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Abstract

Recent advances in the analysis of high-dimensional signal data have triggered
an increasing interest in geometry-based methods for nonlinear dimensionality re-
duction (NDR). In many applications, high-dimensional datasets typically contain
redundant information, and NDR methods are important for an efficient analysis
of their properties. During the last few years, concepts from differential geome-
try were used to create a whole new range of NDR methods. In the construction
of such geometry-based strategies, a natural question is to understand their inter-
action with classical and modern signal processing tools (convolution transforms,
Fourier analysis, wavelet functions). In particular, an important task is the analy-
sis of the incurred geometrical deformation when applying signal transforms to the
elements of a dataset. In this paper, we propose the concepts of frequency modu-
lation maps and modulation manifolds for the construction of particular datasets
relevant in signal processing and NDR. Moreover, we design a numerical algorithm
for analyzing geometrical properties of the modulation manifolds, with a particu-
lar focus on their scalar curvature. Finally, in our numerical examples, we apply
the resulting geometry-based analysis algorithm to two model problems, where we
present geometrical and topological effects of relevance in manifold learning.

Keywords: Nonlinear dimensionality reduction, manifold learning, signal processing,
Fourier and wavelet analysis, numerical differential geometry.

1 Introduction

During the last decade, novel concepts for nonlinear dimensionality reduction (NDR) have
gained enormous popularity due to the ever increasing complexity of new challenging
application problems. In the design of these modern tools, special emphasis is placed
on geometrical aspects, where concepts from differential geometry play an important
role [2,7,8,13]. The geometry-based approach of NDR can be viewed as a complementary
strategy to statistical oriented methods from machine learning and data mining [5].
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To briefly describe the basic problem of NDR and manifold learning, suppose we are
given a dataset X = {xi}

m
i=1 ⊂ R

n lying in a high-dimensional Euclidean space, where X
is assumed to be sampled from a submanifold M of R

n, i.e., X ⊂ M ⊂ R
n. Moreover,

we assume that the dimension of M is much smaller than the dimension of the ambient
space, i.e., dim(M) ≪ n. The primary objective of manifold learning is to construct a
low-dimensional representation of X which can be used to efficiently visualize and analyze
its geometrical properties.

For many examples of datasets X = {xi}
m
i=1 ⊂ R

n, each element xi ∈ X can be
considered as a signal that may be analyzed through a transformation map T , defined
via convolution transforms, Fourier analysis, or wavelet functions. Therefore, from a
manifold learning perspective, it is quite natural to analyze the geometrical deformation
between X and T (X) = {T (xi)}

m
i=1, as being incurred by T , or (if the transformation

T is used in a preprocessing step prior to the application of a dimensionality projection
map P ) being incurred by a composition P ◦T of a transformation T and a projection P .

To investigate these problems, we analyze in this paper a particular class of datasets
X and manifolds M which are generated by frequency modulation maps. Moreover, we
propose a numerical method, which serves to analyze various geometrical properties of
the input datasets. We remark that the idea of using modulation manifolds is inspired
by concepts of frequency modulation for signal transmission in engineering domains. To
gain further insight into their geometrical properties, and to reduce the high complexity
of necessary algebraic operations involved, we work with numerical approximations to
construct basic geometric data such as metric and curvature tensors. By using modula-
tion manifolds we can design examples of low-dimensional data sets embedded in high
dimensional spaces, which are relevant in applications of signal and image processing.
One peculiarity of these examples is that they lead (in the same spirit as the Swiss role
data) to critical test case scenarios, where classical linear projections, such as principal
component analysis (PCA) and multidimensional scaling (MDS), are outperformed by
more recent nonlinear methods, such as isomap, local tangent space alignment (LTSA),
Riemannian normal coordinates (RNC), to mention but a few.

