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THE NONEXISTENCE OF PSEUDOQUATERNIONS IN C
2×2

DRAHOSLAVA JANOVSKÁ∗ AND GERHARD OPFER†

Abstract. The field of quaternions, denoted by H can be represented as an isomorphic four dimensional sub-
space of R

4×4, the space of real matrices with four rows and columns. In addition to the quaternions there is another
four dimensional subspace in R

4×4 which is also a field and which has in - connection with the quaternions - many
pleasant properties. This field is called field of pseudoquaternions. It exists in R

4×4 but not in H. It allows to write
the quaternionic linear term axb in matrix form as Mx where x is the same as the quaternion x only written as a
column vector in R

4. And M is the product of the matrix associated with the quaternion a with the matrix associated
with the pseudoquaternion b.

Now, the field of quaternions can also be represented as an isomorphic four dimensional subspace of C
2×2 over

R, the space of complex matrices with two rows and columns. We show that in this space pseudoquaternions with all
the properties known from R

4×4 do not exist. However, there is a subset of C
2×2 for which some of the properties

are still valid. By means of the Kronecker product we show that there is a matrix in C
4×4 which has the properties

of the pseudoquaternionic matrix.
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1. Introduction. Let us denote by R, C the fields of real and complex numbers, respec-
tively, and by H the field of quaternions, which is R

4 equipped with a special multiplication
rule which makes R

4 a skew field. In order to explain that let 1, i, j,k be the four standard
basis elements in H. They obey the following multiplication rules:

i2 = j2 = k2 = −1; ij = k, jk = i, ki = j.(1.1)

Instead of a := a1 + a2i + a3j + a4k we write equivalently also a = (a1, a2, a3, a4). Let
a := (a1, a2, a3, a4), b := (b1, b2, b3, b4). Then, the multiplication rules (1.1) imply

ab := (a1b1 − a2b2 − a3b3 − a4b4, a1b2 + a2b1 + a3b4 − a4b3,(1.2)
a1b3 − a2b4 + a3b1 + a4b2, a1b4 + a2b3 − a3b2 + a4b1).

The first component of a quaternion a will be called real part of a, denoted by �a. A real
number, a1, will be identified with the quaternion a := (a1, 0, 0, 0). A complex number
a1 +a2i will be identified with a := (a1, a2, 0, 0). And we see from the above multiplication
rule, that the set of quaternions of the form a := (a1, 0, 0, 0) is isomorphic to the field of
real numbers R, and the set of quaternions of the form a := (a1, a2, 0, 0) is isomorphic to
the field of complex numbers C. Let a := (a1, a2, a3, a4). Then, a := (a1,−a2,−a3,−a4)
will be called conjugate of a. The absolute value of a is denoted by |a| and defined by
|a| :=

√
a2
1 + a2

2 + a2
3 + a2

4. And for all a, b ∈ H there are the rules

|a|2 = aa = aa, |ab| = |ba| = |a||b|, ab = b a, �(ab) = �(ba), a−1 =
a

|a|2 ,(1.3)

where the last rule applies only for a �= 0. The field H is isomorphic to a certain set of
complex (2 × 2) matrices and also isomorphic to a certain set of real (4 × 4) matrices. This
will be explained and used in the next sections. Pseudoquaternions appear only in matrix
spaces and they are useful when treating equations which contain terms of the type axb,
where all three quantities a, b, x represent quaternions. So far, pseudoquaternions - without
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using that name - were known only in R
4×4 by the work of Aramanovitch, [1]. We shall show

here that one cannot define pseudoquaternions in C
2×2 with all the properties known from

the matrix space R
4×4. This will be the topic of the next two sections.

