + k and
q(x) == 2% — (i+j)z + k wherei := (0,1,0,0),j := (0,0,1,0),k := (0,0,0, 1). We have
p(i) = ¢(j) = 0 and there are no other rodts.

3. Quaternionic simple polynomials. We will turn our attention to polynomials of one
of the following types:

(3.2) pi(x) :=ap + a1z + asx® + - + anz”,
3.2) pr(2) := ag + way + 2%as + - - + 2"an, ag,ai,...,a,; x € H.

We will call these polynomialsimple If the coefficients are real, the two types coincide.
They also coincide with the polynomials of general type lifcalefficients are real. Thus, a
real polynomial (i. e. having real coefficients) is alwaysgie. There is a tight connection
betweerp; andp,., which is explained in Janovska and Opf&d]|

THEOREM 3.1. Letp be a real polynomial. Ip has (as a polynomial over) only real
zeros, therp as a polynomial oveH has no other zeros. Jf has (as a polynomial over)
also complex zeros, themas a polynomial oveH has infinitely many zeros. More precisely:
Let z be one of the complex zerosygfthen,h =1 zh is also a zero for alk € H\{0}. There
are no other zeros.

Proof. It is easy to see that(h='zh) = h~!p(z)h for all real polynomials and all
h € H\{0}; see also Janovska and Opfé} &nd Pumpliin and Walchet {]. O

The mapping

x — h~'xh, heH\{0}
defines an equivalence relationfihwith equivalence classes
(3.3) [z] := {u:=h~'zh : h € H\{0}}.

The following lemma makes it easy to recognize equivalestheints.
LEMMA 3.2. Two quaternions:, b are equivalent (in the sense= h~'bh for some
h # 0) if and only if

(3.4) Ra =RNb and |a| = |b|.

1The first example was communicated by Fabio Vlacci, Firehiaty,
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Proof. Janovska and Opfer]. d
By using @.3), (3.4 andx := (z1, z2, 3, x4) We can also write

[(E] = {(x11u27u37u4) eH: u%+u§+ui :TQ = (E%‘i‘xg'i‘xi}

This is apparently a sphere i where the first componenty, is fixed. Ifx € R then we
have[z] = {z} which means thaltz] contains exactly the element Let z € C. Then, the
complex conjugatg is also belonging tdz|, and if z is nonreal, therjz| contains infinitely
many elements. We can put Theor8riinto a simpler form.

COROLLARY 3.3. Letp be a real polynomial oveH of degreen. Then the set of all
zeros can be partitioned into at mosequivalence classes.

For simple polynomials (with quaternionic coefficientsd tteros fall in two classes. Let
z be a nonreal zero. Then, either all elements of the equivalelasgz| consist of zeros, or
apart fromz there is no zero inz]. In the first case the zero(and all zeros irfz] as well)
is called aspherical zeraand in the second case the zero is calledsatated zero If a zero
is real, then it will also be called isolated. See Pogorui 8hdpiro [L3] and Janovska and
Opfer [LQ] for details. The next theorem contains a statement on tingbeu of zeros of a
simple, quaternionic polynomial. For a proof see alsd,[[13].

THEOREM 3.4. Letp be a simple polynomial ovéi of degreen. Then,p hasn; > 0
isolated zeros and, > 0 equivalence classes of spherical zeros With n; + ns < n.

That means, that Corolla.3is also valid for simple polynomials. We called the poly-
nomials defined in3.1) and in 3.2 simple In the literature one finds also other words for
simple. There is an Italian group, Gentile et ab, 4], who refers to these polynomials as
regular, and there are two other groups, a Portuguese one, Set@diqkd]), and a Brazilian
one, de Leo et al.1[1], who refer to these polynomials asilateral. It should be remarked,
that both the Italian and the Brazilian groups did not takéceoof the mentioned paper by
Pogorui and Shapirdlf].