The outline of this paper is as follows. In the following Section 2, basic features of
manifold learning and dimensionality reduction are reviewed, where also a short discus-
sion concerning the interaction of dimensionality reduction maps and signal transforms
is provided. Then, in Section 3 the concept of modulation maps between manifolds is ex-
plained in detail. This is followed by a discussion on metric and curvature tensors, as they
are used for measuring geometric deformations of modulation manifolds. In Section 4,
numerical examples are provided, where the geometric distortion of selected manifolds
(sphere and torus surfaces) is illustrated in situations where frequency modulation maps
and dimensionality reduction methods are combined. In the numerical examples, we
also compare standard PCA techniques with modern (nonlinear) dimensionality reduc-
tion strategies. Various interesting effects concerning the geometrical and topological
distortion of the underlying manifolds are presented in Section 4.
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2 Manifold Learning in Dimensionality Reduction

Let M ⊂ R
n denote a smooth compact Riemannian submanifold of a high-dimensional

space R
n, where the dimension of M is much smaller than that of the ambient space,

i.e., M ⊂ R
n with p = dim(M) ≪ n. The primary goal of manifold learning is to

construct a low-dimensional representation Ω of M, with assuming the existence of a
diffeomorphism A : Ω ⊂ R

d → M ⊂ R
n, d ≪ n. One relevant task that we wish

to address here is the analysis of a discrete sample of M, given by a finite scattered
dataset X = {xi}

m
i=1 ⊂ M. In this problem, one aims at the construction of a low-

dimensional representation Y = {yi}
m
i=1 ⊂ Ω ⊂ R

d sharing similar geometrical properties
with X. This in turn requires a suitable smooth map E : M → Ω, whose only input
is the dataset X ⊂ M. Due to the Whitney embedding theorem (which states that
any connected smooth p-dimensional manifold can smoothly be embedded in R

2p+1), one
basic condition in this problem is 2p + 1 ≤ d ≤ n, see [1]. Throughout this paper, we
use the term manifold to denote a compact smooth connected manifold embedded in the
Euclidean space R

n.
Now a crucial requirement in manifold learning is to ensure conditions under which

the finite sampling X = {xi}
m
i=1 is dense enough for recovering the geometrical properties

of M. These conditions have been investigated over the last years [9]. A main concept
is the condition number 1/τ of the manifold which encodes local and global curvature
properties of M. The condition number can be related to the medial axis of M, which
is defined as the closure of the set

G = {x ∈ R
n : ∃ p, q ∈ M, p 6= q, with d(x,M) = ‖x − p‖ = ‖x − q‖}.

By using the medial axis of the manifold, we have

τ = inf
p∈M

d(p,G).

With these concepts, the following result, relating the sampling of the manifold with its
homological reconstruction, is discussed in [9].

Proposition 2.1 Let M be a compact Riemannian submanifold of R
n and X = {xi}

m
i=1 ⊂

R
n a finite ǫ/2-dense collection in M, i.e., for each p ∈ M, there is an x ∈ X satisfying

‖p − x‖Rn < ǫ/2. Then for any ǫ <
√

3/5τ , we have that U =
⋃

x∈X Bǫ(x) deformation
retracts to M, and therefore the homology of U equals the homology of M.

A series of additional important developments concerning conditions for efficient sam-
pling of manifolds can be found in [10,11].

2.1 Application Examples

Relevant applications for our investigations are in time-frequency analysis, where a signal
is segmented in time consecutive sections, which are then Fourier transformed. The
typical context can be described, for instance, in the short term Fourier transform (STFT)
for functions f ∈ L2([0, 1]) with a window function g,

Ggf(b, ω) =< f, gb,ω >=

∫ 1

0

f(t)gb,ω(t) dt where gb,ω(t) = g(t − b)e2πiωt.
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Now, in the generation of the dataset X, we consider using a bandlimited signal
f ∈ L2([0, 1]) and a segmentation of its domain in such a way that small consecutive
signal patches are analyzed, as performed in STFT or wavelet analysis. For instance, the
set of signal patches can be defined as a dataset of the form