2. Quaternions and pseudoquaternions in the matrix space R
4×4. Let

a := (a1, a2, a3, a4) be a quaternion. We define two mappings ıj : H → R
4×4, j = 1, 2 by

ı1(a) :=

⎛⎜⎝
a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

⎞⎟⎠ ∈ R
4×4,(2.1)

ı2(a) :=

⎛⎜⎝
a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1

⎞⎟⎠ ∈ R
4×4.(2.2)

We use the notation

HR := ı1(H) ⊂ R
4×4, HP := ı2(H) ⊂ R

4×4.(2.3)

The first mapping, ı1, maps H isomorphically onto HR which means that for all
a, b ∈ H we have

ı1(a + b) = ı1(a) + ı1(b); ı1(αa) = αı1(a), α ∈ R; ı1(ab) = ı1(a)ı1(b).(2.4)

The first two properties are obvious. For the third see Gürlebeck and Sprössig, Chapter 1, [3].
Let a := (a1, a2, a3, a4) ∈ H. We can write ı1 in the form

ı1(a) = a1I1 + a2I2 + a3I3 + a4I4,

where I1 is the identity matrix in R
4×4 and

I2 :=

⎛⎜⎝ 0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎠ , I3 :=

⎛⎜⎝ 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎠ , I4 :=

⎛⎜⎝ 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎠ .(2.5)

These matrices obey the same multiplication rules as the standard units 1, i, j,k ∈ H,
namely

I2
2 = I2

3 = I2
4 = −I1; I2I3 = I4, I3I4 = I2, I4I2 = I3.(2.6)

The second mapping ı2 looks very much alike ı1. It has the following basis representa-
tion:

ı2(a) = a1I1 + a2J2 + a3J3 + a4J4,

where

J2 :=

⎛⎜⎝ 0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎠ , J3 :=

⎛⎜⎝ 0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎠ , J4 :=

⎛⎜⎝ 0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎠ .

These basis elements obey the following set of equations:

J2
2 = J2

3 = J2
4 = −I1; J2J3 = −J4, J3J4 = −J2, J4J2 = −J3,(2.7)
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which differ from those given in (2.6). Though the matrices, ı1(a), ı2(a) look almost alike,
they coincide, however, if and only if a ∈ R or in other words

HR ∩HP = {aI : a ∈ R, I is the identiy matrix in R
4×4}.

This set is the center of R
4×4 where, by definition, the center of R

4×4 is the subset of all ma-
trices in R

4×4 which commute with all matrices in R
4×4. The mapping ı2 has the following

interesting properties for all a, b ∈ H:

ı2(ab) = ı2(b)ı2(a),(2.8)
ı1(a)ı2(b) = ı2(b)ı1(a).(2.9)

See Aramanovitch, [1] and Janovská and Opfer, [6]. The first property means that HP is also
a field, only the multiplication rule is reversed. By putting b := a−1 for a �= 0 in (2.8) we
obtain

(ı2(a))−1 = ı2(a−1) =
1
|a|2 ı2(a) =

1
|a|2

(
ı2(a)

)T
,

where T indicates transposition. Let us note that property (2.8) alone is not characteristic
for ı2. Let ı̃1 := ıT1 , then ı̃1(ab) = ı̃1(b)ı̃1(a). Thus, the different mappings ı2 and ı̃1 share
property (2.8). However, equation (2.9) is not valid if we would replace ı2 by ıT1 .

DEFINITION 2.1. The field HP := ı2(H) will be called the field of pseudoquaternions
in R

4×4.
The mapping ı2 has more interesting properties, which are called good relations by

Gürlebeck and Sprössig, p. 6, [3]. For a = (a1, a2, a3, a4) ∈ H we introduce the column
operator

col(a) :=

⎛⎜⎝
a1

a2

a3

a4

⎞⎟⎠ ,(2.10)

which is useful in connection with matrix operations. Note that col(a) is the first column of
ı1(a) and also the first column of ı2(a).

LEMMA 2.2. For all a, b, c ∈ H we have

col(ab) = ı1(a)col(b),(2.11)
= ı2(b)col(a),(2.12)

col(abc) = ı2(c)ı2(b)col(a),(2.13)
= ı1(a)ı2(c)col(b),(2.14)
= ı1(a)ı1(b)col(c).(2.15)

Proof: Aramanovitch, Appendix A No. 8, p. 1252, [1]. �
THEOREM 2.3. The two mappings ı1, ı2 are uniquely defined by the two properties

col(ab) = ı1(a)col(b), col(ab) = ı2(b)col(a), respectively, for all a, b ∈ H.
Proof: Let a := (a1, a2, a3, a4), b := (b1, b2, b3, b4) ∈ H and M := (mjk) ∈ R

4×4

be an arbitrary matrix, j, k = 1, 2, 3, 4. We first show the uniqueness of ı1. Let Mcol(b) =
col(ab). We compare the four columns of Mcol(b) with the four columns of col(ab) which
we can find in (1.2). The jth column of Mcol(b) is

b1mj1 + b2mj2 + b3mj3 + b4mj4, j = 1, 2, 3, 4.



