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Abstract: We consider a semilinear elliptic optimal control problem with pointwise control and state
constraints. The problem is reformulated by means of W 1,p(Ω) instead of C(Ω̄), and a discretization of
the state equation yields a sequence of optimal control problems. While the controls are not discretized,
solutions of the first order necessary conditions for these problems can be computed. A linearized Slater
condition, strict complementarity and a second order sufficient condition are assumed. Applying an
Implicit Multifunction Theorem to the first order necessary conditions, we proof O(h) convergence for
a model problem in two space dimensions.

1 Introduction

We are interested in the numerical treatment of the following optimal control problem on a
sufficiently smooth domain Ω ⊂ R

n, n = 2, 3

min
u∈L2(Ω), y∈C(Ω̄)

J(u, y) =
1
2
‖y − z‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to
y = S(u), a ≤ u ≤ b, y ≥ 0 ,

(1.1)

with a desired state z ∈ L2(Ω), a control u ∈ L2(Ω), the state y ∈ C(Ω̄), a control-to-
state operator S ∈ C2(L2(Ω), C(Ω̄)), and the Tikhonov parameter α > 0. We further as-
sume a, b ∈ L∞(Ω), a < b a.e., and by Uad =

{
u ∈ L2(Ω) | a ≤ u ≤ b, a.e.

}
and Yad ={

y ∈ C(Ω̄) | y ≥ 0
}

we denote the admissible sets for u and y. We further refer to Aa
u =

{x ∈ Ω | u(x) = a} as the active set of u with respect to a, and analogously introduce Ab
u

and Ay.
A lot of results are available for problem (1.1) in the situation of S being the solution op-
erator of a linear or semilinear elliptic state equation. Second order sufficient conditions for
the semilinear case were given in [CDLRT08]. The variational discretization considered in
the present paper has first been proposed in [Hin05] for linear-quadratic control constrained
problems. This approach has also been investigated in [DH07] including state and control
constraints for the special case of a linear operator S. Error estimates for fully discretized
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linear-quadratic problems can be found in [Mey08]. Both [DH07] and [Mey08] proved conver-
gence of order h1−ε, ε > 0 in two dimensions. Both results were improved in [HPUU09], where
O(h| log h|) convergence was shown. Semilinear equations with finite dimensional control, and
state constraints at a finite number of points were analyzed in [MTV08] using Robinson’s Im-
plicit Multifunction Theorem from [Rob80] in finite dimensions. The existence of a sequence
of discrete solutions, converging towards a designated solution of (1.1), was discussed in a
very general sense in [HM07], and in [ACT02] maximum norm estimates for the controls were
derived in the absence of state constraints. We only mention that, to avoid dealing with the
low regularity of the state constraint multipliers, regularizations of (1.1) have been proposed
in [MRT06] and [CR08b] for linear operators S. Corresponding error estimates of order h1−ε,
ε > 0 were developed in [CR08a] in the situation of Ω ⊂ R

2.
The approach taken in the present paper, is to apply an Implicit Multifunction Theorem to
the first order necessary conditions of (1.1). Given that a linearized Slater condition holds,
these can be written in the form

(P) 0 ∈

⎛
⎜⎜⎝

αu + S′∗(u)(y − z + K(y)) + N(u)

y − S(u)

C≥0(Ω̄)− S(u)

⎞
⎟⎟⎠ ⊂ L2(Ω)× C(Ω̄)× C(Ω̄)

with the normal cone

N(u) =

⎧⎨
⎩

{
v ∈ L2(Ω)

∣∣ 〈v, c− u〉L2(Ω) ≤ 0 , ∀c ∈ Uad

}
if u ∈ Uad

∅ else

and the cone

K(y) =
{

μ ∈ C(Ω̄)∗
∣∣∣ 〈μ,max(0, y)〉C(Ω̄)∗,C(Ω̄) = 0 ∧ ∀c+ ∈ Yad : 〈μ, c+〉C(Ω̄)∗,C(Ω̄) ≤ 0

}
.

The set C≥0(Ω̄) is the cone of pointwise nonnegative functions in C(Ω̄). By C(Ω̄)∗ we denote
the dual of C(Ω̄) and by S′∗(u) the dual operator of the Fréchet derivative of S at u.
The idea is now to look at S as a parameter, and to investigate the dependence of solutions
of (P) on perturbations of that parameter. We consider a family {Sh} of finite dimensional
approximations to S. The set of indices h is an arbitrary but fixed, positive and strictly
monotone sequence {hn}n∈N converging to zero, denoted h ∈ {hn}n∈N. We further assume
Sh1 �= Sh2 for h1 �= h2. Using the convention S0 := S, the set P = {Sh}h≥0 endowed with the
metric dP(Sh1 , Sh2) = |h1 − h2| becomes a metric space, admitting exactly one convergent
sequence. That space will be referred to as the parameter space.
The space L2(Ω)×C(Ω̄)2 is not suitable for our approach, since the theory applied in Section
2 requires some regularity of the underlying spaces, namely the existence of a Fréchet smooth
norm. We deal with this by formulating problem (P) by means of a separable reflexive Banach
space W ⊂ C(Ω̄), e.g. the Sobolev space W 1,p(Ω) with n < p < ∞. Since W is reflexive, it
admits a Fréchet smooth equivalent norm, such that also the corresponding dual norm of W ∗

is Fréchet smooth (see for example [Die75] §9). For the rest of this paper, we consider W and
W ∗ to be equipped with these smooth norms. The space W must be compatible with S and
{Sh}h>0 as

Sh : L2(Ω) → W ⊂ C(Ω̄) ∀h ≥ 0 . (1.2)
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We will also make use of the boundedness of the set of state-constraint multipliers in C(Ω̄)∗,
so for technical reasons instead of K(y) we consider

KM (y) =
{

μ ∈ K(y)
∣∣∣ ‖μ‖C(Ω̄)∗ ≤ M

}

for M > 0 sufficiently large.
The parameter dependent system then reads

(Ph) 0 ∈ F ((u, y), Sh)) =

⎛
⎜⎜⎝

αu + S′∗h (u)(y − z + KM (y)) + N(u)

y − Sh(u)

W≥0 − Sh(u)

⎞
⎟⎟⎠⊂ L2(Ω)×W 2 ,

with a more regular state y ∈ W . The set W≥0 is the cone of nonnegative functions in W .
Regarding problem (Ph), one observes, that the implementation proposed in [DH07] is appli-
cable only if a and b are constant, or at least piecewise linear. Otherwise we have to discretize
the bounds a, b first. This issue is addressed in Remark 3.15.
The objective of this paper is the application of an Implicit Multifunction Theorem, to obtain
convergence of a sequence of solutions (uh, yh) of (Ph) towards each solution (ū, ȳ) of (P),
that is sufficiently regular, i.e. that fulfills a second order sufficient condition and for that
strict complementarity and the linearized Slater condition 1.1 hold. The order of convergence
is determined by that of S′h(ū) in the operator norm, and the pointwise order of convergence
of Sh(ū), our main result being

‖uh − ū‖L2(Ω) + ‖yh − ȳ‖W ≤ 1
σ

(‖(S′∗h (ū)− S′∗(ū))(ȳ − z + μ̄)‖L2(Ω) + 2‖Sh(ū)− S(ū)‖W

)
.

For the example given in Section 4 the right hand side in the above estimate is O(h). Note
that, other than most authors, we do not assume uniform convergence of any order for S.
With respect to the implementation observe that once the main result is stated the bound
M becomes redundant and the same result holds for M = ∞.
Unfortunately, problem (P) does not fulfill Robinson’s condition for strong regularity, in fact
the formulation given here does not even fit into Robinson’s concept, so we cannot apply the
results from [Rob80]. Note also, that uniqueness of the multipliers may not be given.
In Section 2, we therefore slightly generalize the Theorems 2.6 (Decrease Principle) and 3.1
(Implicit Multifunction Theorem) as well as Lemma 3.3 from [LZ99].
We then show in Section 3 that these results can be applied to (Ph). This approach is not
aimed at showing uniqueness of a sequence of solutions uh of (Ph) converging towards ū, but
only at showing existence of such a sequence and some order of convergence. Under the given
assumptions uniqueness of uh can be recovered, this is however not carried out.
Finally, in Section 4 the abstract results are applied to an optimal control problem.
The following lemma concerns the relation between (P) and (Ph) and the choice of M . The
idea is to retain as much as possible of a given solution (ū, ȳ) of (P) when passing to (P0).
Under a linearized Slater assumption, we obtain boundedness of the multipliers μ ∈ K(ȳ)
solving (P), hence justifying the truncation of K(y) into KM (y).

