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DYNAMICAL PHENOMENA INDUCED BY BOTTLENECK
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Abstract. We study a microscopic follow-the-leader model on a circle of length L with a bottle-
neck. Allowing large bottleneck strengths we encounter very interesting traffic dynamics. Different
types of waves - traveling and standing waves and combinations of both wave types - are observed.
The way to find these phenomena requires a good understanding of the complex dynamics of the
underlying (nonlinear) equations. Some of the phenomena, like the Ponies-on-a-Merry-Go-Round-
solutions (POMs) are mathematically well known from completely different applications. Math-
ematically speaking we use Poincaré maps, bifurcation analysis and continuation methods beside
numerical simulations.
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1. Introduction. In recent decades many authors have studied traffic models
for vehicular traffic as summarized in the overview articles on this topic [Hel01, BM00,
NWW03, KW04]. The main purpose for these studies is to understand complex traffic
flow phenomena and eventually to influence or even to control traffic flow.

There exist a large number of traffic flow models. A possible classification is
to consider microscopic, kinetic and macroscopic models. In microscopic models the
dynamics of the single drivers are described. Kinetic models mimic the Boltzmann
equation in gas dynamics and deal with probability distributions. Finally, macroscopic
models describe “macroscopic” quantities like traffic density and traffic flow velocity.
Microscopic models have advantages from the modeling point of view whereas macro-
scopic models have their advantages in the simple description and the simulations.
However, the study of the interesting (nonlinear) phenomena is highly challenging in
all the modeling approaches. Here we focus on a widely studied class of microscopic
models, the so-called follow-the-leader models.

A classical problem studied for microscopic models is the traffic dynamics on a
circular road. Many interesting phenomena like the formation of stop-and-go waves
can be observed in real experiments ([SFK+08]). Some of the phenomena can be
reproduced easily by simple microscopic models using periodic boundary conditions.
Unfortunately, in many cases the nonlinear dynamics of a simple model is not studied
carefully enough to encounter many or most of the dynamics of the model. Contrary
to that, more and more complex models have been proposed. Our approach (already
applied in the previous papers [GSW04, SGW09]) is to take very simple (nonlinear)
microscopic traffic flow models and to study deeply the (nonlinear) dynamics of such
a model. Surprisingly, we have learnt that already the very simple models show
very rich dynamics which can be interpreted easily in the traffic flow context. A key
point finding in the mathematical analysis of such simple models is bifurcations which
lead to stable and unstable periodic solutions (in relative velocities and headways),
coexisting multiple periodic and quasi-stationary solutions, etc. From a macroscopic
viewpoint (considering the velocity and the inverse of the headway as the density) the
quasi-stationary solutions are very simple constant velocity solutions, whereas the
periodic solutions correspond to downstream traveling density and velocity waves.
Moreover, the well-known inverse Greek Lambda structure in the flux-density (so-
called fundamental) diagram diagram can be recovered.
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The results mentioned above were mostly obtained for the circular road with
identical or non-identical drivers. In the presence of a bottleneck (which could be
due to roadwork on the circular road) the dynamics becomes even more interesting
and the corresponding analysis changes dramatically. The reason for this is that
the bottleneck-free case is very special and the resulting mathematical problem ends
in a classical stability analysis for an equilibrium point of a system of autonomous
ordinary differential equations (ODEs). This is not true anymore in the presence of a
bottleneck. In [SGW09] a new mathematical approach for this problem was presented.
With this approach new types of solutions were found. Macroscopically these new
solutions correspond to standing (density and velocity) waves or to more complex
interactions of traveling waves and standing waves. Mathematically these solutions
are known rotational or quasi-rotational solutions. In the special case of identical
drivers, they become the famous Ponies-on-a-Merry-Go-Round-solutions (POMs) (see
[AGMP91]) or quasi-POMs.

In [SGW09] the main issue was to introduce this new approach for studying
the dynamics in the case of bottleneck reducing the maximal velocity in a limited
part of the circle. The reduction size of the maximal velocity is characterized by
some parameter ε. Some simulations were presented to underline the potential of
the method. However the main attention was given to the case of bottleneck with
small ε . In this paper we focus on general (large) ε, which leads to new problems
not only from the computational point of view. Our numerical investigation show
that a bottleneck induces very interesting complex dynamics. We are able to classify
some fundamental patterns (standing waves, traveling waves) and to identify more
complex phenomena as combinations of these fundamental patterns. We note the
interesting situation where we have different coexisting patterns. Depending on the
initial data or on perturbations of the traffic situation one of these patterns is selected
and appears. We mention that there are results about traffic phenomena induced by
bottleneck based on a much more complex stochastic three-phase multi-lane theory
in [Ker08]. We will comment on some analogies in section 3.