4 Drahoslava Janovská & Gerhard Opfer

The comparison with col(ab) yields four equations

b1m11 + b2m12 + b3m13 + b4m14 = a1b1 − a2b2 − a3b3 − a4b4,

b1m21 + b2m22 + b3m23 + b4m24 = a2b1 + a1b2 − a4b3 + a3b4,

b1m31 + b2m32 + b3m33 + b4m34 = a3b1 + a4b2 + a1b3 − a2b4,

b1m41 + b2m42 + b3m43 + b4m44 = a4b1 − a3b2 + a2b3 + a1b4.

One obvious solution is M = ı1(a). The above system can be written in the form

4∑
j=1

bjxkj = 0, k = 1, 2, 3, 4 for all b ∈ H, x11 := m11 − a1, x12 := m12 + a2, . . .

This leaves only the possibility xkj = 0 for all j, k = 1, 2, 3, 4, which is equivalent to
M = ı1(a). A very similar proof works for ı2. �

The uniqueness result in Theorem 2.3 does not imply that ı1 is the only mapping, which
represents the isomorphism H → R

4×4. E. g. Gürlebeck and Sprössig, p. 5/6 in [3] define
this isomorphism by

ı̂1(a) =

⎛⎜⎝
a1 −a2 −a3 a4

a2 a1 −a4 −a3

a3 a4 a1 a2

−a4 a3 −a2 a1

⎞⎟⎠ .

However, in order that the property (2.11) (and (2.12) as well) remains valid, one has to
change the definition of col(a). In this case col(a) must be defined as the first column of
ı̂1(a). In a paper by Farebrother, Groß, and Troschke, [2], these authors in 2003 have made a
systematic search for all matrix representations of H in R

4×4.
All rules (2.13) to (2.15) are immediate consequences of (2.11), (2.12). The most impor-

tant rule is rule (2.14). It allows to write col(axb) = ı1(a)ı2(b)col(x), which means that the
linear mapping

l : R
4 → R

4, l(x) := axb

can be put into the explicit form

l(x) = Mx, M := ı1(a)ı2(b).

This was successfully applied to the solution of quaternionic, linear systems, and to finding
zeros of certain quaternionic polynomials, see Janovská and Opfer, [6, 7, 8].

Property (2.9) says in algebraic terms that ı2(b) belongs to the centralizer of ı1(a) for
all b ∈ H and also for all a ∈ H. The centralizer for the fixed matrix ı1(a), denoted by
C(ı1(a)), is the set of all matrices in R

4×4 which commute with ı1(a). It is clear that the set
of all polynomials in ı1(a) with real coefficients, denoted by P(ı1(a)), belongs to C(ı1(a)).
However, in this case, the centralizer C(ı1(a)) does contain elements that are not belonging to
P(ı1(a)). This is a consequence of the fact that the characteristic and the minimal polynomial
of ı1(a) are different. More details are given by Horn and Johnson, p. 274–276, [5]. Let
a := (a1, a2, a3, a4) ∈ H. Both matrices ı1(a) and ı2(a) have the same minimal polynomial

μ(z) := z2 − 2a1z + |a|2.(2.16)

And both matrices are normal, with the consequence that they are similar. That means there
is a nonsingular matrix H ∈ R

4×4 such that Hı1(a) = ı2(a)H . If we would assume, that



Pseudoquaternions 5

H ∈ HR or H ∈ HP, then it would follow that a ∈ R. In other words, if a is not real, then H
is neither in HR nor in HP.

As a consequence of (2.16), there is the following formula valid for both matrices:

(ık(a))j = αj ık(a) + βj , j = 0, 1, . . . ; k = 1, 2.(2.17)

A formula for the sequences {αj}, {βj}, j ≥ 0, is given in Section 3 of [7]. The two se-
quences {αj}, {βj} are the same for all matrices of the same similarity class. This implies
that

zj = αjz + βj , j = 0, 1, . . .

for all quaternions z ∈ H. This was used by Pogorui and Shapiro, 2004, [9] and by the
present authors [7, 8].