Assumption 1.1. There exists an admissible direction d ∈ L2(Ω), such that ū + d ∈ Uad

and
S(ū) + S′(ū)d ∈ int(Yad) .
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This assumption also ensures that (P) holds at a given optimum (ū, ȳ) of (1.1).

Lemma 1.2. The relation between (P) and (Ph) is the following.

1. If (ū, ȳ) solves (P) and also fulfills the Assumption 1.1, then the set of multipliers
μ ∈ K(ȳ) solving (P) at (ū, ȳ) is bounded by some B > 0. Given the relation (1.2),
(ū, ȳ) also solves (P0) for M = 3B. Hence by the choice of M no relevant multipliers μ
are lost when passing from (P) to (Ph).

2. On the other hand every solution of (P0) also is a solution to (P).

Proof. We only have to prove 1. Given μ ∈ K(ȳ) with 0 ∈ αu + S′∗h (ū)(ȳ − z + μ) + N(ū),
we have

〈αū + S′∗(ū)(ȳ − z + μ), ũ− ū〉L2(Ω) ≥ 0 ∀ũ ∈ Uad

while the second line of (P) says ȳ = S(ū). Now inserting ũ = ū + d yields

−〈μ, S′(ū)d〉C(Ω̄)∗,C(Ω̄) ≤ 〈αū + S′∗(ū)(ȳ − z), d〉L2(Ω) =: M̃ .

Because supp(μ) ⊂ Ay and 〈μ, y+〉 ≤ 0 for all y+ ∈ Yad and because it follows from Assump-
tion 1.1 that

S′(ū)d ≥ δ > 0 on Ay

for some δ > 0, we get
δ|〈μ, 1〉C(Ω̄)∗,C(Ω̄)| ≤ M̃ .

But on the other hand we have for any μ− ∈ Y −ad =
{
μ ∈ C(Ω̄)∗ | ∀y ∈ Yad : 〈μ, y〉 ≤ 0

}
‖μ−‖C(Ω̄)∗ = −〈μ−, 1〉C(Ω̄)∗,C(Ω̄) , (1.3)

since if there were any y ∈ C(Ω̄) with ‖y‖∞ ≤ 1 and −〈μ−, y〉C(Ω̄)∗,C(Ω̄) > −〈μ−, 1〉C(Ω̄)∗,C(Ω̄)

this would imply 〈μ−, 1− y〉C(Ω̄)∗,C(Ω̄) > 0, in contradiction to μ− ∈ Y −ad.
Thus finally one ends up with

‖μ‖C(Ω̄)∗ ≤
M̃

δ
=: B .

Remark 1.3. Equation (1.3) also implies, that in Y −ad weak∗ convergence entails convergence
of the norms, which is why the sets KM (y) are weak∗ closed in C(Ω̄)∗.

2 Implicit Multifunction Theorem

In this section we develop a slightly generalized Implicit Multifunction Theorem as in [LZ99].
The differentiability- and invertability-assumption of the classical Implicit Function Theo-
rem is therein weakened to some condition on the subdifferential of a lower semicontinuous
function, by making use of the following lemma.
Throughout this section we denote by ∂̂f(x) the Fréchet subdifferential of a lower semicon-
tinuous function f : X → R at x ∈ X, as defined and characterized in [LZ99] or more
comprehensively in [Mor05]. Note, that if X allows for a Fréchet smooth norm, then there
also exists a Fréchet smooth Lipschitz bump function on X.
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Lemma 2.1 (Decrease Principle). Let X be a Banach space with a Fréchet smooth Lipschitz
bump function, let f : X → R̄ be a lower semicontinuous function bounded from below, and let
x̄ ∈ X as well as r, ε, σ > 0. Suppose that for any x ∈ Br(x̄)∩{x ∈ X | f(x) < f(x̄)+σr + ε},
ξ ∈ ∂̂f(x) implies ‖ξ‖X∗ > σ > 0. Then

inf
x∈Br(x̄)

f(x) ≤ f(x̄)− σr .

Proof. Assume that for some 0 < δ < min(σr, ε/2)

inf
x∈Br(x̄)

f(x) > f(x̄)− σr + δ . (2.4)

Let 0 < τ < r, then we have

lim
η→0

inf
x∈Bτ (x̄)+Bη(0)

f(x) > f(x̄)− σr + δ . (2.5)

By the multidirectional mean-value inequality given in Theorem 2.5 from [LZ99] equation
(2.5) implies the following. For every η > 0 we get z ∈ Bτ (x̄) + Bη(0) and z∗ ∈ ∂̂f(z), with

−σr + δ < 〈z∗, x− x̄〉 ∀x ∈ Bτ (x̄)

and
f(z) < f(x̄) + σr + δ + η .

For a proof of the mean-value inequality see Theorem 2.6 in Chapter 3 of [CLSW98] . Choosing
η sufficiently small now ensures Bτ (x̄) + Bη(0) ⊂ Br(x̄) and f(z) < f(x̄) + σr + ε. Hence
‖z∗‖ > σ and

σr − δ > ‖z∗‖X∗τ > στ .

Choosing τ sufficiently close to r yields a contradiction. The lemma follows from equation
(2.4) hence being false for all sufficiently small δ > 0.

Lemma 2.1 is formulated as Theorem 2.6 in [LZ99] with the slightly stronger assumption,
that ξ ∈ ∂̂f(x) implies ‖ξ‖X∗ > σ > 0 for all x ∈ Br(x̄).
The next step is to generalize Theorem 3.1 from [LZ99]. This theorem deals with a lower
semicontinuous function f : X × P → R̄ on some smooth Banach space X and is concerned
with solutions of

f(x, p) ≤ 0 ,

depending on some parameter p out of a metric space P . For our purpose f will be the
distance function d(0, F (x, p)), measuring the distance between zero and the image F (x, p)
of a set valued mapping F : X×P → 2Y , with another smooth enough Banach space Y . The
distance is defined as usual

∀y ∈ Y ∀S ⊂ Y : d(y, S) = inf
s∈S

‖y − s‖Y .

We further set d(y, ∅) =∞ for all y ∈ Y , thus keeping d(y, F (x)) well defined for all x ∈ X.
The Theorem is formulated by means of the solution map G : P → X

G(p) = {x ∈ X | f(x, p) ≤ 0} .

The idea is to include the (very slight) generalization of the previous lemma by making use
of the reduced assumptions on ξ ∈ ∂̂f(x). By ∂̂x we denote the Fréchet subgradient with
respect to the variable x.
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Theorem 2.2 (Implicit Multifunction Theorem). Let X and Y be Banach spaces with Fréchet
smooth Lipschitz bump functions, let (P, τP ) be a topological space and let U be an open set
in X × P . Suppose that f : U → R̄ satisfies

1. there exists (x̄, p̄) ∈ U such that f(x̄, p̄) ≤ 0;

2. p �→ f(x̄, p) is upper semicontinuous at p̄;

3. for any p near p̄, x �→ f(x, p) is lower semicontinuous;

4. there exists ε > 0 and σ > 0 such that, for any (x, p) ∈ U with 0 < f(x, p) < ε,
ξ ∈ ∂̂xf(x, p) implies that ‖ξ‖X∗ > σ.

Then there exist open sets W ⊂ X and V ⊂ P containing x̄ and p̄ respectively, such that

1. for any p ∈ V , W ∩G(p) �= ∅;
2. for any p ∈ V and x ∈ W ,

d(x, G(p)) ≤ f+(x, p)
σ

,

where f+(x, p) = max(0, f(x, p)).