The paper is organized in the following way. In section 2 we summarize the
existing results in this direction. In section 3 we present many new numerical results
with interesting macroscopic visualizations showing discrete versions of the speed
v(ξ, t) as function of position ξ and time t. We give interpretations of the results in a
traffic flow context. Finally we add a conclusion.

2. Theoretical setting. We study the situation of N cars on a circular road
of length L. A widely used car following model describing such a situation is the
well-known optimal velocity model introduced by Bando et al. [BHN+95]. Here we
use a generalization of the standard optimal velocity model. Let xj = xj(t), t ≥ 0 be
the distance the j-th car has covered at time t. Then the model reads

ẍj =
1

τj
(Vj,ε(ξj , xj+1 − xj)− vj) , j = 1, . . . , N, xN+1 = x1 + L.(2.1)

The circular road is represented by the fact that xN+1 = x1 + L, i.e. the N -th car
is following the first car. Then we have to explain the optimal velocity function Vj,ε.
Let Vj = Vj(dj) be the optimal velocity function of the j-th car depending on the
headway dj = xj+1−xj which is the distance between the j-th car and the j+1-th car
in front. The optimal velocity function expresses the velocity the j-th car is aiming
to achieve, according to the distance to the car in front. This function is assumed to
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Fig. 2.1. An example of an optimal velocity function

be

Vj : [0,∞) → [0,∞), smooth and strictly monotone increasing

Vj(0) = 0,

lim
dj→∞

Vj(dj) = Vj,max.(2.2)

An example is given in Figure 2.1. In [SGW09], a bottleneck (caused for example by
roadwork) was introduced by extending the optimal velocity function to

Vj,ǫ(ξ, y) =
(

1− ǫe−(ξ−L
2
)2
)

Vj(y).(2.3)

The (position) variable ξ is defined by

0 ≤ ξ ≤ L, ξ = x mod L,(2.4)

where x denotes a position and y a headway. The bottleneck is centered around the
position ξ = L

2 and it acts by reducing the maximal velocity. The parameter ǫ ≥ 0
describes the “strength” of the bottleneck (see Figure 2.2). Model (2.1) says that
every driver aims to reach his optimal velocity which depends on the headway and on
the position with respect to the bottleneck.

ǫ Vj,ǫ,max

xj

Fig. 2.2. A region of reduced maximal optimal velocity Vj,ǫ,max.

In the last decade various simplified versions of this model have been studied. In
the general case of non-identical drivers every single car obeys its own optimal velocity
law. In the examples we study in section 3 identical drivers are assumed. We recall
some results for the various versions of identical and non-identical drivers with and
without bottleneck. An overview is given in Table 2.
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solution bifurcation solution due to bifurca-
tion

identical and non-
identical drivers, no
bottleneck

quasi-stationary Hopf Hopf-periodic solution,
traveling waves

non-identical drivers
with bottleneck

rotation, stand-
ing wave

Neimark-
Sacker

quasi-rotation, inter-
acting standing and
traveling waves

identical drivers with
bottleneck

POM, standing
wave

Neimark-
Sacker

quasi-POM, interact-
ing standing and trav-
eling waves

Table 2.1

Overview on solutions and bifurcations

2.1. Non-identical drivers without bottleneck. We recall (2.1) in the case
ε = 0 and write it as a first order (nonlinear) system

{

ẋj = vj
v̇j = 1

τj
(Vj(xj+1 − xj)− vj)

}

, j = 1, . . . , N, xN+1 = x1 + L.(2.5)

Although this model – and especially the corresponding version with identical drivers
in section 2.2 – is very simple it has become an important tool in the description of
traffic flow on a circular road. This is due to the fact that there exist simple solutions
– called quasi-stationary solutions – which can be observed in real experiments on a
circular road setting [SFK+08]. Quasi-stationary solutions (with superscript 0) are
given by

v0j (t) = v0

x0
j(t) = x0

1(0) +

j−1
∑

k=1

d0k + t v0, j = 1, ..., N,(2.6)

where v0 is the same (constant) velocity of all cars and d0k, k = 1, .., N represent the
(constant) headways satisfying

v0 = Vj(d
0
j ), j = 1, .., N,

N
∑

j=1

d0j = L.(2.7)

The terminology quasi-stationary solution is due to the fact that this solution
itself is (obviously) not stationary, but the corresponding velocities v0 and headways
d0j are. Even more, the velocities v0 and headways d0j are stationary solutions of the
corresponding model for the relative velocities and the headways.