Xf = {xi}
m
i=1 for xi = (f(tk(i−1)+j))

n−1
j=0 ∈ R

n

for k ∈ N being a fixed hop-size. Here, the regular sampling grid {tℓ}
km−k+n−1
ℓ=0 ⊂ [0, 1] is

constructed with considering the Nyquist-Shannon theorem for f . Notice that Xf may
be embedded in a very high-dimensional ambient space R

n, although the dimension of
Xf itself may be small. For instance, in audio analysis, for 44kHz signals, n = 1024
is commonly used, and therefore customized dimensionality reduction methods could be
of vital interest. With this particular scheme, the STFT of f can be interpreted as a
transformation of the set X by taking the (windowed) Fourier transform of each xi.

In this paper we regard X as a geometrical object in the context of manifold learning,
a strategy that might provide new information when studying the function f . We remark
that the approach taken here essentially differs from traditional nonlinear time-series
analysis, in the sense that we don’t consider any time-delays and embedding dimensions
as used in phase space representations [4].

A second family of examples (similar to the spirit of time-frequency analysis) arises in
image processing. One strategy would be to consider a dataset X = {xi}

m
i=1 constructed

from an grayscale image F : [0, 1]2 → [0, 1], along with a finite covering of small squares
Oi ⊂ [0, 1]2, centered at pixels positions {ki}

m
i=1 ⊂ [0, 1]2. As in the previous situation,

when considering band-limited images, the domain [0, 1]2 can be sampled uniformly and
the dataset can then be defined as

X = {F (Oi) ∈ R
n}m

i=1,

where n is the size of the squares Oi, and m denotes the number of pixels ki. As before,
our aim is to analyze the geometry of the image data X to gain useful information about
the properties of the image F .

As already explained in the outset of the introduction, it is desirable to work with
analysis methods that combine signal processing transforms with dimensionality reduc-
tion methods. In this case, the basic objects are the manifold M, the data samples
X = {xi}

m
i=1 taken from M, and a diffeomorphism A : Ω → M, where Ω is the low-

dimensional copy of M to be reconstructed via dimensionality reduction. In this case, the
only algorithmic input is the dataset X, but with the assumption that we can reconstruct
topological information from M with X in the spirit of Proposition 2.1. Another basic
object in our scheme is a signal processing map T : M → MT , which may be based on
Fourier analysis, wavelet transforms, or convolution filters, together with the resulting
set MT = {T (p), p ∈ M} of transformed data. The following diagram shows the basic
situation of our analysis.

Ω ⊂ R
d A // M ⊂ R

n

T
��

Ω′ ⊂ R
d MT ⊂ R

n

P
oo
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The final component constructs an approximation to Ω, denoted as Ω′ = P (MT ), by
using a dimensionality reduction map P . The characteristics of Ω and Ω′ may differ de-
pending on the dimensionality reduction technique, but the main objective is to construct
Ω′, so that basic geometrical and topological properties of Ω are recovered. In this paper,
we will use modulation maps for the embedding A to study geometrical and topological
effects being incurred by particular dimensionality reduction projections P : M → Ω′.

3 Modulation Maps and Curvature Distortion

This section is devoted to a particular construction of manifolds M and diffeomorphisms
A based on modulation maps. Modulation techniques are well-known engineering and
telecommunication procedures used to transmit information by varying the frequency of
a carrier signal. A main property of these techniques is the simultaneous transmission
of different information by using different frequency bands that can conveniently be sep-
arated with special convolution filters. Motivated by this, we want to analyze, from a
geometrical point of view, a frequency modulation map A : Ω → M, where M represents
the carrier signals modulated by Ω, which is the information content to be transmitted.
Rather than analyzing an actual engineering modulation technique, we use this modula-
tion map for the construction of manifolds that are relevant in dimensionality reduction
and signal analysis. The domain Ω is, in our particular situation, a manifold, and so its
structural content, transmitted via A, needs to be extracted from M.