4. Location of zeros of quaternionic polynomials.For complex polynomials there are
some theorems saying that all roots are outside a certdircdigered at the origin, and that
all roots are inside some other disk also centered at th@ohtge will show that analogous
results hold for simple and even for almost all types of quadaic polynomials. Without
loss of generality we may assume that= 1 anday # 0 in the simple polynomials3(1),
(3.2 if we are interested in their zeros.

THEOREM 4.1. Let p be a simple polynomial ovétl of degreen with a,, # 0, and
ap # 0. Then, the open ba{lz € H : |z| < r} does not contain any zero pf wherer is the
only positive root of the real polynomial

n
pl@) = lajla’ = |aol.
=1

Proof. We havey(0) = —|ao| < 0 andp(z) > 0 for sufficiently larger > 0. In addition,
p'(x) > 0 forall z > 0, implying thatp is strictly increasing for alkk > 0. Thus, there is
exactly one positive zero, denotedhylLetp := p; andp(z) = 0, hence

n n n
px) =ao+ Y ajal = 0= laol =D aja’| <Y lajllal = p(|l) = 0= |a] = r.
j=1 Jj=1 J=1
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The proof forp := p,. is the same. a
THEOREM 4.2. Let p be a simple polynomial ovell of degreen with a,, = 1 and
ag # 0. Then, all zeros of are contained in the ball

n—1
{z € H: |z| < R} whereR := max{1, Z la;|}
j=0

Proof. Letp = p; andx be a zero ofp and assume the contrary, herje¢ > R, in
particular,|z| > 1. Then,

n—1 n—1
ﬂWMﬂﬂ+Z%MZWW4Z%Mz
a
W”—Eimmﬂr*wﬂ "HEZmJ§H|— 2" |12l - EZmJ

a contradiction. Thusg| < R. The proof forp = p,. is the same. 0
ExampPLE 4.3. The two simple, quadratic polynomials
p(x) =2 +jr+i, pe(z) =2 +aj+i
have the following roots:

Roots ofp; : =1 := 0.5(—1,1,—1,—1), 22 := 0.5(1, -1, -1, —1).
RoOtS Ofp, : 1 := 0.5(—1,1,—1, 1),z :=0.5(1,~1,~1, 1).

All roots have absolute value one. Applying Theoréryieldsr := @ ~ 0.618, and
Theoremd.2yields R := 2.

Both boundsy, R, are sharp fop(z) := 2™ + 1. Interestingly, Theorerd.1 can be
carried over to general polynomials.

COROLLARY 4.4. Letp(x) := Z};O w;(z) be a polynomial of degree overH, where
eachy; is a finite sum of monomials of degrgdefined in g):

Wi = Zm§k), mlg-k) (z) := ag;):cagj x- ~-xa§];), n; €N, ng =1,

(4.1)

|A|f§jmwd?- dP j=01,..,n

with |A,,| # 0, |Ap| # 0. Then, there is no zero pflocated in the open ball
{z e H: 2| < 7},

wherer is the only positive zero of the real polynomial

ZIA |27 — | Aol.
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Proof. Repeat the proof of Theoreflreplacinga;z? with p;(z). d

For the proof it is apparently sufficient to assume gt # 0 for onel < j < n.

In order to generalize Theorem?2 we need to make the assumption that the highest
degree monomial occurs only once.

COROLLARY 4.5. Letp(z) := Z};O w;(z) be a polynomial of degree overH, where
eachy; is a finite sum of monomials of degrgelefined in 2), with the exception that,,
consists only of a single monomial of degree Define|A;| as in ¢.1) and assume that
|An| =1,]Ao| # 0. Then, all zeros o are contained in the ball

n—1
{z € H:|z| < R}, whereR := max{1, Z |A;1}.
3=0
Proof. Repeat the proof of Theorem2and replace ;=7 with p;. O

EXAMPLE 4.6. Letp(z) := 2% — ax — za + a* with a € H\{R}. The polynomiap has
the single zera: = a. Corollary4.4yieldsp(z) := 2 + 2|a| — |a|?. The only positive root
is# := (v/2 — 1)al. Corollary4.5yields R := max{1, (|a| + 1)? — 1}. The smalles? = 1
is obtained fota| := v/2 — 1 ~ 0.41 which yields# := 3 — 2v/2 ~ 0.17.