The question whether a quasi-stationary solution can be observed in reality or
not is related to the stability as a solution of the nonlinear ODE system (2.5) with
2N equations. However, a related (linear) stability analysis is only possible in special
cases (see [GSW04, GSSW07]).

2.2. Identical drivers without bottleneck. Now we assume that all drivers
are identical, i.e. that the optimal velocity functions Vj = V, j = 1, ..., N and the
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relaxations times τj = τ, j = 1, ..., N, are equal for all cars. Again, the case ε = 0
stays for no bottleneck. Then we have

{

ẋj = vj
v̇j = 1

τ
(V (xj+1 − xj)− vj)

}

, j = 1, . . . , N, xN+1 = x1 + L.(2.8)

In fact, this is the model presented originally by Bando et al [BHN+95]. It was studied
by various authors (see [GSW04] and references therein).

As already mentioned, this model has become an important tool in the description
of traffic flow on a circular road. Many phenomena discovered in real experiments on
a circular road setting [SFK+08] can be described by the simple model (2.8). Since
here d0j = d0 = L/N for j = 1, ..., N , the quasi-stationary solutions are given by

x0
j (t) = (j − 1)

L

N
+ t V

( L

N

)

+ x0
1(0), j = 1, ..., N.(2.9)

Also, it is well-known from the literature that for our model the quasi-stationary so-
lutions are asymptotically stable if V ′( L

N
) < 1

1+cos 2π
N

(see [Hui02, GSW04]). When

the parameters are such that the critical value V ′( L
N
) = 1

1+cos 2π
N

is reached, then a

qualitative change in the dynamics occurs. This is called a bifurcation. In the traffic
context the critical parameter correspond to a critical mean density on the circu-
lar road. When the critical density is exceeded the simple quasi-stationary solutions
cannot be observed any more. In our case a so called Hopf bifurcation occurs. A
Hopf bifurcation generates periodic solutions for parameters close to the critical one
(see [IIN+01, GSW04] and [OWK04, OKW05] for delay models). These bifurcating
periodic solutions which we will call Hopf-periodic are traveling waves showing the
well-known oscillations in headway and velocity such that the congestion travels up-
stream (see Figure 3.4(b)). They can be observed in real experiments [SFK+08] and
are sometimes named as stop-and-go waves (even though in most of the Hopf-periodic
solutions no real stop (vanishing velocity) appears). Therefore the Hopf-periodic so-
lutions are a very important class of nontrivial solutions which can be observed in
reality. Mathematically – by analyzing the related Lyapunov exponent – the stabil-
ity of the Hopf-periodic solutions can be determined, too. In case of non-stationary
solutions there are various definitions of stability. The one we are talking about here
is the so called orbital stability.

However, the bifurcation results are of local type, valid only in a small neighbor-
hood of the critical parameter values. Using special numerical tools (path following
methods) one can study the global bifurcation diagram. Then many additional non-
trivial (stable and unstable) periodic solutions can be found. Interesting phenomena
like coexistence of multiple periodic and quasi-stationary solutions have been discov-
ered. Details on the global bifurcation analysis can be found in [GSW04].

2.3. Non-identical drivers with bottleneck. In the case of bottleneck we use
the general model (2.1) for non-identical drivers with optimal velocity function (2.3).
Here quasi-stationary solutions of type (2.9) do not exist anymore and the standard
tools are no more applicable. In other words, the situation in the previous sections 2.1
and 2.2 was mathematically very special since the quasi-stationary solutions formed a
stationary point in the system for the relative velocities and the headways. Therefore
standard methods for the stability analysis of stationary points of autonomous ODE
systems could be applied. In the more general case with bottleneck the situation is
different since we do not know what the generalization of a quasi-stationary solution
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is. Rewriting the system in terms of relative velocities and headways does not show
any advantage since there are no interesting stationary points. Therefore in this case
a completely different approach has to be used. It turns out that so-called rotation
solutions are the right object to look for (see [SGW09]).

A rotation solution with orbital period T and rotation number k ∈ ZZ of (2.1) is
defined by

xj(t+ T ) = xj(t) + kL, vj(t+ T ) = vj(t), j = 1, 2, ..., N,(2.10)

where T and k are assumed to be minimal. We will restrict to the special, but most
important case k = 1. From a traffic point of view a rotation solution is nothing but
a standing wave for the velocity or the headways (see Figure 3.3).