3.1 Frequency Modulation Maps between Manifolds

A modulation map between two manifolds, Ω ⊂ R
d and M ⊂ R

n, of equal dimension is
a mapping A : Ω ⊂ R

d → M ⊂ R
n of the form

Aα(ti) =
d
∑

k=1

φk(αkti + bk), α = (α1, . . . , αd) ∈ Ω, {ti}
n
i=1 ⊂ [0, 1],

for some fixed functions φk. We use a uniformly spaced finite sampling {ti}
n
i=1 ⊂ [0, 1] (as

justified with the Nyquist-Shannon sampling theorem), since we work with bandlimited
functions Aα.

An important example of modulation maps are frequency modulation functions de-
fined with a standard trigonometrical basis. For φ(t) = sin(t), the corresponding mod-
ulation map A between Ω and M is referred to as a frequency based modulation map.
We will consider a particular case of frequency modulation maps by using the concept
of band separation in the following sense. A frequency modulation map A has separated
frequency bands if it can be written, for a given α0 ∈ R

d, as

Aα(ti) =
d
∑

k=1

sin((α0
k + γαk)ti + bk),

where the bands Bk are separated, i.e., Bk ∩ Bj = ∅, for all k 6= j, with

Bk = {α0
k + γαk ∈ R, α = (α1, . . . , αk−1, αk, αk+1, . . . , αd) ∈ Ω}.
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In other words, we apply an affine transform to the domain Ω ⊂ R
d, with shift α0

and scale γ, so that the coordinates of the vectors in the resulting set α0 + γΩ will not
share common values. In this case the frequency content introduced by each coordinate
α ∈ Ω will not overlap in Aα.

3.2 Metric Tensor and Curvature Distortion

Now we wish to analyze the geometrical deformation between Ω, M and Ω′, as incurred
by the modulation map A : Ω → M and the dimensionality reduction transformation
P : M → Ω′. We measure the geometrical deformation by the manifolds’ scalar curvature
distortion. In this section, we explain the basic ingredients for computing the scalar
curvature S of a Riemannian manifold M. As a starting point we regard a metric tensor
field for M [6, 12], being defined for a particular system of local coordinates (θi, . . . , θk),
as

gij(x) = gij(θi, . . . , θk) =< ∂i, ∂j > .

An invariant of a Riemannian manifold with respect to isometries are its sectional
curvatures. This concept generalizes the notion of Gaussian curvature to setting of 2-
manifolds, and is defined as

KM =
< R(X,Y )Y,X >

‖X‖2‖Y ‖2− < X, Y >2
,

for the curvature tensor R, defined for a triple of smooth vector fields X,Y, Z as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

We recall that the affine connection (a Levi-Cevita connection in our situation) is a bilinear
map

∇ : C∞(M, TM) × C∞(M, TM) → C∞(M, TM)

that can be expressed with the Christoffel symbols defined by the relation

∇∂i
∂j =

n
∑

k=1

Γk
ij∂k.

The Christoffel symbols can be described with respect to the metric tensor via

Γk
ij =

1

2

m
∑

ℓ=1

(

∂gjℓ

∂xi

+
∂giℓ

∂xj

−
∂gij

∂xℓ

)

gℓk. (1)

An explicit formula for the curvature tensor is given in terms of the Christoffel symbols
as follows (the 1,3 curvature tensor)

Rℓ
ijk =

m
∑

h=1

(Γh
jkΓ

ℓ
ih − Γh

ik) +
∂Γℓ

jk

∂θi

−
∂Γℓ

ik

∂θj

. (2)

We use the tensor contractions

Rijkℓ =
m
∑

h=1

Rh
ijkgℓh, Rij =

m
∑

k,ℓ=1

gkℓRkijℓ =
m
∑

k=1

Rk
kij (3)
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for intermediate computations. The scalar curvature is computed together with Gaussian
curvature, which for the case of two dimensional manifolds differs by a factor 2, as

S =
m
∑

i,j=1

gijRij. (4)

Now, in Riemannian geometry two diffeomorphic manifolds, Ω and M (related with a
diffeomorphism A : Ω → M), share the same geometrical properties when considering the
pull-back of a metric tensor in M, or the push-forward of a metric tensor in Ω. But in our
particular situation, we are considering manifolds embedded in linear spaces (i.e., Ω ⊂ R

d

and M ⊂ R
n). Our strategy for introducing the concept of curvature distortion is to

compare the geometries of Ω and M generated by their corresponding first fundamental
forms, which are particular metrics induced by their ambient space.

