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Abstract: In the present work we use the variational approach in order to discretize elliptic optimal

control problems with bang-bang controls. We prove error estimates for the resulting scheme and

present a numerical example which supports our analytical findings.
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1 Introduction

In this note we consider an elliptic optimal control problem subject to pointwise control

constraints. In many cases the underlying cost functional is chosen to be of tracking type, i.e.

J(y, v) =
1

2

∫
Ω
|y − y0|

2 +
α

2

∫
Ω

v2, (1.1)

where y : Ω → � is the solution of the state equation and v : Ω → � denotes the control.

Furthermore, α > 0 and y0 is a given target function. In situations, in which the cost of the

control is negligible or in which the focus primarily lies on tracking y0 one might prefer to

study the control problem obtained from setting α = 0. To be more specific, let Ω ⊂ �
d (d =

1, 2, 3) be a bounded domain. We assume that Ω is either convex and polyhedral or that ∂Ω

belongs to C2. Then, given v ∈ L2(Ω), the boundary value problem

−Δy = v in Ω

y = 0 on ∂Ω

has a unique solution y ∈ H2 ∩H1
0 (Ω) which we denote by G(v). Next, for a, b ∈ �, a < b we

introduce

Uad = {v ∈ L∞(Ω) | a ≤ v ≤ b a.e. in Ω}
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and consider the following optimal control problem:

min
v∈Uad

J(v) =
1

2

∫
Ω
|y − y0|

2 subject to y = G(v + f). (1.2)

Here, f ∈ L2(Ω) and y0 ∈ L2(Ω) are given functions.

It is not difficult to establish the existence of a unique solution u ∈ Uad to this problem which

can be characterized as follows:

Theorem 1.1. A function u ∈ Uad is a solution of (1.2) if and only if there exists an adjoint

state p such that y = G(u + f), p = G(y − y0) and

(p, v − u) ≥ 0 for all v ∈ Uad. (1.3)

Remark 1.2. The relation (1.3) implies that

u(x)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= a, p(x) > 0,

∈ [a, b], p(x) = 0,

= b, p(x) < 0.

(1.4)

For later purposes we make the following assumption on the adjoint state p:

∃C ≥ 0 ∀ε > 0 |{x ∈ Ω | |p(x)| ≤ ε}| ≤ Cε. (1.5)

Here, |A| denotes the d–dimensional Lebesgue measure of a set A. It follows in particular that

the set {x ∈ Ω | p(x) = 0} has measure zero so that the control is of bang-bang type. Our aim

in this note is to use (1.5) in order to carry out an error analysis for a suitable discretization of

problem (1.2). Such an analysis is available for control problems involving functionals of the

form (1.1) with α > 0, see e.g. [5], Chapter 3.2 and the references therein. However, a closer

look at the corresponding arguments shows that the constant in the error estimate blows up

as α → 0 so that they cannot be used in order to study the limit problem. Instead we shall

pursue a different approach based on an estimate for the L1–norm between continuous and

discrete optimal control. Let us remark that numerical experiments for bang-bang control of

elliptic equations are conducted by Maurer and Mittelmann in [6, 7]. Problems of this kind

which even involve state constraints also appear in the context of optimization of plates, see

[1].

We close this section by presenting a criterion that ensures (1.5).

Lemma 1.3. Suppose that the adjoint solution p belongs to C1(Ω̄) and satisfies

min
x∈K

|∇p(x)| > 0, where K = {x ∈ Ω̄ | p(x) = 0}. (1.6)

Then, (1.5) is satisfied.

Proof. We give a sketch of the proof noting first that it is sufficient to verify (1.5) for small

ε > 0. Let us introduce for t ∈ �

Ft := {x ∈ Ω̄ | p(x) = t}.
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Using (1.6) together with a continuity argument we can show that there exist constants

C ≥ 0, c0 > 0 such that for |t| ≤ ε0

|∇p(x)| ≥ c0 on Ft, Hd−1(Ft) ≤ C.

Here, Hd−1 is the (d − 1)–dimensional Hausdorff measure. Combining the above estimates

with the coarea formula we derive for 0 < ε ≤ ε0

c0|{x ∈ Ω | |p(x)| ≤ ε}| ≤

∫
{x∈Ω||p(x)|≤ε}

|∇p|dx =

∫ ε

−ε

Hd−1(Ft)dt ≤ 2Cε,

which implies the assertion.

Condition (1.6) can be compared to conditions which appear in the study of the stability of

bang-bang type controls in control problems for systems of ODEs, cf. [3], Assumption 2, p.

1850.