If A is a real or a complex matrix of order n with a minimal polynomial of degree ν ≤ n,
then (2.17) is a special case of

Aj ∈ 〈I,A,A2, . . . ,Aν−1〉 for all j = 0, 1, . . . .

where I is the identity matrix of the same size as A and 〈· · ·〉 denotes the linear hull of what
is between the parentheses. This is a consequence of the Cayley-Hamilton theorem. For more
details see Horn and Johnson, p. 87, [4].

Now, the question is, whether we can find a mapping H → C
2×2 which has the same

properties as ı2. This will be the topic of the next section.

3. Quaternions and pseudoquaternions in the matrix space C
2×2. For all a :=

(a1, a2, a3, a4) ∈ H, we define the mapping j1 : H → C
2×2 by

j1(a) :=
(

α β
−β α

)
, α := a1 + a2i, β := a3 + a4i.(3.1)

This mapping is again an isomorphism between H and

HC := j1(H) ⊂ C
2×2.(3.2)

See van der Waerden, p. 55, [10]. We will keep parts of the notation of the last section,
however, defined in C

2×2. The basis representation of j1(a) is

j1(a) = a1I1 + a2I2 + a3I3 + a4I4,

where I1 is the identity matrix in R
2×2 and

I2 =
(

i 0
0 −i

)
, I3 =

(
0 1

−1 0

)
, I4 =

(
0 i
i 0

)
.

They obey the already mentioned rules (2.6) of the quaternionic multiplication:

I2
2 = I2

3 = I2
4 = −I1, I2I3 = I4, I3I4 = I2, I4I2 = I3.

A change of the basis elements in the form

I2 → −I2, I3 → −I3

would not change the above multiplication rules. That means, that also other representations
of the isomorphism j1 are possible.
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Let a = (a1, a2, a3, a4) ∈ H. We define a new column operator by

col(a) :=
(

a1 + a2i
−a3 + a4i

)
=

(
α
−β

)
,(3.3)

where α, β are defined in (3.1). Note also here, that col(a) is the first column of j1(a). This
definition implies

col(ab) =
(

a1b1 − a2b2 − a3b3 − a4b4 + (a1b2 + a2b1 + a3b4 − a4b3)i
−a1b3 + a2b4 − a3b1 − a4b2 + (a1b4 + a2b3 − a3b2 + a4b1)i

)
.

DEFINITION 3.1. Let a, b ∈ H. A matrix M ∈ C
2×2 depending only on b will be called

a pseudoquaternion in C
2×2 if it has the property

Mcol(a) = col(ab) for all a, b ∈ H.(3.4)

In the next theorem we show that (2.11) has a unique equivalent in C
2×2 but (2.12)

(which is the analogue of (3.4)) has no equivalent. Which means that pseudoquaternions do
not exist in C

2×2.
THEOREM 3.2. (1) With the column operator defined in (3.3) we have for all a, b ∈ H

j1(a)col(b) = col(ab).(3.5)

There is no other matrix than j1(a) with this property.
(2) There is no matrix M ∈ C

2×2 depending only on b such that

Mcol(a) = col(ab) for all a, b ∈ H.(3.6)

Proof: (1) We have

j1(a)col(b) =
(

a1 + a2i a3 + a4i
−a3 + a4i a1 − a2i

)(
b1 + b2i

−b3 + b4i

)
and this coincides with the above given col(ab). Let

M :=
(

u1 + u2i v1 + v2i
x1 + x2i y1 + y2i

)
(3.7)

for u1, u2, v1, v2, x1, x2, y1, y2 ∈ R. Now,

Mcol(b) =
(

u1b1 − u2b2 − v1b3 − v2b4 + (u1b2 + u2b1 + v1b4 − v2b3)i
−y1b3 − y2b4 + x1b1 − x2b2 + (y1b4 − y2b3 + x1b2 + x2b1)i

)
.

A comparison with col(ab) shows, that the only solution, valid for all a, b ∈ H, is M = j1(a).
(2) Let M be defined as in (3.7). The first row of Mcol(a) reads:

a1u1 − a2u2 − a3v1 − a4v2 + (a1u2 + a2u1 − a3v2 + a4v1)i.

