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zur Angewandten Mathematik

Discretization of optimal control problems

Michael Hinze and Arnd Rösch
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Discretization of optimal control problems

Michael Hinze and Arnd Rösch

Abstract. Solutions to optimization problems with pde constraints inherit special prop-
erties; the associated state solves the pde which in the optimization problem takes the
role of a equality constraint, and this state together with the associated control solves
an optimization problem, i.e. together with multipliers satisfies first and second order
necessary optimality conditions. In this note we review the state of the art in designing
discrete concepts for optimization problems with pde constraints with emphasis on struc-
ture conservation of solutions on the discrete level, and on error analysis for the discrete
variables involved. As model problem for the state we consider an elliptic pde which is
well understood from the analytical point of view. This allows to focus on structural as-
pects in discretization. We discuss the approaches First discretize, then optimize and First
optimize, then discretize, and consider in detail two variants of the First discretize, then
optimize approach, namely variational discretization, a discrete concept which avoids
explicit discretization of the controls, and piecewise constant control approximations.
We consider general constraints on the control, and also consider pointwise bounds on
the state. We outline the basic ideas for providing optimal error analysis and accomplish
our analytical findings with numerical examples which confirm our analytical results.
Furthermore we present a brief review on recent literature which appeared in the field of
discrete techniques for optimization problems with pde constraints.

Mathematics Subject Classification (2000). 49J20, 49K20, 35B37.

Keywords. elliptic optimal control problem, state & control constraints, error analysis.

1. Introduction

In PDE-constrained optimization, we have usually a pde as state equation and constraints
on control and/or state. Let us write the pde for the state y ∈ Y with the control u ∈ U
in the form e(y, u) = 0 in Z . Assuming smoothness, we are then lead to optimization
problems of the form

min
(y,u)∈Y×U

J(y, u) s.t. e(y, u) = 0, c(y) ∈ K, u ∈ Uad, (1)

where e : Y ×U → Z and c : Y →R are continuously Fréchet differentiable,K ⊂ R is a
closed convex cone representing the state constraints, and Uad ⊂ U is a closed convex set
representing the control constraints.

Let us give two examples.
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Example 1.1. Consider the distributed optimal control of a semilinear elliptic PDE:
min J(y, u) := 1

2‖y − yd‖2L2(Ω) +
α
2 ‖u‖2L2(Ω)

subject to
−Δy + y3 = γ u on Ω,
y = 0 on ∂Ω,
a ≤ u ≤ b on Ω, and y ≤ c onD,

(2)

where γ ∈ L∞(Ω) \ {0}, a, b ∈ L∞(Ω), and a ≤ b. We require D ⊂⊂ Ω to avoid
restrictions on the bound c which would have to be imposed in the case D ≡ Ω due to
homogeneous boundary conditions required for y. Let n ≤ 3. By the theory of monotone
operators one can show that there exists a unique bounded solution operator of the state
equation

u ∈ Uad := {v ∈ L2(Ω); a ≤ u ≤ b a.e. } → y ∈ Y := H1
0 (Ω).

Here c(y) = y with K = {y ∈ Y ; y ≤ c onD ⊂⊂ Ω} ⊂ R := C0(Ω̄). Let A : H1
0 (Ω)→

H1
0 (Ω)

∗ be the operator associated with the bilinear form a(y, v) =
∫
Ω
∇y · ∇v dx for

the Laplace operator −Δy and let N : y → y3. Then the weak formulation of the state
equation can be written in the form

e(y, u) := Ay +N(y)− γu = 0.

Example 1.2. We consider optimal control of the time-dependent incompressible Navier-
Stokes system for the velocity field y ∈ R

d and the pressure p. Let Ω ⊂ R
d denote the flow

domain, let f : [0, T ]× Ω → R
d be the force per unit mass acting on the fluid and denote

by y0 : Ω→ R
d the initial velocity of the fluid at t = 0. Then the Navier Stokes equations

can be written in the form
yt − νΔy + (y · ∇)y +∇p = f on ΩT := (0, T )× Ω,

∇ · y = 0 on ΩT , (3)
y(0, ·) = y0 on Ω,

and have to be accomplished by appropriate boundary condtions. For the functional analytic
setting let us define the Hilbert spaces
V := clH1

0 (Ω)
2{y ∈ C∞c (Ω)2;∇ · y = 0}, H := clL2(Ω)2{y ∈ C∞c (Ω)2;∇ · y = 0},

and the associated parabolic solution space
Y :=W (I) ≡W (I;H,V ) = {y ∈ L2(I;V ); yt ∈ L2(I;V ∗)}.

We say that
yt + (y · ∇)y − νΔy = f in L2(I;V ∗) =: Z :⇐⇒

〈yt, v〉V ∗,V + ν(∇y,∇v)L2(Ω)2×2 + 〈y · ∇)y, v〉V ∗,V = 〈f, v〉V ∗,V ∀ v ∈ V.
Let Uad ⊂ U be nonempty, convex and closed with U denoting a Hilbert space, and B :
U → L2(I, V ∗) a linear, bounded control operator. Furthermore we set K := Y , i.e. we
omit state constraints. Let finally J : Y × U → R be a Fréchet differentiable functional.
Then we may consider the following optimal control problem

min
u∈Uad,y∈Y

J(y, u) s.t. e(y, u) = 0 in Z,

where the state equation e(y, u) = 0 is the weak Navier-Stokes equation, i.e.,

e : Y × U → Z ×H, e(y, u) =
(
yt + (y · ∇)y − νΔy −Bu

y(0, ·)− y0

)
.

We are interested in illuminating discrete approaches to problem (1), where we place par-
ticular emphasis on structure preservation on the discrete level, and also on analysing the
contributions to the total error of the discretization errors in the variables and multipliers in-
volved. To approach an optimal control problem of the form (1) numerically one may either
discretize this problem by substituting all appearing function spaces by finite dimensional
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spaces, and all appearing operators by suitable approximate counterparts which allow their
numerical evaluation on a computer, say. Denoting by h the discretization parameter, one
ends up with the problem

min
(yh,uh)∈Yh×Uh

Jh(yh, uh) s.t eh(yh, uh) = 0 and ch(yh) ∈ Kh, uh ∈ Uh
ad, (4)

where Jh : Yh×Uh → R, eh : Yh×Uh → Z , and ch : Yh → RwithKh ⊂ R. For the finite
dimensional subspaces one may require Yh ⊂ Y, Uh ⊂ U , say, and Kh ⊆ R a closed and
convex cone, U h

ad ⊆ Uh closed and convex. This approach in general is referred to as first
discretize, then optimize. On the other hand one may switch to the Karush-Kuhn-Tucker
system associated to (1)

e(ȳ, ū) = 0, c(ȳ) ∈ K, (5)
λ̄ ∈ K◦, 〈λ̄, c(ȳ)〉R∗,R = 0, (6)
Ly(ȳ, ū, p̄) + c′(ȳ)∗λ̄ = 0, (7)
ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad. (8)

and substitute all appearing function spaces and operators accordingly, whereL(y, u, p) :=
J(y, u)− 〈p, e(y, u)〉Z∗,Z denotes the Lagrangian associated to (1). This leads to solving

eh(yh, uh) = 0, ch(yh) ∈ Kh, (9)
λh ∈ Kh

◦, 〈λh, ch(yh)〉R∗,R = 0, (10)
Lhy(yh, uh, ph) + c′h(yh)

∗λh = 0, (11)

ūh ∈ Uh
ad, 〈Lhu(yh, uh, ph), u− uh〉U∗,U ≥ 0 ∀ u ∈ Uh

ad (12)

for ȳh, ūh, p̄h, λ̄h, where Lh denotes a discretized version of L. Of course, L ≡ Lh is
possible. This approach in general is referred to as first optimize, then discretize, since it
builds the discretization upon the first order necessary optimality conditions.

Instead of applying discrete concepts to problem (1) or (5)-(8) directly we may first apply
an SQP approach on the continuous level and then apply first discretize, then optimize to
the related linear quadratic constrained subproblems, or first optimize, then discretize to the
SQP systems appearing in each iteration of the Newton method on the infinite dimensional
level. This motivates us to illustrate all discrete concepts at hand of linear model pdes which
are well understood w.r.t. analysis and discretization concepts and to focus the presentation
on structural aspects inherent to optimal control problems with pde constraints. However,
error analysis for optimization problems with nonlinear state equations in the presence of
constraints on controls and/or state is not straightforward and requires special techniques
such as extensions of Newton-Kontorovich-type theorems, and second order sufficient op-
timaltiy conditions. This complex of questions also will be discussed.

The outline of this work is as follows. In Section 2, we consider an elliptic model optimal
control problem containing many relevant features which need to be resolved by a numer-
ical approach. In Section 3 we preview the case of nonlinear state equations and highlight
the solution approaches taken so far, as well as the analytical difficulties one is faced with in
this situation. Section 4 is devoted to the finite element element method for the discretiza-
tion of the state equation in our model problem. We propose two different approximation
approaches of the First discretize, then optimize-type to the optimal control problem, in-
cluding detailed numerical analysis. In Section 5 we present an introduction to relaxation
approaches used in presence of state constraints. For Lavrentiev regularization applied to
the model problem we present numerical analysis which allows to adapt the finite element
discretization error to the regularization error. Finally, we present in Section 6 a brief re-
view on recent literature which appeared in the field of discrete techniques for optimization
problems with pde constraints.
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2. A model problem

As model problem with pointwise bounds on the state we take the Neumann problem

(S)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(y,u)∈Y×Uad
J(y, u) := 1

2

∫
Ω
|y − y0|2 + α

2 ‖u‖2U
s.t.
Ay = Bu in Ω,
∂ηy = 0 on Γ,

}
:⇐⇒ y = G(Bu)

and
y ∈ Yad := {y ∈ Y, y(x) ≤ b(x) a.e. in Ω}.

(13)

Here, Y := H1(Ω), A denotes an uniformly elliptic operator, for exampleAy = −Δy+y,
and Ω ⊂ R

d (d = 2, 3) denotes an open, bounded sufficiently smooth (or polyhedral) do-
main. Furthermore, we suppose that α > 0 and that y0 ∈ L2(Ω), and b ∈ W 2,∞(Ω) are
given. (U, (·, ·)U ) denotes a Hilbert space and B : U → L2(Ω) ⊂ H1(Ω)∗ the linear, con-
tinuous control operator. By R : U ∗ → U we denote the inverse of the Riesz isomorphism.
Furthermore, we associate to A the continuous, coercive bilinear form a(·, ·).
Example 2.1. There are several examples for the choice of B and U .