5. The interpolation problem and the Vandermonde matrix. Let B ¢ H be a com-
pact set and( := C(B) the space of all quaternion valued, continuous functiofisielé on
B. The general question is whether there are Haar spacesC(B). We shall show, that
the polynomial space composed of simple polynomials is idéar space. For this purpose
let us study two interpolation problems: Given arbitranyt pairwise distinct points; € H

and arbitrary numbers; € H, j =0, 1,...,n, we are interested in whether the interpolation
problems

(5.1) pi(t;) = uyj,

(5.2) pr(tj) =w;, j=0,1,...,n,

have a solution, wherg, p,- are simple polynomials of degree defined by 8.1) and 3.2,
respectively. The following matri¥ will be calledVandermonde matrix

1 1 - 1
V. to t1 - tn  { DX (n41)
thoty et

The two problems&.1), (5.2) are equivalent to the following two matrix problems, respe
tively:

alv=uT, VvTa=nu,
where

al .= (ap,a1,...,an), ul = (w0, w1, - -+ Un).

The main point here is, that these problems are differeneiregal. Since quaternionic ma-
trices have no determinants, Fdlj, [the singularity of a matrix must be defined in a more
elementary way.
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6. Short excursion to linear systems oveH. We will give some elementary properties
of matrices with quaternions as entries and mappings deffipetatrices; see Zhand ] for
an overview of such mappings and for possible decomposifmnsuch matrices. For more
general types of linear mappings; cf. Janovska and Opfer [

DEFINITION 6.1. LetA € HP*?. The maximal number of right independent columns
of A will be calledright column rankof A. Letp = ¢. The square matritA will be called
nonsingular if the right column rank is maximal, i. etank(A) = p, whererankis to be
understood as right column rank. The mappjngH? — HP? defined by

(6.1) f(x) = Ax

will be callednonsingularf A is nonsingular.

In the same fashioleft column rankandleft, right row rankof A are defined. A standard
theorem in non commutative linear algebra is: The right ewluank coincides with the left
row rank and the left column rank coincides with the right n@mk. Thus, a quaternionic
matrix has two ranks, the right and the left column rank. Tih@va definition already suggests
that the right column rank will be more important than the teflumn rank, since itAx the
components ok are always on the right of the matrix elementsAaf

THEOREM6.2. Let A € HP*? be a square matrix. The mappirfgas defined in§.1)
is singular (i. e. not nonsingular) if and only if the homogens systenf(x) = 0 has
nontrivial solutions. The systeif{x) = c has a unique solution for att € HP if and only
if fis nonsingular. The mapping defined byy(x) := xT A is singular if and only iff is
singular, wherex™ denotes the transpose »f

Proof. The mappingf defined in 6.1) may be regarded as a right linear combination of
the columns ofA. The mapping; may be regarded as a left linear combination of the rows
of A, and the right column rank and the left row rank coincide. Témaaining part is easy.
O

DEFINITION 6.3. LetA € HP*P. The right column rank oA will be calledrankof A.

That f(z) := Ax and f(z)T := xTAT do not define the same mapping (apart from
transposition) will be shown by the following example; sdwiAg [L6].

EXAMPLE 6.4. Let

1 i
]

This matrix has right column rank 2 and left column rank 1. Téi¢er statement can be
easily verified by multiplying the first column oA from the left byi. The result is the
second column. The transpoA€d’ has right column rank 1 and left column rank 2. Thas,
is nonsingular, whereas™ is singular.