Proof. The Proof is exactly the same as in [LZ99], but one has to choose r′ sufficiently small
to ensure r′σ < ε.

The fourth condition in Theorem 2.2 concerning ∂̂xf is given a more easily manageable shape
in the next lemma, whose proof is exactly the same as the one for Lemma 3.3 in [LZ99].
Before formulating its assertion, we need to clarify our notation.

Definition 2.3 (Projection). For all x ∈ X, y ∈ Y we define

pr(y, F (x)) = {ỹ ∈ F (x) | d(y, ỹ) = d(y, F (x))} .

Definition 2.4 (Fréchet Normals). Let X be an arbitrary Banach space and S ⊂ X. The
Fréchet normal cone to S at x̄ ∈ S is defined as

N̂(x̄,S) =
{

x∗ ∈ X∗
∣∣∣∣ lim sup

x∈S x→x̄

〈x∗, x− x̄〉
‖x− x̄‖X

≤ 0
}

.

Definition 2.5 (Coderivative). Let X and Y be Banach spaces and let F : X → 2Y be
a multifunction with closed graph and y ∈ F (x). Then the Fréchet coderivative at (x, y) is
defined as

D̂∗F (x, y)y∗ =
{

x∗ ∈ X∗
∣∣∣ (x∗,−y∗) ∈ N̂((x, y), graphF )

}

where N̂((x, y), graphF ) denotes the Fréchet normal cone of the set graphF at the point
(x, y). If F depends on some parameter p, we refer to the coderivative with respect to x as
D∗F (x, y; p).
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Lemma 2.6. Let X be a Banach space with Fréchet smooth Lipschitz bump functions, let Y be
a Banach space with a Fréchet smooth norm, let U ⊂ X be an open set and let F : U → 2Y be a
multifunction with closed graph, such that for any x ∈ U there either holds pr(0, F (x)) �= ∅ or
F (x) = ∅. Denote by ‖ ·‖′Y the Fréchet derivative of the norm in Y , and let f(x) = d(0, F (x))
be lower semicontinuous on U . Suppose

for x ∈ U with 0 /∈ F (x) �= ∅ we can choose y ∈ pr(0, F (x)) such that
σ ≤ inf

{‖x∗‖X∗
∣∣ x∗ ∈ D∗F (x; y)(y∗), y∗ = ‖y‖′Y

}
.

Then ξ ∈ ∂̂f(x) implies that ‖ξ‖X∗ > σ. Further the value of σ does not depend on the choice
of y ∈ pr(0, F (x)).

Proof. If F (x) = ∅, then ∂̂f(x) = ∅. If F (x) �= ∅, let ξ ∈ ∂̂f(x) where f(x) > 0. By the
definition of the subdifferential there exists a Fréchet smooth function g such that g′(x) = ξ
and f − g attains a local minimum at x. Let y ∈ pr(0, F (x)). Then ‖y‖Y = f(x) and we have
for x′ sufficiently close to x

f(x)− g(x) = ‖y‖Y − g(x) = ‖y‖Y + δGraph F (x, y)− g(x)
≤ f(x′)− g(x′) ≤ ‖y′‖Y + δGraph F (x′, y′)− g(x′) ∀y′ ∈ Y ,

where δGraph F (x′, y′) denotes the indicator function of the set GraphF (i.e. δGraph F (x′, y′) =
0 for (x′, y′) ∈ GraphF and ∞ otherwise). Hence the function

(x′, y′) �→ ‖y′‖Y + δGraph F (x′, y′)− g(x′)

attains a local minimum at (x, y). Note that ‖y‖Y > 0 and therefore (x′, y′) �→ g(x′)− ‖y′‖Y

is differentiable at (x, y). Thus (g′(x),−‖y‖′Y ) ∈ ∂̂δGraph F (x, y), and because ∂̂δGraph F (x, y)
is contained in the Fréchet normal cone it follows

ξ = g′(x) ∈ D̂∗F (x, y)(‖y‖′Y ) ,

and finally ‖ξ‖X∗ > σ.

3 Application to the Optimal Control Problem

Now with respect to our original problem (Ph) we consider the spaces

X = L2(Ω)×W and Y = L2(Ω)×W ×W

endowed with the Fréchet smooth norms

‖(u, y)‖X =
√
‖u‖2

L2(Ω)
+ ‖y‖2W and ‖(u, y, v)‖Y =

√
‖u‖2

L2(Ω)
+ ‖y‖2W + ‖v‖2W .

The purpose of this section is to verify that Theorem 2.2 can be applied to (Ph) under
reasonable assumptions on the family {Sh} and the multipliers μ̄, λ̄ that solve (P) for some
fixed solution (ū, ȳ).
We make the following assumptions concerning the convergence and stability of Sh.

Assumption 3.1. Sh(u) h→0−→ S(u) in W for any fixed u ∈ Uad.
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Assumption 3.2. For any h ≥ 0 there holds Sh ∈ C2(L2(Ω), C(Ω̄)) and Sh is differentiable
as an operator from L2(Ω) into W .

Assumption 3.3. S′h(uh) h→0−→ S′(u) in L(L2(Ω), W ), for all sequences uh
L2(Ω)−→ u bounded

in L∞(Ω).

We further simplify the notation by the following

Definition 3.4. For notational convenience, we introduce the function

F : Q ⊂ L2(Ω)×W × C(Ω̄)∗ × L2(Ω)×W × P −→ L2(Ω)×W ×W ,

that indexes points in the image of F ((u, y), Sh) by

F(u, y, μ, λ, ν; Sh) =

⎛
⎜⎜⎝

αu + S′∗h (u)(y − z + μ) + λ

y − Sh(u)

ν − Sh(u)

⎞
⎟⎟⎠ ,

the domain of F is Q = {(u, y, μ, λ, ν) | μ ∈ KM (y), λ ∈ N(u), ν ∈ W≥0 } × P.
We further denote by DF ∗(u, y, μ, λ, ν; Sh) the Fréchet coderivative with respect to (u, y)

DF ∗((u, y),F(u, y, μ, λ, ν; Sh); Sh)

at the point F(u, y, μ, λ, ν; Sh).

To apply Lemma 2.6 to f(x, p) = f((u, y), Sh) = d(0, F ((u, y), Sh)), we have to prove the
non-emptiness of pr(0, F ((u, y), Sh)) for non-empty F , and the lower semicontinuity of f
with respect to x. Also, to make use of the lemma, one has to characterize the coderivative
of F . Finally, the semicontinuity assumptions of Theorem 2.2 need to be verified.

Lemma 3.5. Provided Assumptions 3.1 - 3.3 hold, the set-valued function F from (Ph) has
the following properties.

1. pr(0, F ((u, y), Sh)) �= ∅ ∨ F ((u, y), Sh)) = ∅.
2. d(0, F ( · , Sh)) is lower semicontinuous for any fixed Sh, h ≥ 0.

3. d(0, F ((u, y), · ) is upper semicontinuous at S, for any given u ∈ L2(Ω), y ∈ W .

4. The graph of F ( · , Sh) is closed.

5. For admissible u ∈ Uad and ‖μ‖C(Ω̄)∗ ≤ M/2 the Fréchet coderivative

DF ∗(u, y, μ, λ, ν; Sh) : L2(Ω)×W ∗ ×W ∗ → L2(Ω)×W ∗ , (η1, η2, η3) �→ (u∗, y∗)

either has the shape

u∗ − (αId + S′′∗h (u)(y − z + μ))η1 + S′∗h (u)(η2 + η3) ∈ N(u) , (3.6)
y∗ = S′h(u)η1 + η2 ∈ W ∗ , (3.7)
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or is empty valued for (η1, η2, η3). In particular it is empty valued for all but

−η1 ∈
{
v ∈ L2(Ω)

∣∣ v ≤ 0 on Ab
u ∧ v ≥ 0 on Aa

u

}
∩{

v ∈ L2(Ω) | v(x) = 0 if λ(x) �= 0
}

∩
{

v ∈ L2(Ω)
∣∣∣ 〈μ, S′h(u)v〉C(Ω̄)∗,C(Ω̄) = 0 ∧ S′h(u)v ≥ 0 on Ay

}
=: C(u, y, μ, λ, Sh)

(3.8)

as well as

η3 ∈
{
w∗ ∈ W ∗ ∣∣ 〈w∗, ν〉W ∗,W = 0 ∧ ∀w+ ∈ W≥0 : 〈w∗, w+〉W ∗,W ≥ 0

}
(3.9)

where C(u, y, μ, λ, Sh) can be seen as a relaxation of the cone of critical directions Cū

in [CDLRT08].

