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POLYNOMIALS AND VANDERMONDE MATRICES OVER THE FIELD OF
QUATERNIONS ∗

GERHARD OPFER†

Abstract. It is known that the space of real valued, continuous functionsC(B) over a multidimensional compact
domainB ⊂ R

k , k ≥ 2 does not admit Haar spaces, which means that interpolation problems in finite dimensional
subspacesV of C(B) may not have a solutions inC(B). The corresponding standard short and elegant proof does
not apply to complex valued functions overB ⊂ C. Nevertheless, in this situation Haar spacesV ⊂ C(B) exist. We
are concerned here with the case of quaternionic valued, continuous functionsC(B) whereB ⊂ H andH denotes
the skew field of quaternions. Again, the proof is not applicable. However, we show that the interpolation problem
is not unisolvent, by constructing quaternionic entries for a Vandermonde matrixV such thatV will be singular for
all ordersn > 2. In addition, there is a section on the exclusion and inclusion of all zeros in certain balls inH for
general quaternionic polynomials.

Key words. Quaternionic interpolation polynomials, Vandermonde matrix in quaternions, Location of zeros of
quaternionic polynomials.
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1. Introduction. Let B be a compact topological Hausdorff space andX := C(B)
the normed vector space of all real valued, continuous functions defined onB with norm
||f || := maxx∈B |f(x)|. Consider the set of alln-dimensional subspaces ofX with n ≥ 2
(let B contain sufficiently many points). We investigate whether there is aHaar spacein
this set. This is a spaceV with the following property: Given arbitrary, but pairwisedistinct
pointstj ∈ B and arbitrary real numbersuj, there is a uniquev ∈ V , such thatv(tj) =
uj , j = 1, 2, . . . , n. Thus, in Haar spaces of dimensionn all interpolation problems in the
above sense can be solved uniquely, regardless of the choiceof tj anduj, j = 1, 2, . . . , n.
The only restriction on thetj is that they be pairwise distinct. This type of space is also
calledunisolvent. The prototype of a Haar space isΠn−1, the space of all real polynomials
of degree at mostn − 1 on a compact interval of positive length. A counterexample is the
span〈x, x2, · · · , xn〉 on a compact interval containing the origin. The fact that Haar spaces
do not exist ifB is a subset ofRk with k ≥ 2 is known for a long time, Haar [6, p. 311]. For
a proof we refer to the original paper. The essential ingredients of the proof are properties of
the determinant of the matrix which describes the interpolation problem and the intermediate
value theorem for real valued, continuous functions.

Since there is no intermediate value theorem for complex valued functions, the proof
does not carry over to the caseB ⊂ C, thoughB may be regarded as two dimensional in
this case. However, as is also well known,C(B) contains Haar spaces ifB ⊂ C and if
C(B) is now the space of complex valued functions onB. The set of complex polynomials,
also denoted byΠn−1 is again a prototype. A more precise information on what subsets of
C allow the definition of Haar spaces is given by Mairhuber [12]. In the quaternionic case
all essential ingredients of the proof are missing. There isno determinant, Fan [2], and no
intermediate value theorem. The quaternionic case is the topic of the next sections.

A comprehensive bibliography on quaternions ordered with respect to subjects has been
published by Gsponer [5].
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2. Quaternionic polynomials. By H we denote the (skew) field of quaternions. A poly-
nomial onH is already a very complicated item. Amonomial of degreej ≥ 0 is a mapping
mj : H → H defined by

mj(x) := a0jxa1jxa2jx · · · aj−1,jxajj , x, a0j , a1j, . . . , ajj ∈ H.

A polynomial of degreen is any finite sum of monomials of degree≤ n. Therefore, the
space of all polynomials of degree≤ n has no finite dimension. According to Eilenberg
and Niven [1] a polynomialp of degree≥ 1 with the property that the monomial with the
highest degree inp occurs exactly once, has at least one zero. This is calledThe Fundamental
Theorem of Algebra for Quaternionsby the two mentioned authors. And there is no hope
that the restriction on the monomial with the highest degreecan be weakened, sincep(x) :=
axn − xna− 1 has no zero. This follows by application of the real partℜ which is linear and
commutative, hence,ℜp(x) = −1, implying thatp cannot have a zero. This example is taken
from Pumplün and Walcher [14], which also contains a review and expansion of some results
on the number of zeros of polynomials on quaternionsH. The Fundamental Theorem can be
applied to the polynomialp(x) := (x−a)2 = x2−xa−ax+a2, a ∈ H\{R} and shows that,
in general, we cannot expect more than one zero. This applieseven to polynomials without
repetition of monomials of the same degree. Examples arep(x) := x2 − x(i + j) + k and
q(x) := x2 − (i + j)x + k wherei := (0, 1, 0, 0), j := (0, 0, 1, 0),k := (0, 0, 0, 1). We have
p(i) = q(j) = 0 and there are no other roots.1