We see that for ε = 0, our quasi-stationary solutions are (trivial) rotation solutions
with orbital period T := L/v0, where v0 is the common velocity of the drivers. But
observe that the Hopf-periodic solutions (traveling waves) in general are not rotation
solutions with orbital period T . They always satisfy

xj(t+ T ) = xj(t) + Lp, j = 1, 2, ..., N(2.11)

with an orbital length Lp. If Lp and L are commensurate, formally the Hopf-periodic
solutions are rotation solutions with possibly large orbital periods and rotation num-
bers k.

Now we rewrite our problem in a fixed point problem. The time-T -map ΦT is
defined as follows: Assume that x(0) = (x1, ..., xN , v1, ..., vN ) is the state of our system
at time t = 0 and that x(t) is the solution of the corresponding initial value problem.
Then

ΦT (x(0)) = x(T ).(2.12)

Setting Λ := (L, ..., L, 0, ..., 0), rotation solutions (k = 1) satisfy (rewriting (2.10))

ΦT (x(t)) = x(t+ T ) = x(t) +Λ for all t.(2.13)

Therefore, rotation solutions are fixed points of the map Q defined by

Q(x) = ΦT (x) −Λ.(2.14)

This means that in case of bottleneck instead of quasi-stationary solution we have
rotation solutions solving the fixed point problem (2.14). Note that when looking for
rotation solutions we do not know the period T a priori. For mathematically interested
readers we mention that we will not consider the map Q itself, but a related Poincaré
map Π. A Poincaré map looks for discrete times whenever the car number 1 passes
the position ξ = 0 (we could take also any other position and any other car).

Again, the question whether a solution can be observed in real traffic situations or
in experiments is related to the stability of the solution. The corresponding stability
concept for rotation solutions was discussed in [SGW09]. We note that – similar to
the bottleneck-free case – when reaching a critical density the rotation solutions may
loose their stability. This is due to another type of bifurcation, a so called Neimark–
Sacker bifurcation. In the bottleneck-free case – when passing the critical parameter
values – Hopf-periodic solutions bifurcate whereas Neimark-Sacker bifurcation leads so
called quasi-rotation solutions. We will see that contrary to Hopf-periodic or rotations
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solutions is not so easy to identify quasi-rotation solutions. We will see that they seem
to be combinations of standing and traveling waves.

As a consequence, in the (L, ǫ)-plane we conjecture parameter regions where ro-
tations and quasi rotations exist which at ǫ = 0 coincide with the quasi-stationary
solutions and the Hopf-periodic solutions, respectively. Between these two parameter
regions we expect a curve on which Neimark–Sacker bifurcations take place for ǫ > 0.
At Hopf values LH such a curve will emanate at (0, LH). In fact, in section 3 we will
extensively study different parameter regions to verify this conjecture (see Fig. 3.2).

In [SGW09] we showed the existence of rotation solutions for small ε > 0 by
considering the case of a small bottleneck as a perturbation of the bottleneck-free
case. Hopf-periodic solutions are perturbed to quasi-rotations.

2.4. Identical drivers with bottleneck. We restrict and simplify the setting
to the case of identical drivers. This is done by adding an additional symmetry
condition to a rotation solution, namely

xj(t+ T/N) = xj+1(t) for all t, j = 1, 2, ..., N.(2.15)

This means that in the case of identical drivers all cars behave in the same way
except a time shift of T/N between two cars. Rotation solutions satisfying (2.15) are
known as Ponies-on-a-Merry-Go-Round-solutions (POMs) (see [AGMP91, SGW09]).
It turns out that the method to search rotation solutions presented in the previous
section 2.3 can be simplified considerably. The additional condition (2.15) allows the
use of so-called reduced Poincaré maps π, and the computation of POMs can be based
on π in a very efficient way. While the Poincaré map looks for discrete times whenever
the car number 1 passes the position ξ = 0, the reduced Poincaré map lists the whole
configuration at discrete times whenever any car passes the position ξ = 0. This gives
a denser discrete time grid on which the dynamics is evaluated.

Mathematically, POMs correspond to fixed points and quasi-POMs to invariant
curves of π which bifurcate in Neimark–Sacker-points of π. Again, quasi-stationary
solutions correspond to POMs and Hopf-periodic solutions to quasi-POMs for ε = 0.

Our numerical analysis in the following section 3 is performed for the model of
identical drivers and is based on the use of reduced Poincaré maps. More theoretical
details can be found in [SGW09].

2.5. Traffic flow and ”Flocking”. Here we point out the following alternative
viewpoint of the dynamics of the microscopic traffic flow models. The single drivers
can be seen as individual self-propelled agents. Each agent follows simple rules which
in our case involve only the agent (driver) in front. The dynamics we observe is the
result of the collective motion of all the individual agents. There is no central control
of the dynamics. In the case of (asymptotically) stable quasi-stationary solutions all
agents (drivers) tend to the same asymptotic velocity. For a stable POM solution all
drivers approach the same velocity profile (at least for somehow ”close” initial pro-
files). In population dynamics this phenomenon is referred as “flocking” (or “herding”
etc.). For more details see [CS07]. In this sense on the circular road we can observe
a one dimensional version of “flocking”.