3.3 Metric Tensor for Modulation Manifolds

We now compute a metric tensor in M in order to analyze the geometrical deformation
on manifold Ω as incurred by the application of a modulation map A : Ω ⊂ R

d →
M ⊂ R

n. The resulting metric tensor can then be used for computing the curvature
tensor and the corresponding scalar curvature, which will be used as a measure for the
geometric deformation. Our strategy is to consider a parametrization of Ω and to compute
the metric tensor generated from the ambient space R

n. In particular, we use the first
fundamental form with respect to the given parametrization. The resulting formula
(5) follows by direct computation, as explained in the following proposition, where we
compute the first fundamental form of a modulated manifold M.

Proposition 3.1 Let M be a manifold constructed from a diffeomorphic modulation map
A : Ω ⊂ R

d → M ⊂ R
n,

Aα(ti) =
d
∑

k=1

φk(αkti + bk) where α = (α1, . . . , αd) ∈ Ω and {ti}
n
i=1 ⊂ [0, 1],

and {αj(θ1, . . . , θp)}
d
j=1 be a parametrization of Ω with p = dim(M) = dim(Ω). The first

fundamental form of M constructed from this parametrization is given by

gsr =
n
∑

ℓ=1

t2ℓ

d
∑

p,q=1

(

dφp

dt
(αptℓ + bp)

dφq

dt
(αqtℓ + bq)

∂αp

∂θs

∂αq

∂θr

)

. (5)

Proof: This follows as a direct computation of the Jacobian of the composition A◦α.
The Jacobian with respect to parametrization αj(θ1, . . . , θd) of Ω is given by

JA =

(

∂Aℓ

∂θi

)

ℓ,i

∂Aℓ

∂θi

=
∂

∂θi

(

d
∑

j=1

φj(αjtℓ + bj)

)

=
d
∑

j=1

dφj

dt
(αjtℓ + bj)tℓ

∂αj

∂θi
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The first fundamental form (metric tensor) of M is given by

(

JT
AJA

)

s,r
=

n
∑

ℓ=1

(

d
∑

j=1

∂φj

∂t
(αjtℓ + bj)tℓ

∂αj

∂θs

)(

d
∑

j=1

∂φj

∂t
(αjtℓ + bj)tℓ

∂αj

∂θr

)

=
n
∑

ℓ=1

d
∑

p,q=1

(

dφp

dt
(αptℓ + bp)tℓ

∂αp

∂θs

dφq

dt
(αqtℓ + bq)tℓ

∂αq

∂θr

)

=
n
∑

ℓ=1

t2ℓ

d
∑

p,q=1

(

dφp

dt
(αptℓ + bp)

dφq

dt
(αqtℓ + bq)

∂αp

∂θs

∂αq

∂θr

)

As gsr is given by
(

JT
AJA

)

s,r
, we obtain the resulting equation (5).

The expression in equation (5) will play a crucial role in our following discussion,
but due to its complexity (even for quite simple examples as a sphere or a torus), our
strategy is to use a numerical framework for illustrating its properties by using the related
curvature tensors. Another reason for taking a numerical approach is to build a flexible
scheme that can handle arbitrary two dimensional frequency modulated manifolds M
defined by a finite scattered dataset X = {xi}

m
i=1 ⊂ M.

