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Abstract:
In [1], Danielmeyer and Martinetz published a paper on the parallelism of the mean life ex-
pectancy of a society and its GDP per capita. And from the biological stability of the mean life
expectancy they found a similar stability of the industrial evolution. The authors assumed the
mean life expectancy L(t) considered as a function of the time t (measured in years) to fulfill
a logistic differential equation but they did not give reasons for the choice of the parameters
which occur in this theory and did not ask for the stability of these parameters with respect
to inaccuracies of L(t) or vice versa. As a matter of fact, more or less exact values of the
mean life expectancy L(t) at the instant t of a population that lives in a certain area under
consideration can not earlier be reported than after the death of all the individuals born in
the year t. From this point of view we are going to complete the theory insignificantly and
to confirm the choice of the parameters or to correct it and to look −vice versa− for the
stability of L(t) with respect to these parameters.

1 The Theory

Let L0 describe the reproduction minimum of the population to be considered and assume
that

f(t) := L(t)− L0 (1)

can be approximated by the solution of the logistic differential equation

.

f=
1

A
f(1− 1

ΔL
f) (2)

where

ΔL = lim
t→∞ f(t) (3)

so that
−
L:= L0 +ΔL (4)

specifies the expected genetic limit.
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A is a growth parameter.

We find (cf. [1])

f(t) =
ΔL

1 + e(TL−t)/A
(5)

where TL, the so-called halftime parameter, gives the particular instant when f has grown
up to ΔL/2:

f(TL) =
ΔL

2
. (6)

(2) then shows

.

f (TL) =
ΔL

4A
(7)

which is the maximum speed of the development of f or L because of
..

f (TL) = 0 .

From (5), lim
t→−∞ f(t) = 0 , hence

lim
t→−∞L(t) = L0 . (8)

Besides the value of ΔL, the graph of f(t), hence of L(t), is characterized by the parameters
TL and A.

In order to estimate these two parameters more or less exactly, we need at least two pairs
(t0, L̂0) , (t1, L̂1) (t1 > t0) where

L̂i := L(ti) = L0 + f(ti) (i = 0, 1) . (9)

Both pairs should be really confirmed by observations, i.e. they should stem from observations
made a lifetime (or even more) before the actual instant t, and t1 − t0 should not be too
small.

From (9) we find with (4),(5)

TL = ti + A ln

−
L −L̂i

L̂i − L0
(i = 0, 1) . (10)
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Because TL does not depend on t, (10) yields

A =
t1 − t0

ln (
−
L−L̂0) (L̂1−L0)

(
−
L−L̂1) (L̂0−L0)

. (11)

2 Example

We look for the societies considered in [1], we accept the intention that the mean life expec-
tancy can be described by a logistic graph L(t) = L0 + f(t) with f from (5). We also keep

from [1] in a first step the value of L0 = 30 years and of ΔL = 88 years (thus,
−
L= 118 years).

We are particularly interested in the behaviour of L(t) in recent years and assume that the
early pairs 1

(t0, L̂0) = (1900, 48.5) ; (t1, L̂1) = (1930, 57) (12)

are sufficiently correct 2. (12) then yields A = 59 (so that the choice of A = 61 in [1] was
not too bad) and (10) then leads to TL = 1978 (so that also the choice of TL = 1981 can
more or less be confirmed), provided that ΔL is chosen sufficiently well. Let us therefore ask
for the stability of ΔL with respect to changes of f . Herewith we keep the theory as well as
L0 = 30 years. (2) then leads to

ΔL =
f(t)

1− A
.

f(t)
f(t)

. (13)

The mean value theorem gives

f(t1) = f(t0) + (t1 − t0)
.

f (t̃) (t0 < t̃ < t1) , (14)

i.e.
.

f (t̃) =
f(t1)− f(t0)

t1 − t0
.

Thus, (13) leads to

ΔL =
f(t̃)

1− A f(t1)−f(t0)
t1−t0

· 1
f(t̃)

. (15)

1more than two generations back
2We picked out these values from the graphs in [1], but the computations can obviously very easyly be repeated

if better values are available.
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We choose again for t0, t1 the more than two generations old values used in (12), and we
approximate f(t̃) by (f(t0) + f(t1))/2. (15) then leads to

ΔL ≈ f(t0) + f(t1)

2− 2Af(t1)−f(t0)
t1−t0

2
f(t0)+f(t1)

,

i.e., taking the corrected value of A into account, to

ΔL = 85.8 years

or
−
L= 116 years .

These corrections are not really relevant within the limits of the possible accuracy of the
theory presented in [1] so that the parameters of the paper have not necessarily to be cri-
ticized. In other words: The parameters are very stable with respect to inaccuracies of the
observed values of L(t). And this says that one can trust the forecasts of the mean life ex-
pectancy presented in [1] also for people born in the years of our lifetime. And this stability
also holds if the theory will be applied to other clusters of living beings as far as the model
of the logistic differential equation does also hold.

3 How do the parameters influence the solution ?

We investigate now −vice versa− the stability of f(t) with respect to small disturbancess
δ, τ, α of the parameters, i.e. we ask for the solution of (2) if the parameters ΔL, TL, A are
replaced by

ΔL+ δ, TL + τ, A+ α. (16)

Obviously, we find from (5) instead of the solution f the disturbed solution

f̃(t) =
ΔL+ δ

1 + e(TL+τ−t)/(A+α)
. (17)

What one can easily see −also without any formalism− is the fact, that small values of δ
and of τ seem to lead to only small disturbances of f . What about α ?

For fixed values of ΔL, TL, A and of t, f̃(t) is a function of δ, τ, α:

f̃(t) = g(δ, τ, α) (18)
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with
g(0, 0, 0) = f(t) . (19)

Taylor expansion leads to

g(δ, τ, α) = g(0, 0, 0)+gδ(0, 0, 0) δ+gτ (0, 0, 0) τ+gα(0, 0, 0)α+O((max(|δ|, |τ |, |α|))2) . (20)

Because we restricted ourselves to only relatively small disturbances, we ignore the quadratic
terms, what can particularly be justified if (2), (5) will be formulated in dimensionless setting,
and because of

gδ(0, 0, 0) = 1
1+e(TL−t)/A

gτ (0, 0, 0) = −ΔL
A

e(TL−t)/A

[1+e(TL−t)/A]
2

gα(0, 0, 0) = ΔL(TL−t)
A2

e(TL−t)/A

[1+e(TL−t)/A]
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21)

we find

g(δ , τ , α) ≈ g(0, 0, 0) + 1
1+e(TL−t)/A

{
δ + ΔL

A
τ − ΔL

A2 (TL − t)α
}

≤ g(0, 0, 0) + |δ|+ ΔL
A
|τ |+ ΔL

A2 |(TL − t)α| .
(22)

Hence, the influence of α occurs only for great values of |t|.

For our values ΔL = 86 , TL = 1978 , A = 59, the disturbance for the year 2010 results in

|f̃(t)− f(t)| <≈ 4.5max(|δ|, |τ |, |α|) . (23)
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