3. Numerical results. We consider the general model (2.1) for identical drivers,

{

ẋj = vj
v̇j = 1

τ
(Vε(ξj , xj+1 − xj)− vj)

}

, j = 1, . . . , N, xN+1 = x1 + L.(3.1)
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with

Vǫ(ξ, y) =
(

1− ǫe−(ξ−L
2
)2
)

V (y).(3.2)

We restrict our attention to N = 10, τ = 1 and to the Bando optimal velocity
function

V (y) = vmax

tanh a(y − 1) + tanh a

1 + tanha
(3.3)

with a = 2, vmax = 1.
We know that for ε = 0 there exist two Hopf bifurcation points with respect to

L, namely LH
1 = 5.890 and LH

2 = 14.109. The larger value LH
2 is more interesting,

since it is connected with the first loss of stability of the quasi-stationary solutions
for increasing traffic densities N/L. Moreover, we know that the quasi-stationary
solutions (being special POMs) are unstable for LH

1 < L < LH
2 .

It is impossible to give a complete survey about the dynamics of the model for
all parameter pairs (L, ε). We will mainly present some results for two fixed values of
L, namely L = 13 < LH

2 and L = 18 > LH
2 .

The dynamics of POMs and quasi-POMs will be visualized in three ways using
suitable projections.

1. Speed of a single car as a function of length (Lagrangian description). For a
POM we will encounter an L-periodic pattern (example: Figure 3.3(a)).

2. Macroscopic view (Eulerian description). This is obtained by coloring all
trajectories according to the speed of the corresponding car. Hereby we obtain
a discrete version of the speed v(ξ, t) as function of position ξ and time t. One
single trajectory is drawn (example: Figure 3.3(b)).
For a POM, v(ξ, t) is independent of t. For a quasi-POM we have the inter-
esting observation that v(ξ, t) is periodic in t. However, this observation is
still without proof.

3. More mathematically, the orbit under the reduced Poincaré map, mainly
showing the limit set. For a POM the limit set is just a point, for a quasi-
POM we will encounter closed invariant curves (example: Figure 3.7(a)).

3.1. POMs (standing waves). We are interested in how the POMs change
with ε for fixed L. To this end we continue numerically POM-branches in dependence
on (as a function of) the bottleneck strength ε using the characterization of POMs as
fixed points of (reduced) Poincaré maps. .

From the theory in [SGW09] we know that for fixed L, a POM-branch
parametrized by ε ≥ 0 emanates from the quasi-stationary solution (ε = 0). We
will path follow POM-branches also for larger values of ε. Some results are visualized
in Fig. 3.1. As expected we encounter Neimark–Sacker bifurcation points, but also –
less expected – folds.

In Fig. 3.1 (vertical axis) a POM is characterized by the average speed vM := L/T
with T being the orbital period. vM is proportional to the space-averaged flow. The
horizontal coordinate is the bottleneck strength ε. For ε = 0 the trivial POM coincides
with the quasi-stationary solution where all cars have the same speed vM = V (L/N).
The numerical continuation is not influenced by the stability of the POMs. Of an
obvious interest are those (bifurcation) parameters ε where stability is lost or gained.
We encounter two qualitatively different bifurcations: Neimark-Sacker points (as in
Fig. 3.1(a) denoted by N) and fold points (as in Fig. 3.1(d) denoted by F1 and F2).
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(a) L = 13
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(b) L = 16
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(c) L = 18
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(d) L = 20

Fig. 3.1. N = 10. Dependence of the average speed vM of the POMs on ε for fixed L. Solid
(dashed) lines: Stable (unstable) POMs. The Neimark-Sacker bifurcation in (a) is indicated by the
letter N. Folds in (c) are indicated by the letters F1 and F2.

In Figure 3.1 folds can be found on the POM-branches. For L = 18 there are
two folds for ε1 := 0.22 and for ε2 := 0.313, two other folds are very close together at
ε ≈ 0.41. Observe that the S-shape of the POM-branch with two neighbored folds are
associated with the coexistence of two stable POMs for the same parameter set. We
will see that the wave-speed of these two stable POMs in the vicinity of the bottleneck
differs significantly. This is already indicated by the corresponding different average
speeds.In the mentioned theory of Kerner [Ker08] the POMs seem to correspond to
the so called congested traffic phase.