(i) Distributed control: U = L2(Ω), B = Id : L2(Ω)→ Y ′.
(ii) Boundary control: U = L2(∂Ω), Bu(·) =

∫
∂Ω uγ0(·) dx ∈ Y ′, where γ0 is the

boundary trace operator defined on Y .
(iii) Linear combinations of input fields: U = R

n, Bu =
∑n

i=1 uifi, fi ∈ Y ′.

If not stated otherwise we from here onwards consider the situation (i) of the previous ex-
ample. In view of α > 0, it is standard to prove that problem (13) admits a unique solution
(y, u) ∈ Yad × Uad. In pde constrained optimization, the pde for given data frequently is
uniquely solvable. In equation (13) this is also the case, so that for every control u ∈ U ad

we have a unique state y = G(Bu) ∈ H 1(Ω) ∩ C0(Ω̄). We need y ∈ C0(Ω̄) to satisfy
the Slater condition required below. Problem (13) therefore is equivalent to the so called
reduced optimization problem

min
v∈Uad

Ĵ(v) := J(G(Bv), v) s.t. G(Bv) ∈ Yad. (14)

The key to the proper numerical treatment of problems (13) and (14) can be found in
the first order necessary optimality conditions associated to these control problems. To
formulate them properly we require the following constraint qualification, often referred
to as Slater condition. It requires the existence of a state in the interior of the set Y ad

considered as a subset of C0(Ω̄) and ensures the existence of a Lagrange multiplier in the
associated dual space. Moreover, it is useful for deriving error estimates.

Assumption 2.2. ∃ũ ∈ Uad G(Bũ)(x) < b(x) for all x ∈ Ω̄.

Following Casas [9, Theorem 5.2] for the problem under consideration we now have the
following theorem, which specifies the KKT system (5)-(8) for the setting of problem (13).

Theorem 2.3. Let u ∈ Uad denote the unique solution to (13). Then there exist μ ∈ M(Ω̄)
and p ∈ L2(Ω) such that with y = G(Bu) there holds∫

Ω

pAv =

∫
Ω

(y − y0)v +
∫
Ω̄

vdμ ∀v ∈ H2(Ω) with ∂ηv = 0 on ∂Ω, (15)

(RB∗p+ αu, v − u)U ≥ 0 ∀v ∈ Uad, (16)

μ ≥ 0, y(x) ≤ b(x) in Ω and
∫
Ω̄

(b − y)dμ = 0. (17)
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Here,M(Ω̄) denotes the space of Radon measures which is defined as the dual space of
C0(Ω̄) and endowed with the norm

‖μ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫
Ω̄

fdμ.

Since Ĵ ′(v) = B∗p + α(·, u)U a short calculation shows that the variational inequalitiy
(16) is equivalent to

u = PUad
(u− σRĴ ′(u)) (σ > 0),

where PUad
denotes the orthogonal projection in U onto Uad. This nonsmooth operator

equation constitutes a relation between the optimal control u and its associated adjoint state
p. In the present situation, when we consider the special case U ≡ L2(Ω) with B denoting
the injection from L2(Ω) into H1(Ω)∗, and without control constraints, i.e. Uad ≡ L2(Ω),
this relation boils down to

αu+ p = 0 in L2(Ω),
since σ > 0. This relation already gives a hint to the discretization of the state y and the
control u in problem (13), if one wishes to conserve the structure of this algebraic relation
also on the discrete level.

3. Nonlinear state equations

Practical applications are usually characterized by nonlinear partial differential equations,
see Example 1.1 and Example 1.2. We will here only focus on optimization and discretiza-
tion aspects. Let us assume that there is a solution operator S:

e(y, u) = 0 ⇐⇒ y = S(u) (18)

whhich maps U in Y . The nonlinearity of S results in a nonconvex optimization problem
(1). Therefore, we have to replace the Slater condition (Assumption 2.2) by a Mangasarian-
Fromovitz constraint qualification to get the necessary optimality condition. Of course, one
needs differentiability properties of the solution operator S. Let us assume that the operator
S is two times Fréchet differentiable. All these assumptions are satisfied for both examples.

Moreover, let us assume there is a discrete solution operator Sh : U → Yh with

eh(yh, u) = 0 ⇐⇒ yh = Sh(u). (19)

Consequently, the discretization error of the PDE is described by ‖S(u)− Sh(u)‖Z . Usu-
ally, such a priori error estimates are known for a lot of discretizations and for different
spaces Z . However, this is only a first small step in estimating the discretization error for
the optimization problem.

Since the optimal control problem is not convex, we have to work with local minima and
local convexity properties.We can only expect that a numerical optimizationmethod gener-
ates a sequence of locally optimal (discrete) solutions converging to a local optimal solution
of the undiscretized problem. To get error estimates one has to deal with local convexity
properties. These local convexity properties are described by second-order sufficient op-
timality conditions. However, these properties lead only to a priori error estimates if one
already knows that the discretized solution is sufficiently close to the undiscretized one.
This complicate situation requires innovative techniques to obtain the desired results.

Until now such techniques are known only for control constrained optimal control prob-
lems. Let us first sketch a technique which was presented in [16]. Here, an auxiliary prob-
lem is introduced with the additional constraint

‖u− ū‖U1 ≤ r. (20)
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The choice of the space U1 is connected to the differentiability properties of the operator
S. In general the U1-norm is a stronger norm than the U -norm. For instance, U = L 2(Ω)
and U1 = L∞(Ω) is a typical choice. Let us mention that the two-norm discrepancy can be
avoided for certain elliptic optimal control problems. The radius r is chosen in such a way
that the auxiliary problem is now a strictly convex problem. Consequently, the solution ū
is the unique solution of the auxiliary optimal control problem.

Using the second-order sufficient optimality condition one shows in a next step that
‖ūrh − ū‖U + ‖ȳrh − ȳ‖Y ≤ chκ (21)

where ūrh is the solution of a discretized version of the auxiliary problem and y r
h the corre-

sponding state. Note, that the convergence order does not depend on r. A similar estimate
is obtained for the adjoint state. A projection formula is used to derive an error estimate

‖ūrh − ū‖U1 ≤ chκ̂.

If h is sufficiently small, then the additional inequality (20) cannot be active. Consequently
ūrh is also a local minimizer of the discretized problem without this inequality and the
error estimate (21) is valid. Let us mention the practical drawback of that result. Since the
solution ū is unknown, we have no information about what h is small enoughmeans.

A second approach was used in [68, 67]. Only information on the numerical solution are
used in that approach. The main idea is to construct a ball around the numerical solution
where the objective value of the undiscretized problem on the surface of that ball is greater
than the objective value of the discretized control.

Let us mention that the available techniques cannot be applied to state constrained prob-
lems. Low regularity properties, instability of dual variables, and missing smoothing prop-
erties are some of the reasons that a priori error estimates for nonlinear state constrained
problems are challenging.

Let us sketch a third approach which is based on the first order necessary optimality con-
ditions (5)-(8) and (9)-(12), respectively, and which does not use second order sufficient
optimality conditions. To begin with we consider

min
u∈Uad

Ĵ(u) ≡ J(S(u), u), (22)

with J as in problem (13). In this situation (7) reduces to
〈α(u, ·) +B∗p, v − u〉U∗U ≥ 0 for all v ∈ Uad. (23)

Then this variational inequality is equivalent to the semi-smooth operator equation

G(u) := u− PUad
(− 1

α
B∗p) = 0 in U, (24)

where PUad
denotes the orthogonal projection ontoUad in U, and where we assume that the

Riesz isomorphism is the identity map. Analogously, for the variational discrete approach
and its numerical solutions uh ∈ Uad (see next Section),

Gh(uh) := uh − PUad
(− 1
α
B∗ph) = 0 in U. (25)

We now pose the following two question; 1. Given a solution u ∈ Uad to (22), does there
exist a solution uh ∈ Uad of (25) in a neighborhood of u? 2. If yes, is this solution unique?
It is clear that solutions to (22) might not be local solutions to the optimization problem,
and that every local solution is a solution to (22). In this respect the following exposition
generalizes the classical Newton-Kantorovich concept.

To provide positive answers to these questions we have to pose appropriate assumptions on
a solution u ∈ Uad of (22).
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Definition 3.1. A solution u ∈ Uad of (22) is called regular, if M ∈ ∂G(u) exists with
‖G(v)−G(u)−M(v−u)‖U = o(1) for v → u, andM is invertible with bounded inverse
M−1.

We note that in the case of box constraints with U := L2(Ω) and Uad = {v ∈ U ; a ≤ u ≤
b} this regularity requirement is satisfied if the gradient of the adjoint state associated to u
admits a non-vanishing gradient on the boarder of the active set, see [28].

In the following we write G′(u) := M . Now let u ∈ Uad denote a regular solution to (22)
and consider the operator

Φ(v) := v −G′(u)−1Gh(v). (26)
We now, under certain assumptions, show that Φ has a fixed point uh in a neighborhood
of u which we then consider as discrete approximation to the solution u ∈ U ad of (22). A
positive answer to question 1 is given in

Theorem 3.2. Let u ∈ Uad denote a regular solution to (22). Furhermore let for v ∈ Uad

the error estimate
‖Gh(v)−G(v)‖ ≤ chκ for h→ 0

be satisfied and let Φ be compact. Then a neighborhood B r(u) ⊂ U exists such that Φ
admits a least one fixed point uh ∈ Uad ∩Br(u). For uh the error estimate

‖u− uh‖U ≤ Chκ for all 0 < h ≤ h0

holds.

If we strengthen the regularity requirement on u by requiring strict differentiability ofG at
u, also uniqueness can be argued. Details are given in [28], where also error estimates for
approximation schemes related to Example (1.2) are presented.

4. Finite element discretization

For the convenience of the reader we recall the finite element setting. To begin with let
Th be a triangulation of Ω with maximum mesh size h := maxT∈Th diam(T ) and vertices
x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th so that element edges
lying on the boundary are curved. In addition, we assume that the triangulation is quasi-
uniform in the sense that there exists a constant κ > 0 (independent of h) such that each
T ∈ Th is contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define
the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}
with the appropriate modification for boundary elements. In what follows it is convenient
to introduce a discrete approximation of the operator G. For a given function v ∈ L 2(Ω)
we denote by zh = Gh(v) ∈ Xh the solution of the discrete Neumann problem

a(zh, vh) =

∫
Ω

vvh for all vh ∈ Xh.

It is well–known that for all v ∈ L2(Ω)
‖G(v)− Gh(v)‖ ≤ Ch2‖v‖, (27)

‖G(v)− Gh(v)‖L∞ ≤ Ch2−
d
2 ‖v‖. (28)

The estimate (28) can be improved provided one strengthens the assumption on v.