3.4 Numerical Computation of Curvature Tensors

The next step is to combine equation (5) with the computation of the curvature tensors in
equations (3) and (4) for describing how Ω is geometrically deformed under the mapping
A : Ω → M. In the following computations, we focus on the particular case of two
dimensional manifolds embedded in a three dimensional space, namely, d = 3, dim(Ω) =
2, with Ω ⊂ R

3. In order to compute the metric tensor as described in equation (5),
the main inputs are the functions {φj}

3
j=1 and the parametrization {αj(θ1, θ2)}

3
j=1 of Ω,

which is then used to construct the Jacobian components ∂αp

∂θs
and ∂αq

∂θr
. The following

algorithm describes the basic steps for computing the scalar curvature S and the metric
tensors gij of the modulated manifold M.

Algorithm 3.1 (Curvature and Metric Tensors of Manifolds.)

Input:
(a) Parametrization α = (αj(θ1, θ2))

3
j=1 of Ω;

(b) Functions {φj}
3
j=1 generating the map A.

(1) Compute the Jacobian matrices Jα;

(2) Compute the metric tensor gij via equation (5);

(3) Compute the Christoffel symbols Γk
ij via equation (1);

(4) Compute the tensors Rijkℓ, Rij via equations (3);

(5) Compute the scalar curvature S via equation (4).

Output: Scalar curvature S of M.
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4 Numerical Experiments

We have implemented the proposed method, Algorithm 3.1, for computing the metric and
curvature tensors of frequency modulated manifolds. The corresponding Matlab code is
available through www.math.uni-hamburg.de/home/guillemard/curvature/. In this section, numerical
examples concerning two different test cases are presented. In the two test cases, we
decided to use the sphere, Ω = S

2, and the torus, Ω = T
2, to illustrate how the scalar

curvature is modified under modulation maps and dimensionality reduction projections.

4.1 Frequency Modulation for a Sphere

In this first numerical example, we let the manifold Ω be given by the unit sphere, i.e.,
Ω = S

2 ⊂ R
3, and the modulation map A : S

2 ⊂ R
3 → M ⊂ R

256 is defined as

Aα(ti) =
3
∑

k=1

sin((α0
k + γαk)ti + bk),

where

α1(u, v) = cos(v) cos(u),

α2(u, v) = cos(v) sin(u),

α3(u, v) = sin(v).

Here, we use a finite and regular distribution of values u ∈ [0, 2π], v ∈ [0, π], and
{ti}

256
i=1 ⊂ [0, 1]. We apply shifting and scaling to the manifold S

2, so that the frequency
positions are given by the coordinates (α1

0, α
2
0, α

3
0) and the scaling factor γ. We use these

parameters to obtain a separation of the frequency bands as described in Subsection 3.1.
The scaling factor γ gives the spreading of each frequency band (bandwidth). A main
observation of the following experiments is that the geometrical deformation depends pri-
marily on the parameter γ. A graphical display of the manifolds S

2 and M is presented
in Figure 1, where the sphere S

2 is compared with a three dimensional PCA projection
of M (denoted as P (M)). The PCA projection P (M) of M ⊂ R

n, n = 256, produces a
significant geometrical deformation. One objective of the following analysis is to measure
this distortion. It can be observed experimentally that an increase in the scale factor γ
corresponds to a more pronounced cubic shape deformation, as shown in Figure 1 (b).

In order to measure the geometric deformation for this example, we compute the
scalar curvature of M ⊂ R

256 and that of its three dimensional PCA projection P (M).
Figure 2 (a) shows the scalar curvature of the manifold M and the curvature of its
projection P (M) is displayed in Figure 2 (b). Note that the scalar curvature of M
shows some variations over its surface, but in overall a fairly constant (and positive)
value, indicating a spherical geometry slightly deformed via the frequency modulation
map A. On the other hand, the PCA projection of M in a three dimensional space
shows significant variations as expected from the graphical display in Figure 1 (b). There
are, in particular, two sets of four maximal scalar curvature values, corresponding to the
corners of the cubic shaped surface shown in Figure 1 (b).
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(a) (b)

Figure 1: (a) The sphere S
2 ⊂ R

3; (b) The PCA projection P (M) ⊂ R
3 of the modulated

sphere M ⊂ R
256.