Because we assumed b > a a.e., we can also write for u ∈ Uad

N(u) =
{

v ∈ L2(Ω)
∣∣∣ v ≥ 0 on Ab

u, v ≤ 0 on Aa
u, v = 0 otherwise

}
. (3.10)

Proof. 1. Let F ((u, y), Sh) �= ∅. Then there exists a minimizing sequence

yk =

⎛
⎜⎜⎝

αu + S′∗h (u)(y − z + μk) + λk

y − Sh(u)

νk − Sh(u)

⎞
⎟⎟⎠ ∈ F ((u, y), Sh) ,

such that limk→∞ d(yk, 0) = infy∈F ((u,y),Sh) d(y, 0). Now the sequences μk, νk and with μk

also λk are bounded in their respective norms, and since bounded sets in C(Ω̄)∗ as well as in
L2(Ω) are relatively weakly∗ sequentially compact, we can extract a subsequence (μj , λj , νj),
converging weakly∗ towards some (μ̃, λ̃, ν̃). Because L2(Ω) is reflexive, weak and weak∗ con-
vergence coincide. All three limits lie inside F ((u, y), Sh), because KM (y) is weak∗ closed (see
Remark 1.3) and N(u) and W≥0 are closed and convex and hence weakly closed. The weak
lower semicontinuity of the norms yields d(0,F(u, y, μ̃, λ̃, ν̃; Sh)) = infy∈F ((u,y),Sh) d(0,y).

2. Suppose there exists a sequence (uk, yk)
k→∞−→ (u, y) such that

lim
k→∞

d(F ((uk, yk), Sh), 0) < d(F ((u, y), Sh), 0) , (3.11)

in particular F ((uk, yk), Sh) �= ∅. Any sequence
⎛
⎜⎜⎝

αuk + S′∗h (uk)(yk − z + μk) + λk

yk − Sh(uk)

νk − Sh(uk)

⎞
⎟⎟⎠ ∈ pr(0, F ((uk, yk), Sh))

is bounded and hence (μk, λk, νk) admits a subsequence with indices k̃ converging weakly
towards (μ̃, λ̃, ν̃). Because of the strong convergence of uk, we finally have

〈λ̃, c− u〉L2(Ω) = lim
k̃→∞

〈λk̃, c− uk̃〉L2(Ω) ≤ 0
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for all c ∈ Uad, that is λ̃ ∈ N(u). Because of the strong convergence of yk̃ we have also

〈μ̃,max(0, y)〉C(Ω̄)∗,C(Ω̄) = lim
k̃→∞

〈μk̃, max(0, yk̃)〉 = 0

and taking into account that 〈μ̃, c+〉C(Ω̄)∗,C(Ω̄) ≤ 0 , ∀c+ ∈ C≥0(Ω̄) we get μ̃ ∈ KM (y). Using
Assumption 3.2 and hence S′∗h (uk̃)μk̃ → S′∗h (u)μ̃, the weak lower semicontinuity of the norm
now yields

lim inf
k̃→∞

d(F ((uk̃, yk̃), Sh), 0) ≥ d(F ((u, y), Sh), 0)

in contradiction to (3.11)
3. Because of 1. , there exist admissible multipliers μ, λ and ν such that

⎛
⎜⎜⎝

αu + S′∗(u)(y − z + μ) + λ

y − S(u)

ν − S(u)

⎞
⎟⎟⎠ ∈ pr(0, F ((u, y), S)) .

By fixing μ, λ and ν we get from Assumptions 3.1 and 3.3

lim
h→0

d(0, F ((u, y), Sh)) ≤ d(0, F ((u, y), S)) .

4. Consider a sequence
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk

yk

αuk + S′∗h (uk)(yk − z + μk) + λk

yk − Sh(uk)

νk − Sh(uk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ graph(F ( · , Sh)) ,

converging towards some (u, y, w1, w2, w3). Due to Assumption 3.2, we have w2 = y − Sh(u)
and w3 = ν − Sh(u) for some ν ∈ W≥0. Using a weak∗ converging subsequence of μk, a
consideration similar to 1. shows that indeed

w1 = αu + S′∗h (u)(y − z + μ) + λ

for some μ ∈ KM (y), λ ∈ N(u).
5. Hence the Fréchet coderivative of F is well defined as in Definition 2.5.
To characterize the Fréchet normal cone (see Definition 2.4) at some point

⎛
⎜⎜⎝

αu + S′∗h (u)(y − z + μ) + λ

y − Sh(u)

ν − Sh(u)

⎞
⎟⎟⎠ (3.12)

one can derive necessary conditions for (u∗, y∗,−η1,−η2,−η3) to belong to the Fréchet normal
cone of graph(F ( · , Sh)) at the point given by (3.12). By considering sequences inside the
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graph, that vary only in λ, μ or ν, respectively, one observes

〈−η1, λ̃− λ〉 ≤ 0 ∀λ̃ ∈ N(u) ,

〈−S′(u)η1, μ̃− μ〉 ≤ 0 ∀μ̃ ∈ KM (y) ,

〈−η3, ν̃ − ν〉 ≤ 0 ∀ν̃ ∈ W≥0 .

(3.13)

Since 0 as well as 2μ lie in KM (y), it follows that 〈S′(u)η1, μ〉C(Ω̄),C(Ω̄)∗ = 0 and by the same
reasoning for λ we get 〈η1, λ〉L2(Ω) = 0 and 〈η3, ν〉W ∗,W = 0. Now, by considering sequences
in graph(F ) that vary only in u or only in y converging towards

(αu + S′∗h (u)(y − z), y − Sh(u),−Sh(u)) ∈ F ((u, y), Sh) ,

and using the differentiability Assumptions 3.2, one gets

〈−η1, α du + S′′∗h (u)(y − z + μ)du〉+ 〈−η2 − η3,−S′h(u) du〉+ 〈u∗ , du〉 ≤ 0 ∀du ∈ Uad − u ,

〈−η1, S
′∗
h (u) dy〉+ 〈−η2, dy〉+ 〈y∗, dy〉 ≤ 0 ∀dy ∈ W ,

yielding (3.6)-(3.7). Note, that as in Lemma 3.17 the operator S′′∗h (u)(y− z +μ) is selfadjoint
due to Assumption 3.2. The relation (3.8) follows from (3.13), considered that KM/2(y) ⊂
KM (y) − μ because of ‖μ‖ ≤ M/2. Hence 〈S′h(u)η1, μ̃〉 ≥ 0 for all μ̃ ∈ KM

2
(y) implies

S′h(u)η1 ≤ 0 on Ay. The necessity of (3.9) also follows from (3.13).

The next lemma now makes sure, that the prerequisites for Lemma 2.6 hold, and thus also
the prerequisite on ∂̂f in Theorem 2.2, provided that the following conditions apply to a
given solution (ū, ȳ) of (P).

Definition 3.6. For some given (u, y) ∈ L2(Ω)×W , by K(u, y) we denote the set of multi-
pliers μ ∈ K(y), that solve (P). If K(u, y) �= ∅, then the multiplier λμ solving

F(u, y, μ, λμ, ν; S) = 0

is uniquely determined by μ ∈ K(u, y) as in (3.16). We write C(u, y, μ, S) := C(u, y, μ, λμ, S).

We will make use of a second order sufficient condition.