3.1.1. Bifurcation diagrams in L and ε. A bifurcation diagram in a param-
eter plane shows bifurcation curves. By this it contributes to the information about
possible dynamics for a fixed pair of parameters.

In our traffic model we expect Neimark–Sacker and fold curves showing the de-
pendence of the bifurcation parameters ε on the circle length L. Figure 3.2 contains
Neimark–Sacker (red) and fold curves (black) in the (L, ε)-parameter plane. The
Neimark-Sacker curve emanates in the Hopf point (0, LH

2 ).
Though these curves deliver only local information, we guess, supported by nu-

merical simulations, that quasi-POMs live in the red-shaded region, where POMs are
unstable. In the other parameter domains we expect stable POMs. In the black-
shaded areas, due to the S-shape of the POM-branches in Figure 3.1, we expect two
stable POMs and one unstable POM.
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Fig. 3.2. N = 10. Bifurcation diagram. Neimark-Sacker curve (red, dashed line), fold curves
(black, solid line

3.1.2. POMs for L=18. Figure 3.3 visualizes different stable POMs for L = 18
and various ε-values. They can be computed directly by Newtons method as fixed
points of the reduced Poincaré maps — in contrast to the quasi-POMs which we
get only by simulation, see Section 3.2. From Figure 3.1(c) we conclude, that for
some values ε, the corresponding POMs are not unique. For example, there are two
coexisting stable POMs and one unstable POM for ε = 0.3, a value between the two
fold values ε1 = 0.22 and ε2 = 0.313, see Figures 3.3(c) - 3.3(f). These two stable
POMs are qualitatively very different. This is already indicated by the difference of
their average speeds vM .

Remarkably, the decrease of speed induced by the bottleneck is considerably large
only for the POMs in the last two rows of Figure 3.3. Here traffic jams occur down-
stream the bottleneck while for the POMS in the first two rows of Figure 3.3 the
minimal speed occurs upstream the bottleneck (the black circles in Figure 3.3). For
ε = 0.3 both types of stable POMs do exist.

3.2. Quasi-POMs for L=13. In this section we fix L = 13. We know from
Figure 3.2 and particularly from Figure 3.1(a) that there is a wide parameter range
where POMs emanating from the quasi-stationary solutions for ε = 0 are unstable.
Here we expect quasi-POMs.

We present three different visualizations of quasi-POMs, see Figures 3.4-3.7.
Again each quasi-POM is associated with the average speed vM where the average is
taken over a suitable large time interval.

Quasi-POMs are special solutions which show non-periodic dynamic behavior for
t → ∞ when considering the trajectories of individual vehicles. Theoretically, the
quasi-POM type irregularity can be identified by closed invariant curves of (reduced)
Poincaré maps as shown in Figure 3.7. But we found another way of identification,
namely the time-periodicity of the macroscopic function v(ξ, t) in the macroscopic
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(a) ε = 0.2, vM = 0.94 (b) ε = 0.2, vM = 0.94
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(c) ε = 0.3, vM = 0.91 (d) ε = 0.3, vM = 0.91
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(e) ε = 0.3, vM = 0.78 (f) ε = 0.3, vM = 0.78
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(g) ε = 0.4, vM = 0.72 (h) ε = 0.4, vM = 0.72

Fig. 3.3. N = 10. Stable POMs for L = 18 and different ε: Speed versus length (left) and
macroscopic view (right) with a trajectory of a single car in white. The position of the bottleneck
and its size (right) are indicated by black circles. Note that for ε = 0.3 there are two different stable
POMs.
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views in Figures 3.4-3.6 (right side).

In Figure 3.1(a) there is a Neimark–Sacker bifurcation for ε ≈ εN := 0.347, and
the POMs are stable for ε > εN and unstable for ε < εN . Hence one could expect
quasi-POMs for ε < εN .

Moreover, we know that for ε = 0 the quasi-stationary solution is unstable. The
Hopf point at LH

2 is responsible for the occurrence of a stable headway- and speed-
periodic solution appearing as a traveling wave. In our new context (see sec. 2) this
solution is a quasi-POM. Its traveling wave dynamics is visualized in Figure 3.4(a)
and Figure 3.4(b). The corresponding invariant curve can be seen in Figure 3.7(a).
We expect that this special quasi-POM for ε = 0 is perturbed to quasi-POMs for
ε > 0.