Lemma 4.1.
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(a) Suppose that v ∈W 1,s(Ω) for some 1 < s < d
d−1 . Then

‖G(v)− Gh(v)‖L∞ ≤ Ch3−
d
s | log h| ‖v‖W 1,s .

(b) Suppose that v ∈ L∞(Ω). Then
‖G(v) − Gh(v)‖L∞ ≤ Ch2| log h|2 ‖v‖L∞.

Proof. (a): Let z = G(v), zh = Gh(v). Elliptic regularity theory implies that z ∈ W 3,s(Ω)
from which we infer that z ∈ W 2,q(Ω) with q = ds

d−s using a well–known embedding
theorem. Furthermore, we have

‖z‖W 2,q ≤ c‖z‖W 3,s ≤ c‖v‖W 1,s . (29)

Using Theorem 2.2 and the following estimate from [69] we have

‖z − zh‖L∞ ≤ c| log h| inf
χ∈Xh

‖z − χ‖L∞ , (30)

which, combined with a well–known interpolation estimate, yields

‖z − zh‖L∞ ≤ ch2−
d
q | log h|‖z‖W 2,q ≤ ch3−

d
s | log h|‖v‖W 1,s

in view (29) and the relation between s and q.

(b): Elliptic regularity theory in the present case implies that z ∈ W 2,q(Ω) for all 1 ≤ q <
∞ with

‖z‖W 2,q ≤ Cq‖v‖Lq

where the constant C is independent of q. For the dependence on q in this estimate we
refer to the work of Agmon, Douglis and Nirenberg [1], see also [31] and [33, Chapter 9].
Proceeding as in (a) we have

‖z−zh‖L∞ ≤ Ch2−
d
q | logh|‖z‖W 2,q ≤ Cqh2−

d
q | log h|‖v‖Lq ≤ Cqh2−

d
q | log h|‖v‖L∞ ,

so that choosing q = | log h| gives the result. �

An important ingredient in our analysis is an error bound for a solution of a Neumann
problem with a measure valued right hand side. Let A be as above and consider

A∗q = μ̃Ω in Ω∑d
i=1

(∑d
j=1 aijqxj + biq

)
νi = μ̃∂Ω on ∂Ω. (31)

Theorem 4.2. Let μ̃ ∈ M(Ω̄). Then there exists a unique weak solution q ∈ L2(Ω) of
(31), i.e.

∫
Ω

qAv =

∫
Ω̄

vdμ̃ ∀v ∈ H2(Ω) with
d∑

i,j=1

aijvxiνj = 0 on ∂Ω.

Furthermore, q belongs toW 1,s(Ω) for all s ∈ (1, d
d−1 ). For the finite element approxima-

tion qh ∈ Xh of q defined by

a(vh, qh) =

∫
Ω̄

vhdμ̃ for all vh ∈ Xh

the following error estimate holds:

‖q − qh‖ ≤ Ch2−
d
2 ‖μ̃‖M(Ω̄). (32)

Proof.A corresponding result is proved in [7] for the case of an operatorAwithout transport
term subject to Dirichlet conditions, but the arguments can be adapted to our situation. We
omit the details. �
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4.1. Variational discretization

The discretization of the partial differential equations induces a natural discretization of the
control via the optimality condition. Every a priori discretization of the control introduces a
significant additional error which may reduce the approximation rates. Therefore, only the
partial differential equations are discretized in the variational discretization concept. Prob-
lem (13) is now approximated by the following sequence of so called variational discrete
control problems [44] depending on the mesh parameter h:

min
u∈Uad

Ĵh(u) :=
1

2

∫
Ω

|yh − y0|2 +
α

2
‖u‖2U

subject to yh = Gh(Bu) and yh(xj) ≤ b(xj) for j = 1, . . . ,m.
(33)

Notice that the integer m is not fixed and tends to infinity as h → 0, so that the num-
ber of state constraints in this optimal control problem increases with decreasing mesh
size of underlying finite element approximation of the state space. This discretization ap-
proach can be understood as a generalization of the First discretize, then optimize approach
in that it avoids discretization of the control space U . Problem (33) represents a convex
infinite-dimensional optimization problem of similar structure as problem (13), but with
only finitely many equality and inequality constraints for the state, which form a convex
admissible set. So we are again in the setting of (1) with Y replaced by the finite element
spaceXh (compare also the analysis of Casas presented in [10])

Lemma 4.3. Problem (33) has a unique solution uh ∈ Uad. There exist μ1, . . . , μm ∈ R

and ph ∈ Xh such that with yh = Gh(Buh) and μh =
∑m

j=1 μjδxj we have

a(vh, ph) =

∫
Ω

(yh − y0)vh +
∫
Ω̄

vhdμh ∀vh ∈ Xh, (34)

(RB∗ph + αuh, v − uh)U ≥ 0 ∀v ∈ Uad, (35)

μj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . ,m and
∫
Ω̄

(
Ihb− yh

)
dμh = 0. (36)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange inter-
polation operator. We have Ĵ ′h(v) = B∗ph + α(·, uh)U , so that the considerations after
Theorem 2.3 also apply in the present setting, but with p replaced by the discrete function
ph, i.e. there holds

uh = PUad
(uh − σRĴ ′h(uh)) (σ > 0).

For σ = 1
α we obtain

u = PUad

(
− 1
α
RB∗p

)
and uh = PUad

(
− 1
α
RB∗ph

)
. (37)

Due to the presence of PUad in variational discretization the function uh ∈ Uad will in
general not belong to Xh even in the case U = L2(Ω), B = Id. This is different for the
purely state constrained problem, for which PUad

≡ Id, so that in this specific setting
uh = − 1

αph ∈ Xh by (37). In that case the space U = L2(Ω) in (33) may be replaced
by Xh to obtain the same discrete solution uh, which results in a finite–dimensional dis-
crete optimization problem instead. However, we emphasize, that the infinite–dimensional
formulation of (33) is very useful in numerical analysis [46, Chap. 3].

As a first result for (33) it is proved in e.g. [46, Chap. 3] that the sequence of optimal
controls, states and the measures μh are uniformly bounded.

Lemma 4.4. Let uh ∈ Uad be the optimal solution of (33) with corresponding state yh ∈
Xh and adjoint variables ph ∈ Xh and μh ∈M(Ω̄). Then there exists h̄ > 0 so that

‖yh‖, ‖uh‖U , ‖μh‖M(Ω̄) ≤ C for all 0 < h ≤ h̄.
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Proof. Since G(Bũ) is continuous, Assumption 2.2 implies that there exists δ > 0 such that

G(Bũ) ≤ b− δ in Ω̄. (38)

It follows from (28) that there is h0 > 0 with

Gh(Bũ) ≤ b in Ω̄ for all 0 < h ≤ h0

so that Jh(uh) ≤ Jh(ũ) ≤ C uniformly in h giving

‖uh‖U , ‖yh‖ ≤ C for all h ≤ h0. (39)

Next, let u denote the unique solution to problem (13). We infer from (38) and (28) that
v := 1

2u+
1
2 ũ satisfies

Gh(Bv) ≤ 1

2
G(Bu) + 1

2
G(Bũ) + Ch2−

d
2 (‖Bu‖+ ‖Bũ‖) (40)

≤ b− δ

2
+ Ch2−

d
2 (‖u‖U + ‖ũ‖U ) ≤ b− δ

4
in Ω̄

provided that h ≤ h̄, h̄ ≤ h0. Since v ∈ Uad, (35), (34), (39) and (40) imply

0 ≤ (RB∗ph + α(uh − u0,h), v − uh)U =

∫
Ω

B(v − uh)ph + α(uh − u0,h, v − uh)U
= a(Gh(Bv)− yh, ph) + α(uh − u0,h, v − uh)U
=

∫
Ω

(Gh(Bv) − yh)(yh − y0) +
∫
Ω̄

(Gh(Bv) − yh)dμh + α(uh − u0,h, v − uh)U

≤ C +

m∑
j=1

μj

(
b(xj)−

δ

4
− yh(xj)

)
= C − δ

4

m∑
j=1

μj

where the last equality is a consequence of (36). It follows that

‖μh‖M(Ω̄) ≤ C

and the lemma is proved. �

4.2. Piecewise constant controls

We consider the special case U = L2(Ω), so that B denotes the injection of L2(Ω) into
H1(Ω)∗ with box constraints al ≤ u ≤ ar on the control. Controls are approximated by
element-wise piecewise constant functions. For details we refer to [23]. We define the space
of piecewise constant functions

Yh := {vh ∈ L2(Ω) | vh is constant on each T ∈ Th}.
and denote by Qh : L

2(Ω)→ Yh the orthogonal projection onto Yh so that

(Qhv)(x) := −
∫
T

v, x ∈ T, T ∈ Th,

where −
∫
T v denotes the average of v over T . In order to approximate (13) we introduce a

discrete counterpart of Uad,

Uh
ad := {vh ∈ Yh | al ≤ vh ≤ au in Ω}.

Note that Uh
ad ⊂ Uad and thatQhv ∈ Uh

ad for v ∈ Uad. SinceQhv → v in L2(Ω) as h→ 0
we infer from the continuous embeddingH 2(Ω) ↪→ C0(Ω̄) and Lemma 4.1 that

Gh(Qhv)→ G(v) in L∞(Ω) for all v ∈ Uad. (41)

Problem (13) here now is approximated by the following sequence of control problems
depending on the mesh parameter h:
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min
u∈Uh

ad

Jh(u) :=
1

2

∫
Ω

|yh − y0|2 +
α

2

∫
Ω

|u|2

subject to yh = Gh(u) and yh(xj) ≤ b(xj) for j = 1, . . . ,m.
(42)

Problem (42), as problem (33), represents a convex finite-dimensional optimization prob-
lem of similar structure as problem (13), but with only finitely many equality and inequality
constraints for state and control, which form a convex admissible set. The following opti-
mality conditions can be argued as those given in (4.3) for problem (33).

Lemma 4.5. Problem (42) has a unique solution uh ∈ Uh
ad. There exist μ1, . . . , μm ∈ R

and ph ∈ Xh such that with yh = Gh(uh) and μh =
∑m

j=1 μjδxj we have

a(vh, ph) =

∫
Ω

(yh − y0)vh +
∫
Ω̄

vhdμh ∀vh ∈ Xh, (43)
∫
Ω

(ph + αuh)(vh − uh) ≥ 0 ∀vh ∈ Uh
ad, (44)

μj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . ,m and
∫
Ω̄

(
Ihb− yh

)
dμh = 0. (45)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange inter-
polation operator.