Assumption 3.7. K(ū, ȳ) �= ∅ and for all μ ∈ K(ū, ȳ), λ ∈ C(ū, ȳ, μ, S) \ {0}

λ(αId + S′′∗(ū)(ȳ − z + μ) + S′∗(ū)S′(ū))λ > 0 .

It was shown in [CDLRT08] that 3.7 is indeed sufficient for strict local optimality, for a class of
semilinear problems including our example from Section 4. Further two strict complementarity
conditions must be fulfilled, to discern active and inactive sets.

Assumption 3.8. For all μ ∈ K(ū, ȳ), the set
{

x ∈ Ω
∣∣∣∣ − 1

α
S′∗(ū)(ȳ − z + μ)[x] ∈ {a(x), b(x)}

}

has Lebesgue measure zero.
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Assumption 3.9. For all μ ∈ K(ū, ȳ) there holds

supp(μ) = Aȳ .

Of course some assumptions concerning the convergence of the second derivative are necessary.

Assumption 3.10. S′′h(uh) h→0−→ S′′(u) in L(L2(Ω)×L2(Ω), C(Ω̄)), for all sequences uh
L2(Ω)−→ u

bounded in L∞(Ω).

The following assumption guarantees for the compactness of S′′∗h (u)(y − z + μ) : L2(Ω) →
L2(Ω) for h > 0.

Assumption 3.11. For h > 0 the operator S′′h(u) : L2(Ω)2 → C(Ω̄) is in fact the concate-
nation of some continuous linear operator πh : L2(Ω) → Vh into some finite dimensional
subspace of L2(Ω) and some bilinear continuous operator Th : V 2

h → C(Ω̄).

Lemma 3.12. Let (ū, ȳ) solve (P). Suppose that in addition to the prerequisites of Lemma
3.5 the Assumptions 3.7- 3.11 as well as the linearized Slater condition 1.1 hold at (ū, ȳ).
Then there exists σ > 0 and ε > 0 and an open set Ux × Up ⊂ X × P containing ((ū, ȳ), S0)
such that for all ((u, y), Sh) ∈ Ux × Up with 0 < f((u, y), Sh) < ε the following holds. Let
F(u, y, μ, λ, ν; Sh) ∈ pr(0, F ((u, y), Sh)) and η = ‖F(u, y, μ, λ, ν; Sh)‖′Y ∈ L2(Ω) ×W ∗ ×W ∗

as in Lemma 2.6, then we have

‖D̂∗F (u, y, μ, λ, ν; Sh)η‖X∗ ≥ σ .

Proof. Suppose the Lemma does not hold. Then there exists a sequence (uk, yk, Shk
) →

(ū, ȳ, S0) with
f((uk, yk), Shk

) → 0 (3.14)

and corresponding μk ∈ KM (yk), λk ∈ N(uk) and νk ∈ W≥0, such that

F(uk, yk, μk, λk, νk; Shk
) ∈ pr(0, F ((uk, yk), Shk

))

and ηk = ‖F(uk, yk, μk, λk, νk; Shk
)‖′Y , such that there exist

(u∗k, y
∗
k) ∈ D̂∗F (uk, yk, μk, λk, νk; Shk

)ηk with lim
k→∞

‖(u∗k, y∗k)‖X∗ = 0 . (3.15)

We will show, that (3.15) contradicts ‖ηk‖Y ∗ = 1.
Since μk is bounded, a subsequence again denoted μk converges weak∗ against some μ̄ ∈
KM (ȳ) as in the proof of Lemma 3.5. Because of (3.14), the compactness of S′∗(ū) (compare
Lemma 3.17) and Assumption 3.3

αuk + S′∗hk
(uk)(yk − z + μk) → αū + S′∗(ū)(ȳ − z + μ̄)

strongly as k →∞ and hence we have

λk
k→∞−→ − [

ū + S′∗(ū)(ȳ − z + μ̄)
]
Aū

= λ̄μ̄ ,

where by [ · ]Aū we mean the operator that just cuts off any function to zero outside of Aū.
Note that λ̄μ̄ is uniquely determined by ū, ȳ and μ̄ via the L2(Ω) minimization problem

λ̄μ̄ = arg min
λ∈N(ū)

∥∥αū + S′∗(ū)(ȳ − z + μ̄) + λ
∥∥2

L2(Ω)
, (3.16)
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namely

λ̄μ̄ =

⎧⎨
⎩

−min (αū + S′∗(ū)(ȳ − z + μ̄), 0) on Ab
ū

−max (αū + S′∗(ū)(ȳ − z + μ̄), 0) on Aa
ū

.

The same holds true for λk with respect to uk, yk, μk, Shk
. Because of Assumption 3.8 the

multiplier λ̄μ̄ is a.e. non-zero on Aū.

Finally, due to (3.14) ‖νk − ν̄‖W
k→∞−→ 0, setting ν̄ = S(ū), and we get

F(ū, ȳ, μ̄, λ̄μ̄, ν̄; S0) = 0 .

Now, let ηk = (ηk
1 , ηk

2 , ηk
3 ). From the definition of ηk there follows ‖ηk‖Y ∗ = 1. Because of

that, there exists a subsequence again denoted by ηk converging weakly in Y ∗ towards some
η̄ = (η̄1, η̄2, η̄3) ∈ Y ∗. This implies weak convergence of ηk

1 towards η̄1 in L2(Ω) and ηk
2 ⇀ η̄2

and ηk
3 ⇀ η̄3 in W ∗. We show, that indeed −η̄1 is an admissible direction lying in C(ū, ȳ, μ̄, S).

First, since λk → λ̄μ̄, a subsequence λk̃ converges a.e. pointwise, and from (3.8) we know, that
since λ̄μ̄ is non-zero on Aū, the multiplier ηk̃

1 tends towards zero pointwise on Aū. Its weak
limit η̄1 thus equals zero a.e. on Aū (compare Thm. 5.9, Ch. VI in [Els96]). The corresponding
subsequence of ηk is again denoted by ηk.
Secondly, the convergence of 〈μk, S

′
hk

(uk)ηk
1 〉 towards 〈μ̄, S′0(ū)η̄1〉 follows from Assumption

3.3 and the fact, that S′0(ū) is compact.
Thirdly, we have μk

∗
⇀ μ̄; and for any open set O ⊂ Ω with O∩supp(μ̄) �= ∅ there exists some

cO ∈ Yad with supp(cO)∩ supp(μ̄) containing an open set, such that 〈μ̄, cO〉 = kO > 0. Hence
〈μk, cO〉 → kO and O ∩ supp(μk) �= ∅ for k sufficiently large. Also, as stated in Remark 1.3,
‖μk‖ → ‖μ̄‖ and by the choice of M in Lemma 1.2 we can choose k large enough to ensure
‖μk‖ ≤ M/2, and by Lemma 3.5 S′hk

(uk)ηk
1 ≥ 0 on Ayk

.
Now for any x ∈ supp(μ̄), by considering a family of open sets BRd(x, 1/n), n ∈ N we
obtain a subsequence yi and some sequence xi ∈ supp(μi) ⊂ Ayi with xi → x, contradicting
(S′(ū)η̄1)(x) < 0. By Assumption 3.9 now follows S′(ū)η̄1 ≥ 0 on Aȳ.
Now that we have −η̄1 ∈ C(ū, ȳ, μ̄, S) and ‖μk‖ ≤ M/2 for large k, we apply the multiplier
from (3.6) to −ηk

1 , to obtain

〈u∗k, ηk
1 〉L2(Ω) ≥ ηk

1 (αId + S′′∗hk
(uk)(yk − z + μk))ηk

1 − ηk
1S′∗hk

(uk)(ηk
2 + ηk

3 ) ,

where we made use of (3.10). On the other hand one has from (3.7)

〈y∗k, S′hk
(uk)ηk

1 〉W ∗,W = ηk
1S′∗hk

(uk)S′hk
(uk)ηk

1 + 〈S′∗hk
(uk)ηk

2 , ηk
1 〉L2(Ω) .