Indeed, for various values of ε with 0 < ε < εN we found quasi-POMs by sim-
ulation. Figures 3.4-3.6 show how the macroscopic speed-pattern is changed due to
increasing ε from ε = 0 (traveling wave) to ε = 0.35 (POM). There is an interaction
of the traveling wave with the bottleneck. For ε ∈ [0, 0.24] the traveling wave struc-
ture of the Hopf-periodic wave persists. For larger bottleneck strength (ε ≥ 0.25)
the traveling wave structure does not exist anymore. There appears more than one
congestion upstream the bottleneck and a rather free-flowing traffic downstream.

Similar to POMs for L = 18, a coexistence of two different stable dynamics was
found for L = 13. Looking more thoroughly on the last two rows in Figure 3.6 we see
that there is a coexistence of two qualitatively different quasi-POMs for ε = 0.25, one
of which – the second – seems to be the “Neimark–Sacker-successor” of quasi-POMs
emanating in εN , the other the “Hopf-successor” of quasi-POMs emanating in ε = 0.
One should also compare the corresponding invariant curves in Figure 3.7(c) and
Figure 3.7(d). The quasi-POM visualized in Figure 3.7(d) seems to have less dramatic
dynamics since the headways are farther away from zero than that in Figure 3.7(c). On
the other hand, this quasi-POM has a slightly less average speed vM than the other.
Obviously, in Figure 3.5(d) on each round a car trajectory (in white) in general passes
two congestions uptream the bottleneck while the trajcetory in Figure 3.5(b) crosses
only one jam area (dark red) in each round which is in general “stronger” than the
jam areas in Figure 3.4.

Again, let us mention a possible analogy to the theory of Kerner [Ker08]. The
quasi-POMs with traveling wave character in Figure 3.4 seem to be realizations of the
so called jam phase whereas the “fixed” (at the bottleneck) quasi-POMs in Figure
3.5(c,d) and 3.6 make part of the congested phase. A possible passage from a “fixed”
quasi-POM to a traveling wave quasi-POM (by changing the density) would corre-
spond to the so called pinch effect in the Kerner theory. However let us underline
that the results of Kerner are based on much more complex stochastic multi-phase
and multi-lane theory.

3.2.1. Invariant curves. To analyze the type of irregularity of a certain dy-
namics one has to look at the orbit of the (reduced) Poincaré map. If the limit set
of the orbit is a closed invariant curve, we have the dynamics of a quasi-POM. A
Neimark–Sacker bifurcation leads to such bifurcating invariant curves. Figure 3.7
shows projections of the invariant curves on the speed-headway plane of the fourth
car, counted from the observation place at the measure point (ξ = 0). Since there are
N = 10 cars, we expect that the 4th car is rather close to the center of the bottleneck
having hence a more interesting dynamics than cars far away.

There is still no powerful numerical tool to continue invariant curves of quasi-
POMs as a function of parameters. If this would be available, we guess that there

12



0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

length x

s
p

e
e

d
 v

(a) Hopf-periodic dynamics. ε = 0, vM = 0.67 (b) Macro view of (a). ε = 0, vM = 0.67
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(c) ε = 0.2, vM = 0.65 (d) ε = 0.2, vM = 0.65
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(e) ε = 0.24, vM = 0.65 (f) ε = 0.24, vM = 0.65

Fig. 3.4. N = 10, L = 13. Quasi-POMs and their average speeds vM for 0 ≤ ε ≤ 0.25: Speed
versus length (left) and macroscopic views (right). The position of the bottleneck is indicated by
black circles.

might be a S-shaped branch of quasi-POMs with respect to ε connecting the quasi-
POMs of Neimark–Sacker type and that of Hopf-type and possessing two folds near
ε = 0.25.

3.3. Other values of L. Up to now we have chosen mainly L = 13 and L = 18
and 0 ≤ ε ≤ 0.5. Our dynamical simulations yielded POMs and quasi-POMs, nothing
else. This is different for smaller values of L where we guess more complex dynamics.
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(a) ε = 0.25, vM = 0.64 (b) ε = 0.25, vM = 0.64
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(c) ε = 0.25, vM = 0.61 (d) ε = 0.25, vM = 0.61

Fig. 3.5. N = 10, L = 13, quasi-POMs. Continuation of Fig. 3.4. Coexistence of two different
quasi-POMs for ε = 0.25.

Figure 3.8(a) shows a chaotic like pattern for L = 8 — no time-periodicity is
observed. Figure 3.8(b) shows a quasi-POM which may be due to a period-doubling
process in increasing ε from ε = 0 to ε = 0.3 for L = 10.

3.4. Fundamental diagrams. Studying fundamental diagrams (i.e. flux-
density-diagrams) in a microscopic optimal velocity models seems to be an unin-
teresting topic. The main input in the model is the optimal velocity function and we
may expect a density flow relation according to the optimal velocity function.