For (42) we now prove bounds on the discrete states and the discrete multipliers. Similar to
Lemma 4.4 we have

Lemma 4.6. Let uh ∈ Uh
ad be the optimal solution of (42) with corresponding state yh ∈

Xh and adjoint variables ph ∈ Xh and μh ∈M(Ω̄). Then there exists h̄ > 0 such that
‖yh‖, ‖μh‖M(Ω̄) ≤ C, ‖ph‖H1 ≤ Cγ(d, h) for all 0 < h ≤ h̄,

where γ(2, h) =
√
| log h| and γ(3, h) = h−

1
2 .

Proof. Since G(ũ) ∈ C0(Ω̄), Assumption 2.2 implies that there exists δ > 0 such that
G(ũ) ≤ b− δ in Ω̄. (46)

It follows from (41) that there is h̄ > 0 with

Gh(Qhũ) ≤ b− δ

2
in Ω̄ for all 0 < h ≤ h̄. (47)

Since Qhũ ∈ Uh
ad, (45), (44) and (47) imply

0 ≤
∫
Ω

(ph + αuh)(Qhũ− uh) =
∫
Ω

ph(Qhũ− uh) + α

∫
Ω

uh(Qhũ− uh)

= a(Gh(Qhũ)− yh, ph) + α

∫
Ω

uh(Qhũ− uh)

=

∫
Ω

(Gh(Qhũ)− yh)(yh − y0) +
∫
Ω̄

(Gh(Qhũ)− yh)dμh + α

∫
Ω

uh(Qhũ− uh)

≤ C − 1

2
‖yh‖2 +

m∑
j=1

μj

(
b(xj)−

δ

2
− yh(xj)

)
= C − 1

2
‖yh‖2 −

δ

2

m∑
j=1

μj

where the last equality is a consequence of (45). It follows that ‖yh‖, ‖μh‖M(Ω̄) ≤ C.
In order to bound ‖ph‖H1 we insert vh = ph into (44) and deduce with the help of the
coercivity of A, a well–known inverse estimate and the bounds we have already obtained
that

c1‖ph‖2H1 ≤ a(ph, ph) =

∫
Ω

(yh − y0)ph +
∫
Ω̄

phdμh

≤ ‖yh − y0‖ ‖ph‖+ ‖ph‖L∞‖μh‖M(Ω̄) ≤ C‖ph‖+ Cγ(d, h)‖ph‖H1 .
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FIGURE 1. Numerical comparison of active sets obtained by variational
discretization, and those obtained by a conventional approach with piece-
wise linear, continuous controls: h = 1

8 and α = 0.1 (left), h = 1
4 and

α = 0.01 (right). The red line depicts the boarder of the active set in
the conventional approach, the cyan line the exact boarder, the black and
green lines, respectively the boarders of the active set in variational dis-
cretization.

Hence ‖ph‖H1 ≤ Cγ(d, h) and the lemma is proved. �

Similar considerations hold for control approximations by continuous, piecewise polyno-
mial functions. Discrete approaches to problem (13) relying on control approximations
directly lead to fully discrete optimization problems like (42). These approaches lead to
large-scale finite-dimensional optimization problems, since the discretization of the pde in
general introduces a large number of degrees of freedom.Numerical implementation then is
easy, which certainly is an important advantage of control approximations over variational
discretization, whose numerical implementation is more involved. The use of classical NLP
solvers for the numerical solution of the underlying discretized problems only is feasible,
if the solver allows to exploit the underlying problem structure e.g. by providing user inter-
faces for first- and second-order derivatives.

On the other hand, the numerical implementation of variational discretization is not straight-
forward. The great advantage of variational discretization however is its property of optimal
approximation accuracy, which is completely determined by that of the related state and ad-
joint state. Fig. 1 compares active sets obtained by variational discretization and piecewise
linear control approximations in the presence of box constraints. One clearly observes that
the active sets are resolved much more accurate when using variational discretization. In
particular, the boundary of the active set is in general different from finite element edges.

The error analysis for problem (13) relies on the regularity of the involved variables, which
is reflected by the optimality system presented in (15)-(17). If only control constraints are
present, neither the multiplier μ in (15) nor the complementarity condition (17) appear.
Then the variational inequality (16) restricts the regularity of the control u, and thus also
that of the state y. If the desired state y0 is regular enough, the adjoint variable p admits the
highest regularity properties among all variables involved in the optimality system. Error
analysis in this case then should involve the adjoint variable p and exploit its regularity
properties.

If pointwise state constraints, are present, the situation is completely different. Now the
adjoint variable only admits low regularity due to the presence of the multiplier μ, which
in general is only a measure. The state now admits the highest regularity in the optimality
system. This fact should be exploited in the error analysis. However, the presence of the
complementarity system (17) requires L∞-error estimates for the state.
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4.3. Error bounds

For the approximation error of variational discretization we have the following theorem,
whose proof can be found in [46, Chap. 3].

Theorem 4.7. Let u and uh be the solutions of (13) and (33) respectively. Then

‖u− uh‖U + ‖y − yh‖H1 ≤ Ch1−
d
4 .

If in additionBu ∈ W 1,s(Ω) for some s ∈ (1, d
d−1 ) then

‖u− uh‖U + ‖y − yh‖H1 ≤ Ch
3
2− d

2s

√
| log h|.

If Bu,Buh ∈ L∞(Ω) with (Buh)h uniformly bounded in L∞(Ω) also
‖u− uh‖U , ‖y − yh‖H1 ≤ Ch| log h|,

where the latter estimate is valid for d = 2, 3.

Proof.We test (16) with uh, (35) with u and add the resulting inequalities. This gives

(RB∗(p− ph)− α(u0 − u0,h) + α(u− uh), uh − u)U ≥ 0,

which in turn yields

α‖u− uh‖2U ≤
∫
Ω

B(uh − u)(p− ph)− α (u0 − u0,h, uh − u)U . (48)

Let yh := Gh(Bu) ∈ Xh and denote by ph ∈ Xh the unique solution of

a(wh, p
h) =

∫
Ω

(y − y0)wh +

∫
Ω̄

whdμ for all wh ∈ Xh.

Applying Theorem 4.2 with μ̃ = (y − y0)dx+ μ we infer

‖p− ph‖ ≤ Ch2−
d
2

(
‖y − y0‖+ ‖μ‖M(Ω̄)

)
. (49)

Recalling that yh = Gh(Buh), yh = Gh(Bu) and observing (34) as well as the definition
of ph we can rewrite the first term in (48)∫
Ω

B(uh − u)(p− ph) =
∫
Ω

B(uh − u)(p− ph) +
∫
Ω

B(uh − u)(ph − ph)

=

∫
Ω

B(uh − u)(p− ph) + a(yh − yh, ph − ph) (50)

=

∫
Ω

B(uh − u)(p− ph) +
∫
Ω

(y − yh)(yh − yh) +
∫
Ω̄

(yh − yh)dμ−
∫
Ω̄

(yh − yh)dμh

=

∫
Ω

B(uh − u)(p− ph)− ‖y − yh‖2 +
∫
Ω

(y − yh)(y − yh)

+

∫
Ω̄

(yh − yh)dμ+
∫
Ω̄

(yh − yh)dμh.

After inserting (50) into (48) and using Young’s inequality we obtain in view of (49), (27)
and the properties of the L2-projection
α

2
‖u− uh‖2U +

1

2
‖y − yh‖2 (51)

≤ C
(
‖p− ph‖2 + ‖y − yh‖2 + ‖u0 − u0,h‖2

)
+

∫
Ω̄

(yh − yh)dμ+
∫
Ω̄

(yh − yh)dμh

≤ Ch4−d +

∫
Ω̄

(yh − yh)dμ+
∫
Ω̄

(yh − yh)dμh.

It remains to estimate the integrals involving the measures μ and μh. Since

yh − yh ≤ (Ihb− b) + (b − y) + (y − yh) in Ω̄
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we deduce with the help of (17)∫
Ω̄

(yh − yh)dμ ≤ ‖μ‖M(Ω̄)

(
‖Ihb− b‖∞ + ‖y − yh‖∞

)
.

Similarly, (36) implies∫
Ω̄

(yh − yh)dμh ≤ ‖μh‖M(Ω̄)

(
‖b− Ihb‖∞ + ‖y − yh‖∞

)
.

Inserting the above estimates into (51) and using Lemma 4.4 as well as an interpolation
estimate we infer

‖u− uh‖2U + ‖y − yh‖2 ≤ Ch4−d + C‖y − yh‖L∞ . (52)

The estimates on ‖u−uh‖U now follow from (28) and Lemma 4.1 respectively. Finally, in
order to bound ‖y − yh‖H1 we note that

a(y − yh, vh) =
∫
Ω

B(u− uh)vh

for all vh ∈ Xh, from which one derives the desired estimates using standard finite element
techniques and the bounds on ‖u−uh‖U . In order to avoid the dependence on the dimension
we should avoid finite element approximations of the adjoint variable p, which due to its
low regularity only allows error estimates in the L2 norm. We therefore provide a proof
technique which completely avoids the use of finite element approximations of the adjoint
variable. To begin with we start with the basic estimate (48)

α‖u− uh‖2U ≤
∫
Ω

B(uh − u)(p− ph)− α (u0 − u0,h, uh − u)U
and write∫

Ω

B(uh − u)(p− ph) =
∫
Ω

pA(ỹ − y)− a(yh − yh, ph) =

=

∫
Ω

(y − y0)(ỹ − y) +
∫
Ω̄

ỹ − ydμ−
∫
Ω

(yh − y0)(yh − yh) +
∫
Ω̄

yh − yhdμh,

where ỹ := G(uh). Proceeding similar as in the proof of the previous theorem we obtain∫
Ω

(y − y0)(ỹ − y) +
∫
Ω̄

ỹ − ydμ−
∫
Ω

(yh − y0)(yh − yh) +
∫
Ω̄

yh − yhdμh ≤

≤ C{‖μ‖M(Ω̄) + ‖μh‖M(Ω̄)}{‖b− Ihb‖∞ + ‖y − yh‖∞ + ‖ỹ − yh‖∞}−
− ‖y − yh‖2 + C{‖y − yh‖+ ‖ỹ − yh‖}.

Using Lemma 4.4 together with Lemma 4.1 then yields

α‖u− uh‖2U + ‖y − yh‖2 ≤ C{h2 + h2| log h|2},
so that the claim follows as in the proof of the previous theorem. �

Remark 4.8. Let us note that the approximation order of the controls and states in the
presence of control and state constraints is the same as in the purely state constrained case,
if Bu ∈ W 1,s(Ω). This assumption holds for the important example U = L2(Ω), B = Id
and u0h = Phu0, with u0 ∈ H1(Ω) and Ph : L2(Ω) → Xh denoting the L2–projection,
and subsets of the form

Uad = {v ∈ L2(Ω), al ≤ v ≤ au a.e. in Ω},
with bounds al, au ∈ W 1,s(Ω), since u0 ∈ H1(Ω), and p ∈ W 1,s(Ω). Moreover, u, uh ∈
L∞(Ω) with ‖uh‖∞ ≤ C uniformly in h holds if for example a l, au ∈ L∞(Ω).
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For piecewise constant control approximations and the setting of Section 4.2 the following
theorem is proved in [23].