3. Quaternionic simple polynomials. We will turn our attention to polynomials of one
of the following types:

pl(x) := a0 + a1x + a2x
2 + · · · + anxn,(3.1)

pr(x) := a0 + xa1 + x2a2 + · · · + xnan, a0, a1, . . . , an; x ∈ H.(3.2)

We will call these polynomialssimple. If the coefficients are real, the two types coincide.
They also coincide with the polynomials of general type if all coefficients are real. Thus, a
real polynomial (i. e. having real coefficients) is always simple. There is a tight connection
betweenpl andpr, which is explained in Janovská and Opfer [10].

THEOREM 3.1. Let p be a real polynomial. Ifp has (as a polynomial overC) only real
zeros, thenp as a polynomial overH has no other zeros. Ifp has (as a polynomial overC)
also complex zeros, then,p as a polynomial overH has infinitely many zeros. More precisely:
Let z be one of the complex zeros ofp, then,h−1zh is also a zero for allh ∈ H\{0}. There
are no other zeros.

Proof. It is easy to see thatp(h−1zh) = h−1p(z)h for all real polynomials and all
h ∈ H\{0}; see also Janovská and Opfer [8] and Pumplün and Walcher [14].

The mapping

x → h−1xh, h ∈ H\{0}

defines an equivalence relation inH with equivalence classes

(3.3) [x] := {u := h−1xh : h ∈ H\{0}}.

The following lemma makes it easy to recognize equivalent elements.
LEMMA 3.2. Two quaternionsa, b are equivalent (in the sensea = h−1bh for some

h 6= 0) if and only if

(3.4) ℜa = ℜb and |a| = |b|.
1The first example was communicated by Fabio Vlacci, Firenze,Italy.
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Proof. Janovská and Opfer [7].
By using (3.3), (3.4) andx := (x1, x2, x3, x4) we can also write

[x] =
{

(x1, u2, u3, u4) ∈ H : u2
2 + u2

3 + u2
4 = r2 := x2

2 + x2
3 + x2

4

}

.

This is apparently a sphere inH where the first component,x1, is fixed. If x ∈ R then we
have[x] = {x} which means that[x] contains exactly the elementx. Let z ∈ C. Then, the
complex conjugatez is also belonging to[z], and if z is nonreal, then[z] contains infinitely
many elements. We can put Theorem3.1into a simpler form.

COROLLARY 3.3. Let p be a real polynomial overH of degreen. Then the set of all
zeros can be partitioned into at mostn equivalence classes.

For simple polynomials (with quaternionic coefficients) the zeros fall in two classes. Let
z be a nonreal zero. Then, either all elements of the equivalence class[z] consist of zeros, or
apart fromz there is no zero in[z]. In the first case the zeroz (and all zeros in[z] as well)
is called aspherical zeroand in the second case the zero is called anisolated zero. If a zero
is real, then it will also be called isolated. See Pogorui andShapiro [13] and Janovská and
Opfer [10] for details. The next theorem contains a statement on the number of zeros of a
simple, quaternionic polynomial. For a proof see also [10], [13].

THEOREM 3.4. Let p be a simple polynomial overH of degreen. Then,p hasn1 ≥ 0
isolated zeros andn2 ≥ 0 equivalence classes of spherical zeros with1 ≤ n1 + n2 ≤ n.

That means, that Corollary3.3 is also valid for simple polynomials. We called the poly-
nomials defined in (3.1) and in (3.2) simple. In the literature one finds also other words for
simple. There is an Italian group, Gentile et al. [3, 4], who refers to these polynomials as
regular, and there are two other groups, a Portuguese one, Serôdio et al. [15]), and a Brazilian
one, de Leo et al. [11], who refer to these polynomials asunilateral. It should be remarked,
that both the Italian and the Brazilian groups did not take notice of the mentioned paper by
Pogorui and Shapiro [13].