Now we mimic a traffic-measurement by performing numerical simulations. We
fix a measurement position ξ = 0 on the circular road and whenever a car passes
this measurement position we take its velocity and the inverse of the headway (as
approximation for the traffic-density). Note that our measurement position is on the
opposite side of the bottleneck on the circular road. Since in a fundamental diagram
we have to vary the density we perform the same measurement by varying the length
L of the circular road (and keeping fixed the number of cars).

Suppose the dynamics on the circular road with identical drivers and no bottleneck
corresponds to a quasi-stationary solution (constant headway d0 = L/N and constant
velocity v0 = V (d0)). Let us denote the corresponding density by ̺0 = 1

d0 . Then the
corresponding flux f0 = f0(̺0) is given by the optimal velocity function

f0(̺0) = ̺0 V (
1

̺0
).(3.4)
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(a) ε = 0.3, vM = 0.59 (b) ε = 0.3, vM = 0.59
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(c) ε = 0.33, vM = 0.57 (d) ε = 0.33, vM = 0.56
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(e) POM for ε = 0.35. vM = 0.56 (f) POM for ε = 0.35. vM = 0.56

Fig. 3.6. N = 10, L = 13, (quasi-)POMs. Continuation of Fig. 3.5.

This corresponds to the well known flux-density curves similar to the red curves in
Figure 3.9.

However, this is only true for quasi-stationary solutions in the case of identi-
cal drivers with no bottleneck. In the bottleneck-free case we know that the quasi-
stationary solution is unstable in a certain density interval. We know that in the
unstable density interval the dynamics is driven by a Hopf-periodic solution and the
measurement data will not lie on the red curves. In fact, in [SGW09] we showed that
in general we recover the famous inverted Greek Lambda structure in the flux-density-
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(a) ε = 0, vM = 0.67.
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(b) ε = 0.2, vM = 0.64.
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(c) ε = 0.25, vM = 0.64.
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(d) ε = 0.25, vM = 0.61.
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(e) ε = 0.3, vM = 0.59.
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(f) ε = 0.33, vM = 0.56

Fig. 3.7. N = 10, L = 13, 0.3 ≤ ε ≤ 0.33. Visualization of quasi-POMs in Figures 3.4-3.6 by
invariant curves of the reduced Poincaré map for car No. 4, L = 13 and different values of ε. The
unstable POMs are marked.

diagram .

Here we study the flow-density diagrams for the case of (strong) bottleneck. In
case of identical drivers we expect POM solutions (instead of quasi-stationary solu-
tions). Those POMs are stable in a certain density region. Since POMs are standing
waves and we measure at a fixed position on the circular road the resulting curve is
very similar to the curves obtained for identical drivers with no bottleneck (quasi-
stationary solution). The POMs are the red curves in the flux-density-diagram in
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(a) L = 8, ε = 0.4, vM = 0.28. Chaos? (b) L = 10, ε = 0.3, vM = 0.45: Quasi-POM.
Result of period doubling ?

Fig. 3.8. N = 10. Macroscopic visualization of two complex dynamics for L = 8 and L = 10

Figure 3.9. In general the dynamics also involves quasi-POMs. The corresponding
flux-density diagram becomes more complicated. In Figure 3.9 possible results for
different values of ε are presented. We see that the resulting structures have partly
lost their similarity to the inverse Greek Lambda. The complex dynamics involved
in this simulations shows us that the resulting flux-density diagrams are not easy to
interpret. We conclude that only in case of simple dynamics measurements result in
known structures of the fundamental diagram.

4. Conclusions. In this paper we study traffic dynamics on a circular road
with a bottleneck. For this setting in [SGW09] a new mathematical approach was
presented. This approach enables to classify complex traffic dynamics on the circular
road and therefore to improve the understanding of complex phenomena.

We are now able to interpret phenomena in case of bottleneck using analogies to
the bottleneck-free case. This leads to traveling waves, standing waves and interac-
tions of those two wave types which can be interpreted in the traffic flow context.
Also coexisting stable patterns were observed in certain parameter regimes. The
macroscopic viewpoint on the microscopic results helps considerably to interpret the
dynamics.

We believe that this phenomenon persists for traffic models on the line. We made
the interesting observation that quasi-POMs correspond to macroscopic functions
v(ξ, t) which are periodic in t. This is very helpful when classifying solution patterns.
We will prove this conjecture in a forthcoming paper.
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Fig. 3.9. Fundamental diagrams for N = 10 and L = 4...20 at the measure point ξ = 0.
Flow-density curve for the quasi-stationary solutions (red)
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