Theorem 4.9. Let u and uh be the solutions of (13) and (42) respectively with (uh)h ⊂
L∞(Ω) uniformly bounded. Then we have for 0 < h ≤ h̄

‖u− uh‖+ ‖y − yh‖H1 ≤
{
Ch| log h|, if d = 2

C
√
h, if d = 3.

Proof.We test (16) with uh, (45) with Qhu and add the resulting inequalities. Keeping in
mind that u−Qhu ⊥ Yh we obtain∫

Ω

(
p− ph + α(u − uh)

)
(uh − u)

≥
∫
Ω

(
ph + αuh

)
(u−Qhu) =

∫
Ω

(ph −Qhph)(u−Qhu).

As a consequence,

α‖u− uh‖2 ≤
∫
Ω

(uh − u)(p− ph)−
∫
Ω

(ph −Qhph)(u −Qhu) ≡ I + II. (53)

Let yh := Gh(u) ∈ Xh and denote by ph ∈ Xh the unique solution of

a(wh, p
h) =

∫
Ω

(y − y0)wh +

∫
Ω̄

whdμ for all wh ∈ Xh.

Applying Theorem 4.2 with μ̃ = (y − y0)dx+ μ we infer

‖p− ph‖ ≤ Ch2−
d
2

(
‖y − y0‖+ ‖μ‖M(Ω̄)

)
. (54)

Recalling that yh = Gh(uh), yh = Gh(u) and observing (44) as well as the definition of ph

we can rewrite the first term in (53)

I =

∫
Ω

(uh − u)(p− ph) +
∫
Ω

(uh − u)(ph − ph)

=

∫
Ω

(uh − u)(p− ph) + a(yh − yh, ph − ph) (55)

=

∫
Ω

(uh − u)(p− ph) +
∫
Ω

(y − yh)(yh − yh) +
∫
Ω̄

(yh − yh)dμ−
∫
Ω̄

(yh − yh)dμh

=

∫
Ω

(uh − u)(p− ph)− ‖y − yh‖2 +
∫
Ω

(y − yh)(y − yh)

+

∫
Ω̄

(yh − yh)dμ+
∫
Ω̄

(yh − yh)dμh.

Applying Young’s inequality we deduce

|I| ≤ α

4
‖u− uh‖2 −

1

2
‖y − yh‖2 + C

(
‖p− ph‖2 + ‖y − yh‖2

)

+

∫
Ω̄

(yh − yh)dμ+
∫
Ω̄

(yh − yh)dμh. (56)

Let us estimate the integrals involving the measures μ and μh. Since yh−yh ≤ (Ihb−b)+
(b − y) + (y − yh) in Ω̄ we deduce with the help of (17), Lemma 4.1 and an interpolation
estimate∫

Ω̄

(yh − yh)dμ ≤ ‖μ‖M(Ω̄)

(
‖Ihb− b‖∞ + ‖y − yh‖∞

)
≤ Ch2| log h|2.

On the other hand yh − yh ≤ (yh − y) + (b− Ihb) + (Ihb− yh), so that (45), Lemma 4.1
and Lemma 4.6 yield∫

Ω̄

(yh − yh)dμh ≤ ‖μh‖M(Ω̄)

(
‖b− Ihb‖∞ + ‖y − yh‖∞

)
≤ Ch2| log h|2.
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Inserting these estimates into (56) and recalling (27) as well as (32) we obtain

|I| ≤ α

4
‖u− uh‖2 −

1

2
‖y − yh‖2 + Ch4−d + Ch2| log h|2. (57)

Let us next examine the second term in (53). Since uh = Qhuh and Qh is stable in L2(Ω)
we have

|II| ≤ 2‖u− uh‖ ‖ph −Qhph‖ ≤
α

4
‖u− uh‖2 + Ch2‖ph‖2H1

≤ α

4
‖u− uh‖2 + Ch2γ(d, h)2

using an interpolation estimate for Qh and Lemma 4.6. Combining this estimate with (57)
and (53) we finally obtain

‖u− uh‖2 + ‖y − yh‖2 ≤ Ch4−d + Ch2| log h|2 + Ch2γ(d, h)2

which implies the estimate on ‖u− uh‖. In order to bound ‖y − yh‖H1 we note that

a(y − yh, vh) =
∫
Ω

(u − uh)vh

for all vh ∈ Xh, from which one derives the desired estimate using standard finite element
techniques and the bound on ‖u− uh‖. �

Remark 4.10. An inspection of the proof of Theorem 4.7 shows that we also could avoid
to use error estimates for the auxiliary function ph if we would use a technique for the
term I similar to that used in the proof of of the third part of Theorem 4.7. However, our
approach to estimate II is based on inverse estimates which finally lead to the dimension
dependent error estimate presented in Theorem 4.7.

The theorems above have in common that a control error estimate is only available for
α > 0. However, the appearance of α in these estimates indicates that in the bang-bang-
case α = 0 an error estimate for ‖y−yh‖L2 still is available, whereas no information for the
control error ‖u− uh‖U seems to remain. In [25] a refined analysis of bang-bang controls
without state constraints also provides estimates for the control error on inactive regions
in the L1-norm. We further observe that piecewise constant control approximations in 2
space dimensions deliver the same approximation quality as variational discrete controls.
Only in 3 space dimensions variational discretization provides a better error estimate. This
is caused by the fact that state constraints limit the regularity of the adjoint state, so that
optimal error estimates can be expected by techniques which avoid its use. Currently the
analysis for piecewise constant control approximations involves an inverse estimate for
‖ph‖H1 , which explains the lower approximation order in the case d = 3.

Let us mention that the bottleneck in the analysis here is not formed by control constraints,
but by the state constraints. In fact, if one uses Uad = U , then variational discretization (33)
delivers the same numerical solution as the approach (42) with piecewise linear, continuous
control approximations. Variational discretization really pays off if only control contraints
are present and the adjoint variable is smooth, compare [44],[46, Chap.. 3].

For the numerical solution of problem (33), (42) several approaches exist in the literature.
Common are so called regularization methods which relax the state constraints in (13) by
either substituting it by a mixed control-state constraint (Lavrentiev relaxation [62]), or by
adding suitable penalty terms to the cost functional instead requiring the state constraints
(barrier methods [47, 70], penalty methods [38, 40]. These approaches will be discussed in
the following section.



Discretization of optimal control problems 17

5. Regularization and Discretization

5.1. Motivation

In this section we will focus on optimal control problems with pointwise state constraints.
Let us consider

minF (y, u) =
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω) (58)

subject to the state equation
y = S(u), (59)

and pointwise state constraints

y ≥ yc a.e. onD, (60)

and u ∈ Uad which may be the whole space U = L2(Ω) or contain additional control
constraints. Moreover, D ⊂ Ω denotes the set where the state constraints are given. The
operator S plays the role of a solution operator of a linear or nonlinear partial differential
equation. Example 1.1 represents the nonlinear case.

Let us now focus on linear partial differential equations. For the numerical solution of
problem (33), (42) several approaches exist in the literature. Common are so called reg-
ularization methods which relax the state constraints in (13) by either substituting it by a
mixed control-state constraint (Lavrentiev relaxation [62]), or by adding suitable penalty
terms to the cost functional instead requiring the state constraints (barrier methods [47, 70],
penalty methods [38, 40].

The analysis of unregularized and regularized optimal control problems is quite similar.
Regularization leads often to more smooth solution. However, this effect disappears when
the regularization parameter tends to zero. Consequently solving methods and numerical
aspects are the main reason for regularization.

Numerical approaches for discretized problems

Discretized optimal control problems with pointwise state constraints can be attacked by
different techniques. Projected or conditional gradient methods are very robust, but slow.

Active set strategies become very popular in the recent years, see [5, 6, 52]. Active and
inactive sets are fixed in every iteration. In contrast to the most classical techniques in non-
linear optimization, whole sets can change from one iteration to the next. In each iteration
a problem has to be solved without inequality constraints. In many cases such methods can
be interpreted as semismooth Newton methods, see [39]. Thus, active set strategies are fast
convergent and mesh independent solving methods [42]. However, a direct application of
active set strategies to the discretized is often impossible: If one starts completely inac-
tive, then all violated inequalities leads to elements of active sets. It is easy to construct
situations where the number of free optimization variables is smaller then the number of
new active constraints. Moreover, subproblems in the active set algorithmmay be ill-posed
or ill-conditioned. Therefore, a direct application of active set methods to the discretized
problem cannot be recommended.

Interior point methods and barrier techniques are an alternative approach. The objective
functional is modified by a penalty term in such a way that the feasible iterates stay away
from the bounds in the inequalities. In contrast to the active set strategies the new problem
is smooth, but nonlinear. The penalty term modifies the problem. The obtained solution is
not the solution of the original problem. In general the solution of the original problem is
obtained by tending the penalty parameter to zero or infinity.

Regularization techniques
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We have introduced numerical techniques for solving optimal control problems with in-
equality constraints. The most techniques introduce some parameters and modify the (dis-
cretized) optimal control problem. One can have different views on the whole solution
process. Our first approach was to discretize the optimal control problem first and then to
find a solving method. Another view is to fix a discretization and a regularization or penalty
parameter and to look for over all error.

Exactly this is the issue of this section. The tuning of discretization and regularization
can significantly reduce the computational effort without loss on accuracy. Before we start
to find error estimates for this combined approach, we will shortly explain the different
techniques. For simplicity we chose a linear operator S.

1. Moreau-Yosida-regularization

The Moreau-Yosida-regularization (see [40]) uses a quadratic penalty term

minFγ(y, u) =
1

2
‖y − yd‖2Y +

ν

2
‖u‖2U +

γ

2
‖(yc − y)+‖2L2(D). (61)

Moreover the inequality constraint (60) is dropped. The quantity γ plays the role of a reg-
ularization parameter. The original problem is obtained in the limit γ → ∞. Combined
error estimates should help to find a reasonable size of γ for a given discretization. Let us
mention that the nonsmooth penalty term can be treated by a semismooth Newton approach
which can be reinterpreted as an active set approach.