Combining both gives

〈u∗k, ηk
1 〉L2(Ω) + 〈y∗k, S′h(uk)ηk

1 〉W ∗,W ≥ηk
1

(
αId + S′′∗h (uk)(yk − z + μk)

+ S′∗h (uk)S′h(uk)
)
ηk
1 − ηk

1S′∗h (uk)ηk
3 .

(3.17)

We now show, that in fact ‖ηk‖Y → 0, and start by showing ‖ηk
1‖L2(Ω) → 0.

Assume that there exists a subsequence ζk = (ζk
1 , ζk

2 , ζk
3 ) of ηk, such that limk→∞ ‖ζk

1 ‖L2(Ω) =
γ > 0. Because of (3.9) we know, that the support of the weak limit ζ̄3 of ζk

3 lies in Aȳ. On
the other hand, −S′hk

(uk)ζk
1 converges strongly in W towards −S′∗0 (ū)ζ̄1. In fact S′∗0 (ū)ζ̄1 ≥ 0

on Aȳ as was shown in the first part of this proof. Hence limk→∞−〈ζk
1 , S′∗hk

(uk)ζk
3 〉 ≥ 0.
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Inserting this into (3.17) using uk, yk → 0 yields

0 ≥ lim
k→∞

ζk
1 (αId + S′′∗hk

(uk)(yk − z + μk) + S′∗hk
(uk)S′hk

(uk))ζk
1 ,

and together with the convergence properties from Assumptions 3.3 and 3.10 we have

0 ≥ lim
k→∞

ζk
1 (αId + S′′∗(ū)(ȳ − z + μ̄) + S′∗(ū)S′(ū))ζk

1 ,

and using the compactness assured by Lemma 3.17, the second order sufficient condition 3.7
finally gives

0 ≥ αγ2 + ζ̄1(S′′∗(ū)(ȳ − z + μ̄) + S′∗(ū)S′(ū))ζ̄1

≥ ζ̄1(αId + S′′∗(ū)(ȳ − z + μ̄) + S′∗(ū)S′(ū))ζ̄1 > 0 ,

for −ζ̄1 ∈ C(ū, ȳ, μ̄, S) \ {0}. Hence ζ̄1 = 0, but then it follows 0 ≥ αγ2, contradicting γ > 0.
Thus limk→∞ ‖ηk

1‖L2(Ω) = 0 and by (3.7) also limk→∞ ‖ηk
2‖W ∗ = 0. It remains to show

‖ηk
3‖W ∗

k→∞−→ 0. To this end we use the direction d from Assumption 1.1 by applying dk =
d + ū− uk to (3.6) and pass to the limit using u∗k, η

k
1 , ηk

2 → 0 to arrive at

0 ≥ lim
k→∞

dkS
′∗
hk

(uk)ηk
3 . (3.18)

The sequence S′hk
(uk)dk converges in W towards S′(ū)d due to the convergence assumption

on the derivatives 3.3.
Since S′(ū)d > δ > 0 on Aȳ, there exists some ε > 0, such that S′(ū)d > 3δ/4 > 0 on
Aȳ +BRn(0, ε). Assuming the contrary easily gives a contradiction to Ω̄ being compact, as in
the argument for Kε below. Thus we have S′hk

(uk)dk > δ/2 on Aȳ +BRn(0, ε) for all k ≥ Kδ/2.

Now the support of ηk
3 lies in AShk

(uk). Because yk
W→ ȳ and because of (3.14) there holds

‖Shk
(uk)−ȳ‖W → 0. Therefore, there exists Kε, such thatAShk

(uk) ⊂ Aȳ+BRn(0, ε) for all k ≥
Kε. If not, there would exists some sequence xk ∈ Ω\(Aȳ+BRn(0, ε)) with (Shk

(uk))(xk) = 0,
and some converging subsequence xk̃ → x, for Ω is compact. But then S(ū)(x) = ȳ(x) = 0,
contradicting x /∈ Aȳ.
Hence 〈ηk

3 , S′hk
(uk)dk〉 ≥ 1

2〈ηk
3 , 1〉 for k > max(Kδ/2, Kε). Since after Lemma 3.18 〈ηk

3 , 1〉 ≥
‖ηk

3‖W ∗/C, we finally have from (3.18)

lim
k→∞

‖ηk
3‖W ∗ = 0

and thus ηk → 0, in contradiction to ηk = ‖F(uk, yk, μk, λk, νk; Shk
)‖′.

Remark 3.13. The strict complementarity 3.8 assumed here can be dismissed completely
if the second derivative α + S′′∗(ū)(y − z + μ̄) + S′∗(ū)S′(ū) fulfills some sufficiently strong
positive definiteness condition, as, for instance, being positive definite on all of L2(Ω). The
latter is true in the linear-quadratic case. If S is linear, assumption 3.7 becomes trivial.

The direction d from Assumption 1.1 plays an important role. In combination with the L∞-
convergence of Sh it ensures the stability of (P) with respect to perturbations in S, namely
the existence of admissible points for (Ph) for sufficiently small h > 0, which was discussed
in [CM02b].
The Lemmas 3.5 and 3.12 plugged into Lemma 2.6 and Theorem 2.2 now lead to our main
result.
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Theorem 3.14. Consider a solution (ū, ȳ) of (P) and multipliers μ̄, λ̄, ν̄, such that

F(ū, ȳ, μ̄, λ̄, ν̄; S) = 0 .

Let the Assumptions 3.1-3.3 as well as 3.7-3.11 be fulfilled. Then there exists h0 > 0 and
σ > 0 as in Lemma 3.12 , such that for 0 < h < h0 problem (Ph) admits a solution (uh, yh)
that fulfills

‖uh − ū‖L2(Ω) + ‖yh − ȳ‖W ≤ 1
σ

(‖(S′∗h (ū)− S′∗(ū))(ȳ − z + μ̄)‖L2(Ω) + 2‖Sh(ū)− S(ū)‖W ) .

Remark 3.15. The assertions of Theorem 3.14 remain true, if one allows for varying bounds

ah
L2(Ω)−→ a0 = a and bh

L2(Ω)−→ b0 = b with ah ≥ a and bh ≤ b for all h > 0. The latter assumption
is crucial to the lower semicontinuity of the function f(x, p) with respect to p = (Sh, ah, bh).
One has to apply the following changes in the function F . Replace N(u) by

N(u, ah, bh) =

⎧⎨
⎩

{
v ∈ L2(Ω)

∣∣ 〈v, c− ubh
ah
〉L2(Ω) ≤ 0 , ∀c ∈ Uad

}
if a ≤ u ≤ b

∅ else
,

with ubh
ah

= min(bh, max(ah, u)). Further, append these two lines to F from problem (Ph)
⎛
⎝ L2(Ω)≥0 − (bh − u)

L2(Ω)≥0 − (u− ah)

⎞
⎠

making F a set valued function into L2(Ω) ×W 2 × L2(Ω)2. This has been left out merely
for the notational inconvenience involved. The modification of Lemma 3.5 and its proof is
straightforward, as it is for Lemma 3.12. The only change to be made here is to choose

dk = d + ū− uk + [ah − a]Aah
uk

+ [bh − b]Abh
uk

,

converging towards d as well. Again, for φ ∈ L2(Ω), [φ]A denotes the restriction [φ]A(x) =
φ(x) for x ∈ A, zero otherwise. This is important because of the two additional multipliers
ηk
4 , ηk

5 ∈ L2(Ω)≥0.
Finally, the two terms ‖ah − a‖L2(Ω) and ‖bh − b‖L2(Ω) emerge on the right hand side of the
error estimate given in the theorem.