4. Location of zeros of quaternionic polynomials.For complex polynomials there are
some theorems saying that all roots are outside a certain disk centered at the origin, and that
all roots are inside some other disk also centered at the origin. We will show that analogous
results hold for simple and even for almost all types of quaternionic polynomials. Without
loss of generality we may assume thatan = 1 anda0 6= 0 in the simple polynomials (3.1),
(3.2) if we are interested in their zeros.

THEOREM 4.1. Let p be a simple polynomial overH of degreen with an 6= 0, and
a0 6= 0. Then, the open ball{z ∈ H : |z| < r} does not contain any zero ofp, wherer is the
only positive root of the real polynomial

p̃(x) :=
n

∑

j=1

|aj |xj − |a0|.

Proof. We havẽp(0) = −|a0| < 0 andp̃(x) > 0 for sufficiently largex > 0. In addition,
p̃′(x) > 0 for all x > 0, implying thatp̃ is strictly increasing for allx > 0. Thus, there is
exactly one positive zero, denoted byr. Let p := pl andp(x) = 0, hence

p(x) = a0 +

n
∑

j=1

ajx
j = 0 ⇒ |a0| = |

n
∑

j=1

ajx
j | ≤

n
∑

j=1

|aj ||x|j ⇒ p̃(|x|) ≥ 0 ⇒ |x| ≥ r.
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The proof forp := pr is the same.
THEOREM 4.2. Let p be a simple polynomial overH of degreen with an = 1 and

a0 6= 0. Then, all zeros ofp are contained in the ball

{z ∈ H : |z| ≤ R} whereR := max{1,

n−1
∑

j=0

|aj |}.

Proof. Let p = pl andx be a zero ofp and assume the contrary, hence|x| > R, in
particular,|x| > 1. Then,

0 = |p(x)| = |xn +

n−1
∑

j=0

ajx
j | ≥ |xn| − |

n−1
∑

j=0

ajx
j | ≥

|xn| −
n−1
∑

j=0

|aj ||xj | = |xn| − |xn−1|
n−1
∑

j=0

|aj |
|xn−j−1| ≥ |xn−1|(|x| −

n−1
∑

j=0

|aj |) > 0,

a contradiction. Thus,|x| ≤ R. The proof forp = pr is the same.
EXAMPLE 4.3. The two simple, quadratic polynomials

pl(x) := x2 + jx + i, pr(x) := x2 + xj + i

have the following roots:

Roots ofpl : x1 := 0.5(−1, 1,−1,−1), x2 := 0.5(1,−1,−1,−1).

Roots ofpr : x1 := 0.5(−1, 1,−1, 1), x2 := 0.5(1,−1,−1, 1).

All roots have absolute value one. Applying Theorem4.1 yieldsr :=
√

5−1
2 ≈ 0.618, and

Theorem4.2yieldsR := 2.
Both bounds,r, R, are sharp forp(x) := xn + 1. Interestingly, Theorem4.1 can be

carried over to general polynomials.
COROLLARY 4.4. Let p(x) :=

∑n

j=0 µj(x) be a polynomial of degreen overH, where
eachµj is a finite sum of monomials of degreej defined in (2):

µj :=

nj
∑

k=1

m
(k)
j , m

(k)
j (x) := a

(k)
0j xa

(k)
1j x · · ·xa

(k)
jj , nj ∈ N, n0 = 1,

(4.1)

|Aj | :=

nj
∑

k=1

|a(k)
0j a

(k)
1j · · · a(k)

jj |, j = 0, 1, . . . , n,

with |An| 6= 0, |A0| 6= 0. Then, there is no zero ofp located in the open ball

{z ∈ H : |z| < r̂},

wherer̂ is the only positive zero of the real polynomial

p̂(x) :=

n
∑

j=1

|Aj |xj − |A0|.
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Proof. Repeat the proof of Theorem4.1replacingajx
j with µj(x).

For the proof it is apparently sufficient to assume that|Aj | 6= 0 for one1 ≤ j ≤ n.
In order to generalize Theorem4.2 we need to make the assumption that the highest

degree monomial occurs only once.
COROLLARY 4.5. Let p(x) :=

∑n

j=0 µj(x) be a polynomial of degreen overH, where
eachµj is a finite sum of monomials of degreej defined in (2), with the exception thatµn

consists only of a single monomial of degreen. Define|Aj | as in (4.1) and assume that
|An| = 1, |A0| 6= 0. Then, all zeros ofp are contained in the ball

{z ∈ H : |z| ≤ R̂}, whereR̂ := max{1,

n−1
∑

j=0

|Aj |}.