2 Discretization and error estimate

Let Th be a quasi–uniform triangulation of Ω with maximum mesh size h :=

maxT∈Th
diam(T ). If necessary, we allow elements to be curved along ∂Ω. We consider the

space of linear finite elements

Xh := {φh ∈ C0(Ω̄) |φh is a linear polynomial on each T ∈ Th}

with isoparametric modifications in curved simplices. Furthermore, let Xh0 := Xh ∩H1
0 (Ω).

We denote by Ih the usual Lagrange interpolation operator and by Rh : H1
0 (Ω) → Xh0 the

Ritz–projection, defined by the relation

(∇Rhz,∇φh) = (∇z,∇φh) ∀φh ∈ Xh0. (2.1)

It is well–known that

‖z −Rhz‖+ h‖∇(z −Rhz)‖ ≤ Ch2‖z‖H2 ∀z ∈ H2(Ω) ∩H1
0 (Ω). (2.2)

For a given function v ∈ L2(Ω) we denote by yh = Gh(v) ∈ Xh0 the unique solution of

(∇yh,∇φh) = (v, φh) ∀φh ∈ Xh0.

We use the variational approach of [4] in order to discretize our optimal control problem as

follows:

min
v∈Uad

Jh(v) =
1

2

∫
Ω
|yh − y0|

2 subject to yh = Gh(v + f). (2.3)

Note that the set of admissible controls is not discretized. Similarly as above, the discrete

optimal control problem (2.3) has a unique solution uh ∈ Uad which is characterized by the

existence of a discrete adjoint state ph = Gh(yh − y0) ∈ Xh0 such that

(ph, v − uh) ≥ 0 for all v ∈ Uad. (2.4)
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This relation implies again

uh(x)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= a, ph(x) > 0,

∈ [a, b], ph(x) = 0,

= b, ph(x) < 0.

(2.5)

Our main result are the following error estimates:

Theorem 2.1. Let u be the solution of (1.2), uh the solution of (2.3) with corresponding

states y = G(u + f) and yh = Gh(uh + f). Then

‖y − yh‖, ‖u − uh‖L1 , ‖p− ph‖L∞ ≤ C
(
h2 + ‖p−Rhp‖L∞

)
.

Proof. Using v = uh in (1.3) and v = u in (2.4) we obtain

0 ≤ (p− ph, uh − u) = (p −Rhp, uh − u) + (Rhp− ph, uh − u) ≡ I + II. (2.6)

Clearly,

|I| ≤ ‖p−Rhp‖L∞‖u− uh‖L1 . (2.7)

Since |{x ∈ Ω̄ | p(x) = 0}| = 0 we deduce with the help of (1.4) and (2.5) that

‖u− uh‖L1 =

∫
{p>0}

(uh − a) +

∫
{p<0}

(b− uh) =

∫
A1

(uh − a) +

∫
A2

(b− uh), (2.8)

where A1 = {x ∈ Ω | p(x) > 0, ph(x) ≤ 0} and A2 = {x ∈ Ω | p(x) < 0, ph(x) ≥ 0}. For x ∈ A1

we have

0 < p(x) = (p(x)− ph(x)) + ph(x) ≤ ‖p − ph‖L∞ ,

and similarly 0 > p(x) ≥ −‖p− ph‖L∞ for x ∈ A2. Thus,

A1 ∪A2 ⊂ {x ∈ Ω | |p(x)| ≤ ‖p− ph‖L∞},

so that (2.8) and (1.5) yield

‖u−uh‖L1 ≤ (b−a)|A1∪A2| ≤ (b−a)|{x ∈ Ω | |p(x)| ≤ ‖p−ph‖L∞}| ≤ C‖p−ph‖L∞ . (2.9)

Inserting (2.9) into (2.7) we obtain

|I| ≤ C‖p−Rhp‖L∞‖p − ph‖L∞ ≤ C‖p−Rhp‖L∞

(
‖p−Rhp‖L∞ + ‖Rhp− ph‖L∞

)
. (2.10)

Let us fix

q

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= 2, d = 1;

> 2, d = 2;

∈ (3, 6), d = 3
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and define ph := G(yh − y0), so that ph = Rhph. The continuous embeddings H2(Ω) ↪→

W 1,q(Ω) ↪→ L∞(Ω) together with the stability of the Ritz projection in W 1,q(Ω) and the fact

that p− ph = G(y − yh) implies

‖Rhp− ph‖L∞ ≤ C‖Rhp− ph‖W 1,q = ‖Rh(p− ph)‖W 1,q ≤ C‖p− ph‖W 1,q

≤ C‖p− ph‖H2 ≤ C‖y − yh‖. (2.11)

Returning to (2.10) we obtain with the help of Young’s inequality

|I| ≤ ε‖y − yh‖
2 + Cε‖p −Rhp‖2L∞ , ε > 0. (2.12)

Next, recalling that y = G(u + f), yh = Gh(uh + f) and the definition of Rh we have

II =
(
∇(Rhp− ph),∇yh

)
−

(
∇(Rhp− ph),∇y

)
=

(
∇(p − ph),∇yh

)
−

(
∇(p− ph),∇Rhy

)
.