(a) (b)

Figure 2: Modulation of the sphere S
2. (a) The scalar curvature of M ⊂ R

256; (b) The
scalar curvature of P (M) ⊂ R

3.

4.2 Frequency Modulation for a Torus

In this second numerical example, we use the surface of the torus Ω = T
2 ⊂ R

3 in
combination with the modulation map

Aα(ti) =
3
∑

k=1

sin((α0
k + γαk)ti + bk),

and the torus parametrization

α1(u, v) = (R + r cos(v)) cos(u),

α2(u, v) = (R + r cos(v)) sin(u),

α3(u, v) = r sin(v).

Again, we use a finite and regular distribution of values u ∈ [0, 2π], v ∈ [0, 2π], and
{ti}

256
i=1 ⊂ [0, 1]. As in the previous example, the parameter γ (the frequency bandwidth)

plays a key role in the cubic deformation, as shown in Figure 3 (b). The scalar curvature
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of M ⊂ R
256 is shown in Figure 4 (a). Here, we observe a typical pattern for the

torus geometry: a minimal (and negative) value for the scalar curvature corresponding
to the smaller circle on the inside of the torus (depicted with the middle vertical line in
Figure 4 (a)), two circles with zero curvature on the top and bottom sections of the torus
(depicted with two vertical lines equidistant to the middle of Figure 4 (a)), and one circle
with maximal (and positive) scalar curvature on the outside of the torus (depicted with
the leftmost and rightmost vertical lines of the Figure 4 (a)).

The curvature of the PCA projection P (M), shown in Figure 4 (b), illustrates a
similar structure, but with a considerable geometrical deformation which includes two
sets of four points with maximal scalar curvature, representing the corners of the cubic
shaped projection P (M) shown in Figure 3 (b).

(a) (b)

Figure 3: (a) The torus T
2 ⊂ R

3; (b) The PCA projection P (M) ⊂ R
3 of the modulated

torus M ⊂ R
256.

(a) (b)

Figure 4: Modulation of the torus T
2. (a) The scalar curvature of M ⊂ R

256; (b) The
scalar curvature of P (M) ⊂ R

3.

4.3 PCA and Isomap Projection of the Modulated Torus

We remark that a basic property of modulation manifolds is that an increase of the
frequency bandwidth parameter γ amplifies the geometrical distortion of M ⊂ R

n. In
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fact, it can be observed experimentally that for large bandwidth γ, standard projection
methods, such as PCA, fail to recover the original geometry, unlike modern nonlinear
dimensionality reduction methods, such as isomap. Figure 5 (b) shows how the linear
PCA projection destroys the geometrical content of the modulated torus M, whereas the
nonlinear isomap projection achieves to recover (similar to the spirit of the classical Swiss
Roll example) the topological and geometrical features of the torus T

2 fairly well.

(a) (b)

Figure 5: Modulation of the torus T
2. (a) Isomap projection of M; (b) PCA projection

of M.

5 Conclusion and Future Steps

We have used frequency modulation maps to generate modulation manifolds and their
relevant data sets for manifold learning. We have developed a numerical scheme, Algo-
rithm 3.1, for computing the scalar curvature of a modulation manifold, along with its
metric tensor. We applied the algorithm to two different test cases of frequency modu-
lated manifolds. In one test case, we considered using the sphere S

2, the other example
relies on the torus T

2. The numerical examples are illustrating the geometrical distortion
incurred by the dimensionality reduction, when relying on PCA projections. Moreover,
we have shown that the standard linear PCA projection is outperformed by the nonlinear
somap projection, which achieves to recover the topological properties of the modulated
surface, even at high frequency bandwidths, very well. In conclusion, the findings of this
paper provide a first insight into the nature of frequency modulation maps and modula-
tion manifolds. Further investigations along these lines will be made in future work. Note
that the consideration of weaker structural assumptions on Ω and M is a very valuable
but challenging task for a large variety of applications. In this context, the work on
persistent homology [14] and discrete Morse theory [3] offers a suitable background that
can be used in future steps.
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