Proof. Repeat the proof of Theorem4.2and replaceajx
j with µj .

EXAMPLE 4.6. Letp(x) := x2 − ax− xa + a2 with a ∈ H\{R}. The polynomialp has
the single zerox = a. Corollary4.4yields p̂(x) := x2 + 2|a| − |a|2. The only positive root
is r̂ := (

√
2 − 1)|a|. Corollary4.5yieldsR̂ := max{1, (|a|+ 1)2 − 1}. The smallest̂R = 1

is obtained for|a| :=
√

2 − 1 ≈ 0.41 which yieldsr̂ := 3 − 2
√

2 ≈ 0.17.

5. The interpolation problem and the Vandermonde matrix. Let B ⊂ H be a com-
pact set andX := C(B) the space of all quaternion valued, continuous functions defined on
B. The general question is whether there are Haar spacesV ⊂ C(B). We shall show, that
the polynomial space composed of simple polynomials is not aHaar space. For this purpose
let us study two interpolation problems: Given arbitrary, but pairwise distinct pointstj ∈ H

and arbitrary numbersuj ∈ H, j = 0, 1, . . . , n, we are interested in whether the interpolation
problems

pl(tj) = uj,(5.1)

pr(tj) := uj, j = 0, 1, . . . , n,(5.2)

have a solution, wherepl, pr are simple polynomials of degreen, defined by (3.1) and (3.2),
respectively. The following matrixV will be calledVandermonde matrix:

V :=











1 1 · · · 1
t0 t1 · · · tn
...

...
...

...
tn0 tn1 · · · tnn











∈ H
(n+1)×(n+1).

The two problems (5.1), (5.2) are equivalent to the following two matrix problems, respec-
tively:

aTV = uT, VTa = u,

where

aT := (a0, a1, . . . , an), uT := (u0, u1, . . . , un).

The main point here is, that these problems are different in general. Since quaternionic ma-
trices have no determinants, Fan [2], the singularity of a matrix must be defined in a more
elementary way.
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6. Short excursion to linear systems overH. We will give some elementary properties
of matrices with quaternions as entries and mappings definedby matrices; see Zhang [16] for
an overview of such mappings and for possible decompositions for such matrices. For more
general types of linear mappings; cf. Janovská and Opfer [9].

DEFINITION 6.1. LetA ∈ H
p×q. The maximal number of right independent columns

of A will be calledright column rankof A. Let p = q. The square matrixA will be called
nonsingular, if the right column rank is maximal, i. e.rank(A) = p, whererank is to be
understood as right column rank. The mappingf : Hp → Hp defined by

(6.1) f(x) := Ax

will be callednonsingularif A is nonsingular.
In the same fashionleft column rankandleft, right row rankof A are defined. A standard

theorem in non commutative linear algebra is: The right column rank coincides with the left
row rank and the left column rank coincides with the right rowrank. Thus, a quaternionic
matrix has two ranks, the right and the left column rank. The above definition already suggests
that the right column rank will be more important than the left column rank, since inAx the
components ofx are always on the right of the matrix elements ofA.

THEOREM 6.2. Let A ∈ Hp×p be a square matrix. The mappingf as defined in (6.1)
is singular (i. e. not nonsingular) if and only if the homogeneous systemf(x) = 0 has
nontrivial solutions. The systemf(x) = c has a unique solution for allc ∈ Hp if and only
if f is nonsingular. The mappingg defined byg(x) := xTA is singular if and only iff is
singular, wherexT denotes the transpose ofx.

Proof. The mappingf defined in (6.1) may be regarded as a right linear combination of
the columns ofA. The mappingg may be regarded as a left linear combination of the rows
of A, and the right column rank and the left row rank coincide. Theremaining part is easy.

DEFINITION 6.3. LetA ∈ Hp×p. The right column rank ofA will be calledrankof A.
That f(x) := Ax andf(x)T := xTAT do not define the same mapping (apart from

transposition) will be shown by the following example; see Zhang [16].
EXAMPLE 6.4. Let

A :=

[

1 i

j k

]

.