2. Lavrentiev regularization

The Lavrentiev regularization (see [59, 62]) modifies only the inequality constraint

y + λu ≥ yc a.e. onD. (62)

This approach is only possible if the control u acts on the whole set D. This modification
overcomes the ill-posedness effect in active set strategies, since

yc = Su+ λu onD, (63)

requires no longer the inversion of a compact operator. In contrast to the original prob-
lem, the Lagrange multipliers associated with the mixed constraints are regular functions.
This technique works well for problems without additional control constraints. However,
there are difficulties for problems with additional control constraints if the control con-
straints and the mixed constraints are active simultaneously. Then the dual variables are
not uniquely determined. Consequently, the corresponding active set strategy is not well
defined. In this approach, the Lavrentiev parameter λ has to tend to zero to obtain the so-
lution of the original problem. A generalization of the Lavrentiev regularization is used in
the source representation method, see [72, 73].

3. Virtual control approach

The virtual control approach (see [50, 51]) modifies the complete problem. A new control
v is introduced on the domainD:

minF (y, u) =
1

2
‖y − yd‖2Y +

ν

2
‖u‖2U +

f(ε)

2
‖v‖2L2(D) (64)

subject to
y = Su+ g(ε)Tv, (65)

and
y + h(ε)v ≥ yc a.e. onD, (66)

with suitable chosen functions f , g, and h. The operator T represents a solution operator
of a partial differential equation for the source term g(ε)v. Let us mention that this tech-
nique can be interpreted as Moreau-Yosida approach for the choice g ≡ 0. The original
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problem is obtained for ε → 0. In contrast to the Lavrentiev regularization, the dual vari-
ables are unique. Moreover, this approach guarantees well defined subproblems in active
set strategies in contrast to the Lavrentiev regularization.

4. Barrier methods - Interior point methods

Interior point methods or barrier methods deliver regularized solution which are feasible
for the original problem. The objective is modified to

minFμ(y, u) =
1

2
‖y − yd‖2Y +

ν

2
‖u‖2U + μϕ(y − yc) (67)

where ϕ denotes a suitable smooth barrier function, see [70]. A typical choice would be a
logarithmic funcition, i.e.,

ϕ(y − yc) = −
∫
D

log(y − yc) dx.

The inequality constraints are dropped. The regularization parameter μ tends to zero or
infinity to obtain the original problem. Interior point methods have the advantage that no
nonsmooth terms occurs. However, the barrier function ϕ generates a new nonlinearity.

Before we start with the presentation of the main ideas, we give an overview on com-
bined regularization and discretization error estimates. Error estimates for the Lavrentiev
regularization can be found in [18, 45]. The Moreau-Yosida approach is analyzed in [38].
Discretization error estimates for virtual control concept are derived in [48]. Results for the
interior point approach are published in [47].

5.2. Error estimates for variational discretization

In this subsection we will demonstrate the technique to obtain error estimates for the vari-
ational discretization concept. We will focus on linear solution operators S here. The case
of a nonlinear solution operator is discussed later.

Regularization error

The regularization techniques presented abovemodify the original problem in the objective,
the state equation or in the inequality constraints. To deal with all these concepts in a
general frameworkwould lead to a very technical presentation. Thereforewe pick a specific
approach.

Let us explain the main issues for the Lavrentiev regularization Here, the inequality con-
straint was changed to

y + λu ≥ yc a.e. onD. (68)
Remember, that this regularization is only possible, if the setD is a subset of the set where
the control acts. The inequality (68) changes the set of admissible controls. Therefore, one
has to ensure that the admissible set of the regularized problem is nonempty. This is one
motivation to require a Slater type condition:

Assumption 5.1. There exists a control û ∈ Uad and a real number τ > 0 with ŷ = Sû ≥
yc + τ and ‖û‖L∞(D) ≤ c.

Assumption 2.2 ensure the existence of at least one feasible point if λ ≤ τ/c. Now one has
at least three possibilities to derive regularization error estimates:

1. Work with the complete optimality system including Lagrange multipliers and use
the uniform boundedness of the Lagrange multipliers. That technique was used in
section 4.
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2. Use the optimality conditions for a multiplier free formulation. Test the corresponding
variational inequalities with suitable functions. We will demonstrate this technique in
this section.

3. Work again multiplier free. The definition of admissible sets is the same as in ap-
proach 2. Now, the aim is to construct estimates of the form

|J(ȳ, ū)− J(ȳλ, ūλ)| ≤ ψ(λ.)

This can be used to obtain the desired estimates for the regularization error.

All three approaches are used in literature to derive estimates. We will focus on the second
approach. Let us define the sets:

U0 = {u ∈ Uad : Su ≥ yc},
Uλ = {u ∈ Uad : λu+ Su ≥ yc}.

Then the first-order optimal conditions for the solution ū of the original problem and the
solution ūλ for the regularized problem read

(S∗(Sū− yd) + νū, u− ū) ≥ 0 for all u ∈ U 0 (69)
(S∗(Sūλ − yd) + νūλ, u− ūλ) ≥ 0 for all u ∈ Uλ (70)

Now one has to look for suitable test functions u. Suitable test functions should be feasible
for one of these problems and close to the solutions of the other problem. We assume
u0 ∈ U0 and uλ ∈ Uλ and obtain

(S∗(Sū− yd) + νū, u0 − ū) ≥ 0 (71)
(S∗(Sūλ − yd) + νūλ, uλ − ūλ) ≥ 0 (72)

Adding these inequalities yields

(S∗(Sū− yd) + νū, u0 − ūλ) + (S∗(Sū− yd) + νū, ūλ − ū)+
(S∗(Sūλ − yd) + νūλ, uλ − ū) + (S∗(Sūλ − yd) + νūλ, ū− ūλ) ≥ 0. (73)

We obtain for the first and the third term

(S∗(Sū− yd) + νū, u0 − ūλ) ≤ c‖u0 − ūλ‖U (74)
(S∗(Sūλ − yd) + νūλ, uλ − ū) ≤ c‖uλ − ū‖U (75)

For the sum of the second and the fourth term we find

(S∗(Sū− yd) + νū, ūλ − ū)+
(S∗(Sūλ − yd) + νūλ, uλ − ū) = −ν‖ū− ūλ‖2U − ‖S(ū− ūλ)‖2Y (76)

Consequently, we end up with

ν‖ū− ūλ‖2U + ‖S(ū− ūλ)‖2Y ≤ c‖u0 − ūλ‖U + c‖uλ − ū‖U . (77)

Thus, the choice of the test functions u0, uλ is an important issue. We will investigate two
cases.

First case

In the first case we assume that

u ∈ Uad ⇒ ‖u‖L∞(D) ≤ K.

Let us start with the construction of the function u0. A reasonable choice is

u0 = (1 − δ)ūλ + δû.
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Of course we have u0 ∈ Uad. Therefore, we have only to check the state constraints

Su0 = (1− δ)Sūλ + δSû

≥ (1− δ)(yc − λū) + δ(yc + τ)

≥ yc + δτ − (1− δ)λK
Consequently, we have to choose δ ∼ λ to satisfy the state constraints. In the same way we
get for

uλ = (1 − σ)ū+ σû

the relation
Suλ + λuλ ≥ yc + σ(τ − λ‖û‖L∞(D))− (1− σ)λK

and we need for feasibility σ ∼ λ. This leads to the final regularization error estimate

ν‖ū− ūλ‖2U + ‖S(ū− ūλ)‖2Y ≤ cλ. (78)

Second case

In the second case we assume Uad = U . Here we have no bounds for the supremum norm
of the control u on the set D. Therefore, the way to derive the two inequalities for u 0, uλ
is not longer possible.

To get error estimates one has to require that the operator S is sufficiently smoothing, self-
adjoint and S + λI is continuously invertible. Let us assume that we have

‖Su‖Hs(Ω) ≤ c‖u‖U
with s > d/2.

Since the control ū may be unbounded in a point where the state constraint is active, we
have to find a new construction of uλ. We choose

uλ = (λI + S)−1Sū (79)

and a simple computation shows that this function satisfies the regularized state constraints.
Moreover, we get

uλ − ū = −λ(λI + S)−1ū.

Note that the operator (λI+S)−1 becomes unbounded for λ→ 0. The optimality condition
with Lagrange multipliers yields a representation

ū = S∗w = Sw

with some w ∈ (L∞(D))∗. This can be written as
ū = Sk(S1−kw)

and S1−kw is an L2-function. An easy computation yields 0 < k < 1− d
2s . Such a property

is called source representation in the theory of inverse problems. Applying standard spectral
methods from that theory, we obtain

‖uλ − ū‖U ≤ cλk (80)

with 0 < k < 1 − d
2s , see [17]. It remains to construct u0. Here we can choose again the

construction
u0 = (1 − δ)ūλ + δû,

but we have to change the estimation technique since the constant K appears in the esti-
mates in the first case. We have to avoid the term ‖ūλ‖L∞(D) to get an error estimate. Our
aim is now to replace the L∞(D)-norm by the L2(D)-norm.

Due to the form of the objective, the controls uλ are uniformly bounded in U . Next we use

‖Su‖Hs(Ω) ≤ c‖u‖U



22 Michael Hinze and Arnd Rösch

and obtain a uniform bound of Su0 in Hs(Ω). This space is continuously embedded in
C0,s−d/2(Ω̄) if s− d/2 < 1 and we get

‖Su0‖C0,γ(Ω̄) ≤ c

with γ = s− d/2. Moreover, one needs the estimate

‖f‖L∞(D) ≤ c‖f‖
γ

γ+d/2

L2(D)

for the specific function f := (yc − Su0)+, see [50], Lemma 3.2. A short computation
yields

γ

γ + d/2
= 1− d

2s
.

Combining these inequalities, we find

‖(yc − Su0)+‖L∞(D) ≤ c‖(yc − Su0)+‖1−
d
2s

L2(D).

This is essential ingredient for the error estimate. Now one can proceed like in the first case.

The final estimate is given by

‖u0 − ūλ‖U ≤ cλ1−
d
2s . (81)

Together with (77) and (80) we end up by

ν‖ū− ūλ‖2U + ‖S(ū− ūλ)‖2Y ≤ cλk (82)

with 0 < k < 1− d
2s .

Discretization error

Only the partial differential equations are discretized in the variational discretization con-
cept. This is reflected by the discretized state equation

yh = Shuh. (83)

Let us define the set of admissible controls for the discretized and regularized problem

Uλ
h = {uh ∈ Uad : λu

λ
h + Shu

λ
h ≥ yc}.

We obtain for the optimal solution ūλ
h the following necessary and sufficient optimality

condition
(S∗h(Shū

λ
h − yd) + νūλh, uh − ūλh) ≥ 0 for all uh ∈ Uλ

h (84)
We estimate the total regularization and discretization error by means of the triangle in-
equality

‖ū− ūλh‖U ≤ ‖ū− ūλ‖U + ‖ūλ − ūλh‖U . (85)
The first term was already estimated in (78) and (82). Let us mention that a direct estimate
of the total error will lead to the same result, see [45]. The estimation of the second term
can be done in a similar manner as for the regularization error. Let us define

uλ0 = (1− δ)ūλh + δû.