Remark 3.16. Note also, that a slight alteration of our technique applies to purely control
constrained problems, yielding

‖uh − ū‖L2(Ω) + ‖yh − ȳ‖L2(Ω) ≤
1
σ

(‖(S′∗h (ū)− S′∗(ū))(ȳ − z)‖L2(Ω) + ‖Sh(ū)− S(ū)‖L2(Ω)) .

and thus an optimal order of convergence for the control u. To this end, just set K(y) =
{0} ∈ L2(Ω), eliminate the last line of F and replace C(Ω̄) and W by L2(Ω) everywhere,
making F a set valued function into L2(Ω)×L2(Ω). The proofs stay essentially the same and
become, in fact, much simpler, as there are no multipliers in C(Ω̄)∗ or W ∗ to consider. In
this situation however, we could as well apply Robinson’s Implicit Multifunction Theorem.
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Proof of Theorem 3.14. The application of Theorem 2.2 is straightforward. As to the es-
timation of f((ū, ȳ), Sh) we note, that the multipliers μ̄, λ̄ and ν̄ are also admissible for
F ((ū, ȳ), Sh). We then just apply

d(0, F ((ū, ȳ), Sh)) ≤ 1
σ
‖F(ū, ȳ, μ̄, λ̄, ν̄; Sh)−F(ū, ȳ, μ̄, λ̄, ν̄; S)︸ ︷︷ ︸

=0

‖Y .

The order of convergence asserted in Theorem 3.14, if any, is that of S(ū) and S′∗(ū)μ at
some fixed point ū and for some fixed μ ∈ C(Ω̄)∗. We make no use of uniform convergence.
It holds in the semilinear case, but may not hold in other settings.
The following two Lemmas are used in the proof of Lemma 3.12.

Lemma 3.17. Assume 3.2 and 3.11. Under the convergence Assumption from 3.10 the linear
operator

S′′∗h (u)(μ) : L2(Ω) → L2(Ω)

is compact and selfadjoint for any h ≥ 0, u ∈ L∞(Ω) and μ ∈ C(Ω̄)∗. In particular this holds
for μ ∈ L2(Ω) or μ ∈ W via the canonical embeddings W ⊂ L2(Ω) ⊂ C(Ω̄)∗.
Assuming 3.3, the operator S′h(u) : L2(Ω) → W is compact as well for any u ∈ L∞(Ω), h ≥ 0.

Proof. Since Sh is assumed to be C2 into C(Ω̄) (Assumption 3.2), S′′h(u) : L2(Ω)2 → C(Ω̄)
is symmetric in its two arguments, hence the selfadjointness. As to the compactness, the
operators S′h(u) have finite dimensional image for h > 0 and hence are compact. It then
follows from Assumption 3.3, that S′(u) can be approximated by compact operators and
therefore is also compact.
Because of Assumption 3.11, the operator S′′∗h (u)μ is compact for h > 0, since

〈μ, S′′h(u)(v, w)〉C(Ω̄)∗,C(Ω̄) = 〈π∗hTh(πhv, · )∗μ, w〉L2(Ω) ,

and π∗h is compact, for πh is compact. Note, that from the continuity of Th there follows

sup
‖vh‖Vh

=‖ṽh‖Vh
=1
〈μ, Th(vh, ṽh)〉 ≤ Cμ

and thus ‖Th(πhv, · )∗μ‖V ∗
h
≤ Cμ for ‖v‖L2(Ω) ≤ 1. Thus

v �→ π∗hTh(πhv, · )∗μ = S′′∗h (u)μ

is compact. Now the convergence 3.10 yields

‖S′′∗h (u)μ− S′′∗(u)μ‖L(L2(Ω)) = sup
‖w‖=‖v‖=1

〈μ, S′′h(u)(v, w)− S′′(u)(v, w)〉C(Ω̄)∗,C(Ω̄)
h→0−→ 0

and thus the compactness of S′′∗(u)μ.

Lemma 3.18. Consider some Banach space W, and let the inclusion W ⊂ C(Ω̄) be contin-
uous. Then there exists some C > 0, such that for all

w∗ ∈ W+
≥0 = {w∗ ∈ W ∗ | ∀w ∈ W : w ≥ 0 ⇒ 〈w∗, w〉W ∗,W ≥ 0}

there holds C〈w∗, 1〉W ∗,W ≥ ‖w∗‖W ∗.

Proof. There exists C > 0, such that C‖w‖W ≥ ‖w‖C(Ω̄). Assume now, that there exists
some w ∈ BW (0, 1) with 〈w∗, w〉 > C〈w∗, 1〉. Then ‖w‖C(Ω̄) ≤ C and hence C − w ≥ 0. But
〈w∗, C − w〉 < 0, contradicting w∗ ∈ W+

≥0.
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4 Example

Consider some convex polygonal domain Ω ⊂ R
2, and let S : L2(Ω) → W 2,2(Ω) be the

solution operator of the equation

−Δy + y3 = u on Ω
y = 0 on ∂Ω .

(4.19)

We want to approximate the solution of

min
u∈L2(Ω), ŷ∈C(Ω̄)

J(u, ŷ) = ‖ŷ − z‖2L2(Ω) + α‖u‖2L2(Ω)

s.t.

ŷ = Ŝ(u) = S(u) + 1, a ≤ u ≤ b, ŷ ≥ 0 ,

(4.20)

with a, b and z as in (1.1). An application of the standard Implicit Function Theorem as in
Theorem 2.5 in [CM02a] shows, that S ∈ C2(L2(Ω), W 1,4(Ω)). We will choose W as W 1,4(Ω)
endowed with an equivalent differentiable norm.

Lemma 4.1. The operator S belongs to S ∈ C2(L2(Ω), W 2,2(Ω)) and its derivative S′(u) :
L2(Ω) → W 2,2(Ω), δu �→ δy is the solution operator of

Δδy + 3y(u)2δy = δu in Ω, δy = 0 on ∂Ω ,

while its second derivative takes the form

δ2y = S′′(u)δu1δu2 = −S′(u)
(
6S(u)(S′(u)δu1)(S′(u)δu2)

)
(4.21)

Proof. Existence of a unique solution in W 2,2(Ω) is standard. Consider the operator A :
W 2,2(Ω) ∩W 1,2

0 → L2(Ω)
A(y) = Δy + y3 ,

which lies in C2(W 2,2(Ω) ∩W 1,2
0 , L2(Ω)) with its derivative

A′(y)δy = Δδy + 3y2δy

being an isomorphism because of y2 ≥ 0. Now, since the map G : L2(Ω)×W 2,2(Ω) → L2(Ω)

G(u, y) = A(y)− u

is twice continuously differentiable, the Implicit Function Theorem yields the first part of the
lemma. The form of S′′(u) follows from the observation, that A′(S(u)) ◦ S′(u) = IdL2(Ω) and
hence

A′′(S(u))
(
S′(u)δu1, S

′(u)δu2

)
+ A′(S(u))S′′(u) (δu1, δu2) = 0 .

The states y are discretized using some quasiuniform and geometrically conformal family of
triangulations {τh} of Ω, h ∈ {hn}n∈N

yh ∈ Vh =
{

y ∈ C(Ω̄) ∩W 1,2
0 | ∀T ∈ τh : y is linear on T

}
,
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with h = maxT∈τh
diam (T ). The discretized equation now reads∫

Ω
∇yh · ∇ϕ + y3

hϕ dx =
∫

Ω
uϕ dx , ∀ϕ ∈ Vh . (4.22)

Analogously to the non-discretized equation one may investigate differentiability of Sh :
L2(Ω) → W 1,4(Ω) with yh = Sh(u) by the operator

Ah : (Vh, ‖ · ‖W 1,4(Ω)) → (Vh, ‖ · ‖
W 1, 43 (Ω)

)∗ , Ah(yh) = −Δyh + y3
h .

In fact Ah = (ı2h)∗◦A◦ı1h with the inclusions ı1h : Vh → W 1,4, ı2h : Vh → W 1, 4
3 and the operator

A : W 1,4(Ω) → (W 1, 4
3 )∗(Ω) , A(y) = Δy + y3 ,

which lies in C2(W 1,4(Ω), (W 1, 4
3 )∗). The derivatives are

A′(y)δy = Δδy + 3y2δy , A′′(y)δy1δy2 = 6yδy1δy2 .

Hence Ah is is also twice continuously differentiable and

〈A′h(yh)δyh, ϕ〉 =
∫

Ω
∇δyh · ∇ϕ + 3y2

hδyhϕ dx , ∀ϕ ∈ Vh .