7. Vandermonde matrices, continued.We return now to the Vandermonde matrix and
the corresponding interpolation problensl), (5.2). Itis clear that the Vandermonde matrix
and its transpose are nonsingularfog 1. In order to show that it is possible to find singular
Vandermonde matrices for general> 3 the idea is the following: Try to find pairwise
distinct pointgg, t1, . . . , t,, such that the sum of the first and penultimate row equals time su
of the second and last row. If this is possible, the left agtitrrow rank are not maximal,
which implies that the rank is not maximal. Hend&andV™ are singular.

THEOREM 7.1. Letn = 2. Definety := i := (0,1,0,0), t; := j := (0,0,1,0),
to : =k :=(0,0,0,1), and

1 1 1 1 1 1
(71) V= to tl tg = i J k
2 12 3 -1 -1 -1
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Letn > 3 andh € H\{C} be arbitrary. Define the following Vandermonde mai¥ix Put
to = 1 and set

1 1 1 e 1 1 ]
1 el €9 ce- €n—1 h_len_lh
2 2 . 2 —1,2
Vo= 1 6.1 6.2 ) en__l h eln_lh c H(n+1)><(n+1)’

1 -1 -1 - -1 ~1

_1 —€e] —€g -+ —€np_1 —hilenflh_
whereey, eq, .. ., e,_1 are the real or complex roots of
(7.2) "t 1=0.
If —1 is one of the roots, then let = —1, otherwise, choose any enumeration of the roots.

ThenV and its transpos® T are singular.

Proof. Letn = 2. Itis obvious that,t|,t> are pairwise distinct. The left and right
row ranks ofV defined in .1) are two, and thusV and VT are singular. Lets > 3.
It is clear that the second row &f contains only pairwise distinct entries, in particular,
tn := h~le,_1h ¢ C. The formula 7.2) implies that the first and penultimate row sum to
(2,0,...,0). Formula {.2) impliest™ + ¢t = 0 for all roots, which implies that row 2 and
the last row also sum t(, 0, ...,0). Thus, the (right and left) row rank are not maximal. It
follows that the rank is not maximal and in all case$ 2 the Vandermonde matri¥ and
its transpos&/ T are singular. O

We observe that for all selected points (second row of Vandade’s matrix) the abso-
lute value is one. That means, we can restrict our considesato the unit ballB := {z €
H: |z| <1} ortothe unitspheréB :={z € H: |z| = 1}.

8. Unisolvency and the number of zeros.In the theory of real or complex valued
continuous functions the existence of Haar spaces of diimemnsis equivalent to the fact
that the elements in the Haar space do not have moreithanzeros with the only exception
of the zero function. We will see that even in quaternioniacgs the situation is analogue.

THEOREMS8.1.LetV C C(B) be a vector space with (left or right) dimensionwhere
the setC(B) is the set of quaternion valued, continuous functionslorand B ¢ H a
compact set. The spaéeis a Haar space if and only if all functions W\ {0} have at most
n — 1 zeros.

Proof. (a) AssuméV is a Haar space. Then(t;) = 0,j = 1,2,...,n for pairwise
distinctt; € B impliesv = 0. Thus, anyv # 0 can have at most — 1 zeros inB.
(b) AssumeV is not a Haar space. Then there are pairwise distinct pojngsid values
uj,j = 1,2...,n, such that the interpolation problen(t;) = u;,j = 1,2...,n, has no
or two different solutions, v». In the latter casey := v; — v is not the zero function but
hasn zeros at the givem pointst;. If the interpolation problem has no solution, then the
homogeneous problenit;) = 0,5 = 1,2...,n must have a nontrivial solution. In all cases
there is a non zero functianwith at leastn zeros. O

The fact that polynomials have too many zeros is, thus, mespte for the fact that
polynomials do not form a Haar space. The question, whellezetare Haar spaces in the
quaternionidC(B) remains open.
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