Then we obtain

λuλ0 + Suλ0 = (1 − δ)(λūλh + Suλh) + δ(λû + Sû)

≥ yc + (1 − δ)(Sūλh − Shū
λ
h) + δτ − δλ‖û‖L∞(D)

For λ < τ
‖û‖L∞(D)

we obtain

λuλ0 + Suλ0 ≥ yc +
δτ

2
− (1− δ)‖Sūλh − Shū

λ
h‖L∞(D)

which allows a choice δ ∼ ‖Sūλ
h − Shū

λ
h‖L∞(D). The same technique can be applied to

uλh = (1− σ)ūλ + σû.
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Again, we find for λ < τ
‖û‖L∞(D)

λuλh + Shu
λ
h ≥ yc +

στ

2
− (1− σ)‖Sūλ − Shūλ‖L∞(D) − σ‖Sû− Shû‖L∞(D).

Consequently, we can choose σ ∼ ‖Sūλ − Shūλ‖L∞(D) + ‖Sû− Shû‖L∞(D).

The derivation of the error estimate is similar to that one of the regularization error. We
start with

(S∗(Sūλ − yd) + νūλ, u
λ
0 − ūλ) ≥ 0

(S∗h(Shū
λ
h − yd) + νūλh, u

λ
h − ūλh) ≥ 0

and add these two inequalities. However, the different operators S and S h leads to modifi-
cations. Let us estimate the term

(S∗(Sūλ − yd) + νūλ, ū
λ
h − ūλ) + (S∗h(Shū

λ
h − yd) + νūλh, ū

λ − ūλh)
= −ν‖ūλ − ūλh‖2U + (S∗(Sūλ − yd)− S∗h(Shū

λ
h − yd), ūλh − ūλ)

≤ −ν‖ūλ − ūλh‖2U + ‖S∗yd − S∗hyd‖U‖ūλ − ūλh‖U − ‖Sh(ū
λ − ūλh)‖2Y

+‖S∗Sūλ − S∗hShū
λ‖U‖ūλ − ūλh‖U

The final estimate is obtained by means of Young’s inequality

ν

2
‖ūλ − ūλh‖2U + ‖Sh(ū

λ − ūλh)‖2Y ≤ c
(
‖S∗Sūλ − S∗hShū

λ‖2U + ‖S∗yd − S∗hyd‖2U
+‖Sūλh − Shū

λ
h‖L∞(D) + ‖Sūλ − Shūλ‖L∞(D)

+‖Sû− Shû‖L∞(D)

)
(86)

Let us specify the quantities for the problems (13),(33) for the elliptic equation

−Δy = u in Ω, y = 0 on Γ

where the domain Ω is a polygonal (polyhedral) domain or has smooth boundary. Because
of the Dirchlet boundary condition we requireD ⊂⊂ Ω. Moreover, we assume a standard
quasiuniform finite element discretization. The first two terms of (86) are of higher order

‖S∗Sūλ − S∗hShū
λ‖U ≤ ch2‖uλ‖L2(Ω),

‖S∗yd − S∗hyd‖U ≤ ch2‖yd‖L2(Ω).

The three remaining terms of (86) are responsible for the approximation rate

‖Sūλh − Shū
λ
h‖L∞(D) ≤ c| log h|2h2‖ūλh‖L∞(Ω)

‖Sūλ − Shūλ‖L∞(D) ≤ c| log h|2h2‖ūλ‖L∞(Ω)

‖Sû− Shû‖L∞(D) ≤ c| log h|2h2‖û‖L∞(Ω)

Combining all results we end up with

‖ū− ūλh‖U ≤ c(
√
λ+ | log h|h)

for the case of additional control constraints. Consequently a choice λ ∼ | log h| 2h2 leads
to a balanced error contribution in this case. The problem without additional control con-
straints is more difficult. Then, norm like ‖ūλ‖L∞(Ω) are not uniformly bounded with re-
spect to λ. In that case one has to deal with weaker error estimates where the corresponding
norms of ūλ are uniformly bounded with respect to λ.
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5.3. Full discretization

Now, we will discuss a full discretization. In an abstract setting, we replace the control
space U by an arbitrary finite dimensional control subspace Uh. The admissible discrete
control set is defined by U h

ad = Uad ∩ Uh.

Let us directly estimate the norm ‖ū− ūλ
h‖U . We will only emphasize the key points in the

estimation process. Again, one test function can be constructed by

u0 = (1 − δ)ūλh + δû. (87)

This term can be analyzed similar to the variational discretization concept. The construction
of the other test function depends again on the presence of additional control constraints. If
additional control constraints are given, then a choice

uλh = (1− σ)Phū+ σPhû (88)

is reasonable. The test function uλ
h has to belong to Uh and has to satisfy the control con-

straints. This is reflected by the choice of a suitable projection or interpolation operatorP h.
For piecewise constant controls one can choose Ph as the L2-projection operator to Uh. A
quasi-interpolation operator can be used as Ph for piecewise linear controls. Similar to the
varitional discretization, a choice of λ in the size of L∞(D)-error λ ∼ ‖Sū− Shū‖L∞(D)

leads again to a balanced error contribution. For problems without control constraints we
need a construction similar to (79).

Next, we will point out a specific feature of the derivation process. Let us recall the in-
equality (75)

(S∗(Sūλ − yd) + νūλ, uλ − ū) ≤ c‖uλ − ū‖U
for the variational discretization. Proceeding the same way for the full discretization we
would get

(S∗h(Shū
λ
h − yd) + νūλh, u

λ
h − ū) ≤ c‖uλh − ū‖U .

Using (88), we find

‖uλh − ū‖U ≤ σ‖Phû− ū‖U + (1− σ)‖Phū− ū‖U .

The first term becomes small because of the factor σ. The second term has bad approxima-
tion properties because of the low regularity properties of the control.

A modification of the estimation process yields

(S∗h(Shū
λ
h − yd) + νūλh, Phū− ū) = (S∗h(Shū

λ
h − yd), Phū− ū) + ν(ūλh, Phū− ū).

We find for the first term

(S∗h(Shū
λ
h−yd), Phū−ū) ≤ c(‖SPhū−Sū‖Y +‖S∗Sūλh−S∗hShū

λ
h‖U+‖S∗yd−S∗hyd‖U )

and all terms have good approximation properties. Let us assume thatP h is theL2-projection
to Uh. By orthogonality we get

ν(ūλh, Phū− ū) = 0.

and the all problems are solved. However, this choice is possible only for spaces of piece-
wise constant functions if control constraints are given. For piecewise linear functions
a quasiinterpolation operator yields the desired results, see [29]. In the final result the
L∞(D)-error dominates again the approximation behavior. For the complete derivation
of the results we refer to [18].
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5.4. A short note to nonlinear state equations

We already addressed the main difficulties in Section 3. Let us mention that the approach
of the last subsections cannot be used, since the admissible sets U 0, Uλ, and Uλ

h are not
convex.

There are two techniques available to tackle this problem. A first approach works mainly
with objective values. Again feasible points were constructed. Then, the difference of ob-
jective values is estimated. The desired error estimate can be derived by means of a local
quadratic growth condition. This technique was used in [49].

Local quadratic growth is usually shown by a second-order sufficient optimality condition.
If the dual variables of the unregularized problems are unique, then the second-order suf-
ficient optimality conditions are also satisfied for regularized problems. This is true for
the Moreau-Yosida approach and for the virtual control concept. For both techniques one
has uniqueness of dual variables for the regularized problems by construction. This is not
the case for the Lavrentiev regularization. Dual variables are not unique for the Lavren-
tiev regularization if control constraints and mixed constraints are active simultaneously.
Thus, separation of strongly active sets is needed to get the corresponding local unique-
ness result, see [63]. These papers contain regularization error results of the form (78) for
nonlinear problems.

Another possible technique would be to work with the complete optimality system with
Lagrange multipliers. However, this approach was used only for state constrained linear-
quadratic problems until now.

Our motivation for the regularization of state constrained problems was that the resulting
problems can be solved efficiently. This statement is also correct for nonlinear problems.
Main issues for a good performance are local convexity properties of the regularized prob-
lems and local uniqueness of stationary points (including dual variables). This can be guar-
anteed by second-order sufficient optimality conditions.

6. A brief discussion of further literature

6.1. Literature related to control constraints

There are many contributions to finite element analysis for elliptic control problems with
constraints on the controls. For an introduction to the basic techniques we refer to the book
[71] of Tröltzsch. Falk [30], and Geveci [32] present finite element analysis for piecewise
constant approximations of the controls. For semilinear state equations Arada, Casas, and
Tröltzsch in [4] present a finite element analysis for piecewise constant discrete controls.
Among other things they prove that the sequence (uh)h of discrete controls contains a sub-
sequence converging to a solution u of the continuous optimal control problem. Assuming
certain second order sufficient conditions for u they are also able to prove optimal error
estimates of the form

‖u− uh‖ = O(h) and ‖u− uh‖∞ = O(hλ),
with λ = 1 for triangulations of non-negative type, and λ = 1/2 in the general case. In [15]
these results are extended in that Casas and Tröltzsch prove that every nonsingular local
solution u (i.e. a solution satisfying a second order sufficient condition) locally can be ap-
proximated by a sequence (uh)h of discrete controls, also satisfying these error estimates.
There are only few results considering uniform estimates. For piecewise linear controls in



26 Michael Hinze and Arnd Rösch

the presence of control constraints Meyer and Rösch in [61] for two-dimensional bounded
domains with C1,1-boundary prove the estimate

‖u− uh‖∞ = O(h),
which seems to be optimal with regard to numerical results reported in [46, Chap. 3], and
which is one order less than the approximation order obtained with variational discretiza-
tion. The same authors in [60] propose post processing for elliptic optimal control problems
which in a preliminary step computes a piecewise constant optimal control ū and with its
help a projected control uP through uP = PUad(− 1

αB
∗ph(ū)) which then satisfies

‖u− uP ‖ = O(h2).

Casas, Mateos and Tröltzsch in [13] present numerical analysis for Neumann boundary
control of semilinear elliptic equations and prove the estimate

‖u− uh‖L2(Γ) = O(h)
for piecewise constant control approximations. In [12] Casas and Mateos extend these in-
vestigations to piecewise linear, continuous control approximations, and also to variational
discrete controls. Requiring a second order sufficient conditions at the continuous solution
u they are able to prove the estimates

‖u− uh‖L2(Γ) = o(h), and ‖u− ūh‖L∞(Γ) = o(h
1
2 ),

for a general class of control problems, where uh denotes the piecewise linear, continuous
approximation to u. For variational discrete controls uv

h they show the better estimate

‖u− uvh‖L2(Γ) = O(h
3
2−ε) (ε > 0).