Because of y2
h ≥ 0, A′h(yh) is an isomorphism in Vh for any yh ∈ Vh and thus the application

of the ordinary Implicit Function Theorem to

Gh : (Vh, ‖ · ‖W 1,4(Ω))× L2(Ω) → (Vh, ‖ · ‖
W 1, 43 (Ω)

)∗ , G(yh, u) = Ah(yh)− u

yields Sh ∈ C2(L2(Ω), W 1,4(Ω)), and Assumption 3.2 is fulfilled.

Lemma 4.2. Let y and yh be the solution of 4.19 and 4.22 respectively, for some fixed
u ∈ L4(Ω). Then there holds

‖y − yh‖W ≤ Ch .

Proof. From Theorem 1 in [CM02b] we already know

‖y − yh‖∞ ≤ C1h‖y‖W 2,2(Ω) .

Introducing the auxiliary state ỹ as the solution of the linear equation

−Δỹ = u− y3
h , ỹ = 0 on ∂Ω (4.23)

we first obtain from the theory of linear elliptic equations

‖y − ỹ‖W 2,2(Ω) ≤ C2‖y3 − y3
h‖∞ ≤ C3‖y − yh‖∞ ,

the second inequality following from ‖y‖∞ and ‖yh‖∞ being bounded. Now the discretization
of 4.23 yields an ỹh, that equals yh. Because of the W 1,4-stability of the discretization of
the linear equation (4.23) (see for example Theorem 8.5.3 from [BS08]) and because of the
stability property ‖y‖∞ ≤ C4‖u‖L4(Ω) we have

‖ỹ − yh‖W ≤ C5h(‖u‖L4(Ω) + ‖y3
h‖L4(Ω)) ≤ C6h(‖u‖L4(Ω) + ‖u‖3L4(Ω))
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Lemma 4.3. Let δy = S′(u)δu, then δy solves the equation

Δδy + 3y(u)2δy = δu in Ω, δy = 0 on ∂Ω ,

and let δyh = S′h(uh)δu, and thus∫
Ω
∇δyh · ∇ϕ + 3yh(uh)2δyh ϕdx =

∫
Ω

δuϕdx ∀ϕ ∈ Vh ,

then there holds for uh = u

‖δyh − δy‖C(Ω̄) ≤ Ch‖δu‖L2(Ω)

and in case of uh
L2(Ω)−→ u with uh bounded in L∞(Ω) we have δyh

W−→ δy uniformly for all
‖δu‖L2(Ω) ≤ 1.

Proof. Consider uh = u, for all h > 0. We introduce the discrete state δỹh, satisfying∫
Ω
∇δỹh · ∇ϕ + 3y(u)2δỹh ϕdx =

∫
Ω

δuϕdx ∀ϕ ∈ Vh ,

then, on the one hand we have ‖δỹh−δy‖C(Ω̄) ≤ Ch‖δu‖L2(Ω) and on the other hand we have
from the W 1,p stability stated in Theorem 8.5.3 in [BS08]

‖δyh − δỹh‖W ≤ C‖yh(u)2 − y(u)2‖∞‖δyh‖L2(Ω) (4.24)

and hence finally
‖δyh − δỹh‖W ≤ Ch‖δu‖L2(Ω) .

As for uh → u in L2(Ω), because ‖uh‖∞ is bounded, this implies uh
∗
⇀ u in L∞(Ω). Thus

Theorem 9 from [CM02b] implies Sh(uh) → S(u) in C(Ω̄) and using (4.24) we obtain

‖δyh − δỹh‖W → 0 uniformly for ‖δu‖L2(Ω) ≤ 1 .

The harder part is now to infer ‖δỹh − δy‖W → 0 uniformly in δu. As a corollary to the
W 1,p-stability one obtains

‖δỹh − δy‖W ≤ C inf
vh∈Vh

‖vh − δy‖W .

The usual estimates to the right hand side assume δy ∈ W 2,4(Ω), but here we only have
δy ∈ W 2,2(Ω). Nevertheless, the element-wise estimate given in Theorem 16.2 from [CL91]
yields for the interpolation operator Ih and any T ∈ τh, v ∈ W 2,2(Ω)

‖v − Ihv‖W 1,q(T ) ≤ Cmeas(T )
1
q
− 1

p hT |v|W 2,p(T ) ,

with hT being the diameter of T and the constant C independent of h, v and T . Since
the triangulations are quasi uniform, we have meas(T ) ≥ ch2

T . For ‖v‖W 2,2(Ω) ≤ 1 and hT

sufficiently small this implies

‖v − Ihv‖4W 1,4(T ) ≤ ‖v − Ihv‖2W 1,4(T ) ≤ ChT |v|2W 2,2(T ) ,

and hence ‖v − Ihv‖W 1,4(Ω)
h→0−→ 0 uniformly for all ‖v‖W 2,2(Ω) ≤ 1.
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The convergence of the second derivative follows from the convergence of the first derivative,
because of the structure of 4.21 and its discrete counterpart.
Now we finally have all ingredients assembled, to apply Theorem 3.14, yielding the following

Theorem 4.4. Let (ū, ȳ) solve problem (4.20). Assume further, that the linearized Slater
condition 1.1 as well as the strict complementarity Assumptions 3.8 - 3.9 hold at (ū, ȳ), and
that (ū, ȳ) satisfies the second order sufficient condition 3.7. Then there exists C > 0, such
that for h sufficiently small, there exist ūh, ȳh solving (Ph) with Ŝh = (Sh + 1) and

‖ūh − ū‖L2(Ω) + ‖ȳh − ȳ‖W 1,4(Ω) ≤ Ch .

Together with (P) and Assumption 1.1, Assumption 3.7 ensures strict local optimality of
(ū, ȳ), as was shown in [CDLRT08]. Notes on the implementation of (Ph) can be found in
[DH07]. The approach described there also applies to a nonlinear state equation.
Finally one has to deal with non-unique multipliers μ, λ insofar, as the strict complementarity
has to hold for all of them. Therefore, in one last lemma, we demonstrate a case, in which
the multipliers are in fact unique.

Lemma 4.5. Let (ū, ȳ) solve (P) with S defined by equation (4.19) . Suppose we can separate
Ay and Au by two disjoint open sets

Oȳ ⊃ Aȳ and Oū ⊃ Aū

with Lipschitz boundaries. Then the multipliers μ̄ ∈ K(ū, ȳ) and λ̄ are unique.

Proof. One way to proof the lemma involves the necessary and sufficient conditions for unique-
ness of Lagrange multipliers given in [Sha97]. Here the more direct approach is to make use
of the fact that, given two different multipliers μ1, μ2 ∈ K(ū, ȳ), the difference S′∗(ū)(μ1−μ2)
equals zero on the inactive set Ω \Aū of ū. Construction of some v ∈ L2(Ω), that equals zero
on the active set Aū but satisfies 〈μ1 − μ2, S

′(ū)v〉C(Ω̄)∗,C(Ω̄) �= 0 thus yields a contradiction.
First one can assume w.l.o.g. Oȳ ⊂⊂ Ω, because ȳ is continuous and equals 0 on the bound-
ary of Ω and −1 on Oȳ. Note also, that since Ω is bounded, there exists R > 0, such that
B(0, R) ⊃ Ω̄. We proceed by choosing

δy1
v ∈ C∞(Ōȳ) s.t. 〈μ1 − μ2, δy

1
v〉C(Ω̄)∗,C(Ω̄) �= 0

δy2
v ∈ C∞(Ōū) δy2

v ≡ 0

δy3
v ∈ C∞(B(0, R) \ Ω) δy3

v ≡ 0 .

Using an extension Theorem (e.g. Thm. 5, Ch. VI of [Ste70]), one can now extend this triple
into an arbitrarily smooth function δyv, defined on R

2. This is now a strong solution of

−Δδyv + 3ȳ2δyv = v in Ω
δyv = 0 on ∂Ω ,

with v ∈ C(Ω̄), because ȳ ∈ C(Ω̄). Furthermore the restriction [v]Au of v to Au equals zero.
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