This matrix has right column rank 2 and left column rank 1. Thelatter statement can be
easily verified by multiplying the first column ofA from the left by i. The result is the
second column. The transposeAT has right column rank 1 and left column rank 2. Thus,A

is nonsingular, whereasAT is singular.

7. Vandermonde matrices, continued.We return now to the Vandermonde matrix and
the corresponding interpolation problems (5.1), (5.2). It is clear that the Vandermonde matrix
and its transpose are nonsingular forn ≤ 1. In order to show that it is possible to find singular
Vandermonde matrices for generaln ≥ 3 the idea is the following: Try to find pairwise
distinct pointst0, t1, . . . , tn such that the sum of the first and penultimate row equals the sum
of the second and last row. If this is possible, the left and right row rank are not maximal,
which implies that the rank is not maximal. Hence,V andVT are singular.

THEOREM 7.1. Let n = 2. Definet0 := i := (0, 1, 0, 0), t1 := j := (0, 0, 1, 0),
t2 := k := (0, 0, 0, 1), and

(7.1) V :=





1 1 1
t0 t1 t2
t20 t21 t22



 =





1 1 1
i j k

−1 −1 −1



 .
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Let n ≥ 3 andh ∈ H\{C} be arbitrary. Define the following Vandermonde matrixV: Put
t0 = 1 and set

V :=



















1 1 1 · · · 1 1
1 e1 e2 · · · en−1 h−1en−1h
1 e2

1 e2
2 · · · e2

n−1 h−1e2
n−1h

...
...

...
...

...
...

1 −1 −1 · · · −1 −1
1 −e1 −e2 · · · −en−1 −h−1en−1h



















∈ H
(n+1)×(n+1),

wheree1, e2, . . . , en−1 are the real or complex roots of

(7.2) tn−1 + 1 = 0.

If −1 is one of the roots, then lete1 = −1, otherwise, choose any enumeration of the roots.
ThenV and its transposeVT are singular.

Proof. Let n = 2. It is obvious thatt0, t1, t2 are pairwise distinct. The left and right
row ranks ofV defined in (7.1) are two, and thus,V andVT are singular. Letn ≥ 3.
It is clear that the second row ofV contains only pairwise distinct entries, in particular,
tn := h−1en−1h /∈ C. The formula (7.2) implies that the first and penultimate row sum to
(2, 0, . . . , 0). Formula (7.2) implies tn + t = 0 for all roots, which implies that row 2 and
the last row also sum to(2, 0, . . . , 0). Thus, the (right and left) row rank are not maximal. It
follows that the rank is not maximal and in all casesn ≥ 2 the Vandermonde matrixV and
its transposeVT are singular.

We observe that for all selected points (second row of Vandermonde’s matrix) the abso-
lute value is one. That means, we can restrict our considerations to the unit ballB := {z ∈
H : |z| ≤ 1} or to the unit sphere∂B := {z ∈ H : |z| = 1}.

8. Unisolvency and the number of zeros.In the theory of real or complex valued
continuous functions the existence of Haar spaces of dimension n is equivalent to the fact
that the elements in the Haar space do not have more thann−1 zeros with the only exception
of the zero function. We will see that even in quaternionic spaces the situation is analogue.

THEOREM 8.1. LetV ⊂ C(B) be a vector space with (left or right) dimensionn, where
the setC(B) is the set of quaternion valued, continuous functions onB, and B ⊂ H a
compact set. The spaceV is a Haar space if and only if all functions inV \{0} have at most
n − 1 zeros.

Proof. (a) AssumeV is a Haar space. Then,v(tj) = 0, j = 1, 2, . . . , n for pairwise
distinct tj ∈ B implies v = 0. Thus, anyv 6= 0 can have at mostn − 1 zeros inB.
(b) AssumeV is not a Haar space. Then there are pairwise distinct pointstj and values
uj , j = 1, 2 . . . , n, such that the interpolation problemv(tj) = uj , j = 1, 2 . . . , n, has no
or two different solutionsv1, v2. In the latter case,v := v1 − v2 is not the zero function but
hasn zeros at the givenn pointstj . If the interpolation problem has no solution, then the
homogeneous problemv(tj) = 0, j = 1, 2 . . . , n must have a nontrivial solution. In all cases
there is a non zero functionv with at leastn zeros.

The fact that polynomials have too many zeros is, thus, responsible for the fact that
polynomials do not form a Haar space. The question, whether there are Haar spaces in the
quaternionicC(B) remains open.
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