Furthermore, they improve their results for objectives which are quadratic w.r.t. the control
and obtain

‖u− uh‖L2(Γ) = O(h
3
2 ), and ‖u− uh‖L∞(Γ) = O(h).

The dependence of the approximation with respect to the largest angle ω of a polygonal
domain is studied in Mateos and Rösch [54]. This allows to obtain error estimates of the
form

‖u− uh‖L2(Γ) = O(hκ)
with κ > 3/2 for convex domains (ω < π) and κ > 1 for concave domains (ω > π).

Let us finally recall the contribution [14] of Casas and Raymond to numerical analysis of
Dirichlet boundary control, who for two-dimensional convex polygonal domains prove the
optimal estimate

‖u− uh‖L2(Γ) ≤ Ch1−1/q,

where uh denotes the optimal discrete boundary control which they sought in the space of
piecewise linear, continuous finite elements on Γ. Here q ≥ 2 depends on the smallest an-
gle of the boundary polygon. May, Rannacher and Vexler study Dirichlet boundary control
without control constraints in [55]. They also consider two dimensional convex polygo-
nal domains and among other things provide optimal error estimates in weaker norms. In
particular they address

‖u− uh‖H−1(Γ) + ‖y − yh‖H−1/2(Ω) ∼ h2−2/q.

Vexler in [74] for Uad = {u ∈ R
n; a ≤ u ≤ b} and Bu :=

n∑
i=1

uifi with fi ∈

H5/2(Γ) provides finite element analysis for Dirichlet boundary control in bounded, two-
dimensional polygonal domains. Among other things he in [74, Theorem 3.4] shows that

|u− uh| ≤ Ch2.
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Error analysis for general two- and three-dimensional curved domains is presented by
Deckelnick, Günther and Hinze in [27]. They prove the error bound

‖u− ũh‖0,Γ + ‖y − ỹh‖0,Ω ≤ Ch
√
| log h|,

and for piecewise O(h2) regular triangulations of two-dimensional domains the supercon-
vergence result

‖u− ũh‖0,Γ + ‖y − ỹh‖0,Ω ≤ Ch
3
2 .

Let us shortly comment on a priori error estimates for non-uniform grids. Mesh grading for
reentrant corners was investigated by Apel, Rösch, and Winkler [3] and Apel Rösch, and
Sirch [2] for optimal approximation error in theL 2-norm and in theL∞-norm, respectively.
A detailed overview on results with non-uniform grids can be found in the paper of Apel
and Sirch inside this book.

6.2. Literature for (control and) state constraints

To the authors knowledge only few attempts have been made to develop a finite element
analysis for elliptic control problems in the presence of control and state constraints. In [10]
Casas proves convergence of finite element approximations to optimal control problems for
semi-linear elliptic equations with finitely many state constraints. Casas andMateos extend
these results in [11] to a less regular setting for the states and prove convergence of finite
element approximations to semi-linear distributed and boundary control problems. In [58]
Meyer considers a fully discrete strategy to approximate an elliptic control problem with
pointwise state and control constraints. He obtains the approximation order

‖ū− ūh‖+ ‖ȳ − ȳh‖H1 = O(h2−d/2−ε) (ε > 0),

where d denotes the spatial dimension. His results confirm those obtained by the Deckel-
nick and Hinze in [21] for the purely state constrained case, and are in accordance with
Theorem 4.7. Meyer also considers variational discretization and in the presence of L∞
bounds on the controls shows

‖ū− ūh‖+ ‖ȳ − ȳh‖H1 = O(h1−ε| log h|) (ε > 0),

which is a result of a similar quality as that given in the third part of Theorem 4.7.

Let us comment also on further approaches that tackle optimization problems for pdes with
control and state constraints. A Lavrentiev-type regularization of problem (13) is investi-
gated by Meyer, Rösch and Tröltzsch in [62]. In this approach the state constraint y ≤ b in
(13) is replaced by the mixed constraint εu + y ≤ b, with ε > 0 denoting a regularization
parameter. It turns out that the associated Lagrangemultiplier μ ε belongs toL2(Ω). Numer-
ical analysis for this approach with emphasis on the coupling of gridsize and regularization
parameter ε is presented by Hinze and Meyer in [45]. The resulting optimization problems
are solved either by interior-point methods or primal-dual active set strategies, compare the
work [59] by Meyer, Prüfert and Tröltzsch.

Hintermüller and Kunisch in [40, 41] consider the Moreau-Yosida relaxation approach to
problem classes containing (13). In this approach the state constraint is relaxed in that it is
dropped and a L2 regularization term of the form 1

2γ

∫
Ω |max(0, γ G(Bu))|2 is added to

the cost functional instead, where γ denotes the relaxation parameter. Numerical analysis
for this approach with emphasis on the coupling of gridsize and relaxation parameter γ is
presented by Hintermüller and Hinze in [38].

Schiela in [70] chooses a different way to relax state constraints in considering barrier
functionals of the form −μ

∫
Ω log (−G(Bu))dx which penalize the state constraints. In

[47] he together with Hinze presents numerical analysis for this approach with emphasis
on the coupling of gridsize and barrier parameter μ.
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6.3. Gradient constraints

In many practical applications pointwise constraints on the gradient of the state are re-
quired, for example if one aims on avoiding large van Mises stresses, see [26] for a dis-
cussion. For elliptic optimal control problems with these kind of constraints Deckelnick,
Günter and Hinze in [26] propose a mixed finite element approxiation for the state com-
bined with variational discretization and prove the error estimate

‖u− uh‖+ ‖y − yh‖ ≤ Ch
1
2 | log h| 12 ,

which is valid for two- and three-dimensional spatial domains. The classical finite element
approach using piecewise linear, continuous approximations for the states is investigated
by Günter and Hinze in [35]. They are able to show the estimates

‖y − yh‖ ≤ Ch
1
2 (1− d

r ), and ‖u− uh‖Lr ≤ Ch
1
r (1− d

r ),

which are valid for variational discretization as well as for piecewise constant control ap-
proximations. Here, d = 2, 3 denotes the space dimension, and r > d the integration
order of the Lr-control penalization term in the cost functional. Ortner and Wollner in [65]
for the same discretization approach obtain similar results adapting the proof technique of
[21] to investigate the numerical approximation of elliptic optimal control problems with
pointwise bounds on the gradient of the state.

6.4. Literature on control of time-dependent problems

In the literature only few contributions to numerical analysis for control problems with time
dependent pdes can be found. For unconstrained linear quadratic control problems with the
time dependent Stokes equation in two- and three-dimensional domains Deckelnick and
Hinze in [19] prove the error bound

‖u− uh,σ‖L2((0,T )×Ω) = O(σ + h2).

Here and below σ denotes the discretization parameter for the controls. They use a fully
implicit variant of Eulers method for the time discretization which is equivalent to the
dG(0) approximation. In space the use Taylor-Hood finite elements. Using [19, (3.1),(3.6)]
this estimate directly extends also to the control constrained case.

Boundary control for the heat equation in one spatial dimension is considered byMalanowski
in [53] with piecewise constant, and by Rösch in [66] with piecewise linear, continuous con-
trol approximations. Requiring strict complementarity for the continuous solution Rösch is
able to prove the estimate

‖u− uσ‖ = O(σ
3
2 ).

Malanowski proves the estimate
‖u− uh,σ‖L2((0,T )×Ω) = O(σ + h),

where h denotes the discretization parameter for the space discretizations.

In a recent work [56, 57] Meidner and Vexler present extensive research on control prob-
lems governed by parabolic equations and their discrete approximation based on dG(0) in
time and finite element in space, where they consider the heat equation as mathematical
model on a two- or three-dimensional convex polygonal domain. For variational discretiza-
tion of [44] they prove the estimate

‖u− uh,σ‖L2((0,T )×Ω) = O(σ + h2),

which under the assumption of strict complementarity of the continuous solution also holds
for post-processing [60].

For control problems with nonlinear time dependent equations one only finds few contribu-
tions in the literature. In [36, 37] Gunzburger and Manservisi present a numerical approach
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to control of the instationary Navier-Stokes equations (3) using the first discretize then op-
timize approach. The first optimize then discretize approach applied to the same problem
class is discussed by Hinze in [43]. Deckelnick and Hinze provide numerical analysis for
a general class of control problems with the instationary Navier Stokes system (3) in [20].
Among other things they prove existence and local uniqueness of variational discrete con-
trols in neighborhoods of nonsingular continuous solutions, and for semi-discretization in
space with Taylor-Hood finite elements provide the error estimate∫ T

0

‖u− uh‖2U dt ≤ Ch4.

Here, u, uh denote the continuous and variational discrete optimal control, respectively.
This result also carries over to the case of control constraints under the assumptions made
in Section 3.

For problems with state constraints only a few contributions are known. Deckelnick and
Hinze in [24] investigate variational discretization for parabolic control problems in the
presence of state constraints. Among other things they prove an error bound

α‖u− uh‖2 + ‖y − yh‖2 ≤ C

{
h
√
| log h|, (d = 2)√

h, (d = 3).

under the natural regularity assumption y = G(Bu) ∈ W = {v ∈ C 0([0, T ];H2), vt ∈
L2(H1)} with time stepping δt ∼ h2. Exploiting results of Nochetto and Verdi [64] in the
case d = 2 and Bu ∈ L∞(ΩT ) it seems possible to us that an error bound of the form

α‖u− uh‖2 + ‖y − yh‖2 <∼ C
(
h2 + τ

)
can be proved.

Very recently Giles and S. Ulbrich [34] considered the numerical approximation of optimal
control problems for scalar conservation laws and provided a detailed numerical analysis
for the discrete treatment of control problem.
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boundary control problems. SIAM J. Control and Optimization. submitted.
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[54] Mateos, M. and Rösch, A. On saturation effects in the Neumann boundary control of elliptic
optimal control problems. Computational Optimization and Applications, online published, DOI
10.1007/s10589-009-9299-5.

[55] May, S., Rannacher, R., Vexler, B.: A priori error analysis for the finite element approximation
of elliptic Dirichlet boundary control problems. Proceedings of ENUMATH 2007, Graz (2008)

[56] Meidner, D., Vexler, B.: A Priori Error Estimates for Space-Time Finite Element Discretization
of Parabolic Optimal Control Problems. Part I: Problems without Control Constraints. SIAM
Journal on Control and Optimization 47, 1150–1177 (2008)



32 Michael Hinze and Arnd Rösch
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