A comparison with the real and imaginary part of the first row of col(ab) yields, respectively,

v1 = b3, v2 = b4; v1 = −b3, v2 = −b4.

In other words, there is no solution for all b. �
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In particular, this implies that we cannot find an analogue of property (2.14).
COROLLARY 3.3. There is no matrix M ∈ C

2×2 such that

Mcol(b) = col(abc) for all a, b, c ∈ H,(3.8)

where M depends only on a, c.
Proof: Assume, there is such a matrix. Put a = 1. Then, Mcol(b) = col(bc). However,

this contradicts Theorem 3.2, part (2). �
The fact that the minimal and characteristic polynomials coincide for j1(a) for all

a ∈ H has the consequence that the centralizer C(j1(a)) consists exactly of the polynomi-
als P(j1(a)). Thus, all solutions M of the equation

j1(a)M = M j1(a)

are located inP(j1(a)), which means that an equation of the form (2.9) is impossible in C
2×2.

See Horn and Johnson, Corollary 4.4.18, [5].
The characteristic polynomial of j1(a), identical with the minimal polynomial of both

ık(a), k = 1, 2, is given in (2.16). Therefore, we also have the analogue of (2.17), namely

(j1(a))j = αj j1(a) + βj , j = 0, 1, . . . ;(3.9)

where the coefficients αj , βj , j = 0, 1, . . . are the same as in (2.17).
Define

M(a) := j1(a)T.(3.10)

This matrix has trivially the property

M(ab) = M(b)M(a).

Matrix M(a), defined in (3.10), has the following basis representation:

M = a1I1 + a2J2 + a3J3 + a4J4,

where

J2 :=
(

i 0
0 −i

)
, J3 :=

(
0 −1
1 0

)
, J4 :=

(
0 i
i 0

)
,

and these basis elements follow (2.7). However, this is not enough for the matrix M to qualify
for a pseudoquaternion, as we have seen.

In summary, we have shown that in C
2×2 it is not possible to define a subspace over R

with dimension four with the same properties as the corresponding subspace HP of pseudo-
quaternions in R

4×4.

4. The application of Kronecker’s product. Let A,B,X be real or complex matrices,
not necessarily square such that

f(X) := AXB

can be defined. Then, there is a matrix P(A,B) such that

col(f(X)) = P(A,B)col(X).
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This matrix P(A,B) is called the Kronecker product of A and B. It can be applied to
matrices of all sizes. The col operator applied to a matrix puts all columns of this matrix into
one column, starting with the left column. The details can be found in Horn and Johnson,
Chapter 4, [5]. For quaternionic matrices the product P(A,B) can also be defined. This was
shown by Janovská and Opfer, [6].

Let us return to the topic of this paper and assume that a, b, x are quaternions. In the
previous section, we have shown in Corollary 3.3 that there is no matrix M ∈ C

2×2 with the
property

col(axb) = Mcol(x),

where the col operator is defined in equation (3.3). Define

f(j1(x)) := j1(a)j1(x)j1(b).

Since all occurring matrices are complex 2 × 2 matrices, the general theory for Kronecker
products applies and yields

col(f(j1(x)) := P(j1(a), j1(b))col(j1(x)), P(j1(a), j1(b)) ∈ C
4×4.(4.1)

In order to find out how P looks, we have to introduce some notation. Let a := (a1, a2, a3, a4),
b := (b1, b2, b3, b4), x := (x1, x2, x3, x4) and

j1(a) =

(
α1 α2

−α2 α1

)
, j1(b) =

(
β1 β2

−β2 β1

)
, j1(x) =

(
ξ1 ξ2

−ξ2 ξ1

)
;

α1 := a1+a2i, α2 := a3+a4i; β1 := b1+b2i, β2 := b3+b4i; ξ1 := x1+x2i, ξ2 := x3+x4i.
Then (see Horn and Johnson, p. 243 and p. 255, [5])

P(j1(a), j1(b)) =

(
β1 j1(a) −β2 j1(a)

β2 j1(a) β1 j1(a)

)
, col(j1(x)) =

⎛⎜⎜⎜⎝
ξ1

−ξ2

ξ2

ξ1

⎞⎟⎟⎟⎠ .(4.2)

This complex (4×4) block matrix may be regarded as a replacement for the missing complex
(2× 2) pseudoquaternionic matrix.
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