Since p = G(y − y0), ph = Gh(yh − y0) we may continue

II = (y − yh, yh −Rhy) = −‖y − yh‖
2 + (y − yh, y −Rhy) ≤ −

1

2
‖y − yh‖

2 + Ch4 (2.13)

by (2.2). Inserting (2.12), (2.13)into (2.6) and choosing ε = 1
4 we derive

‖y − yh‖
2 ≤ Ch4 + C‖p−Rhp‖2L∞ . (2.14)

If we employ this estimate in (2.11) we obtain

‖p− ph‖L∞ ≤ C
(
‖p −Rhp‖L∞ + ‖Rhp− ph‖L∞

)
≤ C

(
‖p −Rhp‖L∞ + ‖y − yh‖

)
≤ C

(
h2 + ‖p−Rhp‖L∞

)
.

The bound on ‖u− uh‖L1 then follows from (2.9).

Remark 2.2. a) According to Theorem 2.1 the order of convergence is now determined by

the behaviour of ‖p−Rhp‖L∞ . For example, it is well known (cf. [2], Section 3.3) that

‖p−Rhp‖L∞ ≤ Ch2| log h|γ(d)

provided that p ∈ W 2,∞(Ω).

b) An appropriate modification of the proof of Theorem 2.1 shows that it is still possible to

derive error bounds under a more general condition of the form

∃C ≥ 0 ∀ε > 0 |{x ∈ Ω | |p(x)| ≤ ε}| ≤ Cεβ

for some β ∈ (0, 1].

3 A numerical experiment

The following one-dimensional example is adapted from [8], 2.9.1. Let Ω := (0, 1), a := −1,

b := 1 and

f(x) := m2π2 sin(mπx) + sign(− sin(mπx)) and y0(x) := (1 + m2π2) sin(mπx),
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where m ∈ �. The exact control is given by u(x) = −sign(− sin(mπx)) with corresponding

optimal state y(x) = sin(mπx) and adjoint state p(x) = − sin(mπx). The optimal control

has the switching points xk = k
m

, k = 1, . . . ,m − 1 in Ω. Furthermore, recalling Lemma 1.3,

Assumption (1.5) is satisfied since |p′(±1)| = |p′(xk)| = mπ, k = 1, . . . ,m− 1.

For the discretization of the state we use piecewise linear, continuous finite elements on a

sequence of equidistant grids Ti with gridwidth hi := 2−i, i = 1, . . . , 9. The numerical solution

is obtained by the following fixed-point iteration: given u0
h, n = 0, compute

yn
h = Gh(un

h + f), pn
h = Gh(yn

h − y0) and set un+1
h = −sign(pn

h), n = n + 1.

Table 1 presents our numerical findings for m = 3. The fixed-point iteration is initialized

with u0
h = 0 and takes 5 iterations on Level i = 9 to drive the maximum distance of two

consecutively computed switching points below 1.e − 16. We note that changing u0
h does

not affect the convergence behaviour of the iteration in the present example. As predicted

by Theorem 2.1 we obtain convergence order 2 for ‖y − yh‖ and ‖p − ph‖L∞ , whereas the

convergence order for ‖u− uh‖L1 and for the Lebesgue measure of the symmetric difference

(A \Ah)∪ (Ah \A) of the active sets A,Ah associated to the solutions u, uh seems to be 3 in

the present example. Figure 1 shows the numerical solution on a grid corresponding to the

refinement level i = 3 together with a zoom on the first switching point. Note that the discrete

switching points obtained with the help of the variational approach need not coincide with

finite element grid points as it would be the case if the controls were discretized on the finite

element grid by piecewise constant ansatz functions, say. Finally we note that the observed

experimental orders of convergence for larger values of m are similar to those displayed in

Tab. 1. We therefore omit the presentation of numerical results for other values of m.

Level i ‖u− uh‖L1 ‖y − yh‖ ‖y − yh‖L∞ ‖p− ph‖L∞ |(A \Ah) ∪ (Ah \ A)|

5 3.00254305 1.98745818 1.98859976 1.99608005 3.00254305

6 3.00063492 1.99687071 2.00092856 1.99848923 3.00063492

7 3.00015871 1.99921806 1.99926368 1.99989082 3.00015870

8 3.00003903 1.99980454 2.00036904 1.99983872 3.00003886

9 3.00000606 1.99995114 1.99995397 2.00001112 3.00000351

Table 1: Experimental order of convergence, 2 switching points
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Figure 1: Exact versus discrete adjoint (left) with zoom at the first switching point (right)

for m = 3.
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