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Abstract

The numerical approximation to a parabolic control problem with control and state
constraints is studied in this paper. We use standard piecewise linear and continuous
finite elements for the space discretization of the state, while the backward Euler
method is used for time discretization. A priori error estimates for control and state
are obtained by an improved maximum error estimate for corresponding discretized
state equation. Numerical experiments are provided which confirm our theoretical
results.
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1 Introduction

In this paper we consider the optimal control problem

min J(y,u) = 3lly = yall 2oy + Slull (L.1)
subject to
yt — Ay +y = Bu in Qr,
0
%9 —0 onTy, (1.2)
on

y(0) =yo in Q,

where Qpr = Q x (0,7], Tt = 9Q x (0,7], 2 is an open bounded domain in R? with
boundary I' = 99, a > 0, T' > 0 and yq € L?(Q7) are fixed, and the initial value yq is
specified in Section 2. Here B : U — L2(0,T; H'(Q)*) denotes the linear bounded control



operator, where U is a Hilbert space. Typical choices include the case U = L>®(Qp) C
L?(Qr) with Bu := u the injection(see [19] and [20]) or U = L>®(w) C L*(w) with w C Qr
and Bu = y,u, where y,, is the characteristic function of the subset w(see [24]), or defined
as U = L>(0,T)™ C L*(0,T)™ with

(BU)({L‘,t) = Zul(t)fl(fﬂ), (l‘,t) € QTa (13)
i=1
where fi,--- , fr, € HY(Q)NL>® () are given functions(see [8]). For our analysis we require

Bu € L*®(Qr), so that from here onwards we choose U = L?(Qr) with B the injection
and enforce Bu € L () through box constraints, i.e., we require

uwe Ky :={ueL?Qp): a<u(z,t)<b, foraa. (z,t)cQr} (1.4)
with a < b constants. Furthermore, we also consider state constraints
ye Ky ={ye L>®Qr): y(z,t) < ¢, fora.a. (z,t)eQr}. (1.5)

State constrained optimal control problems are important from the practical point of
view. The numerical analysis for these problems is involved since the multipliers associated
to constraints on the state in general are Borel measures. To the best of the authors’
knowledge, there are only a few contributions to parabolic control problems with state
constraints. Pontryagin’s principles for several class of control problems were derived
in, e.g., [1], [4] and [9]. Lavrentiev regularization of state constrained parabolic control
problems was studied in [20]. Recently, error estimates for state constrained parabolic
control problem with controls of type (1.3) were derived in [8]. The error analysis for
problem with final state constraints and control constraints was also studied in [24]. In
[19] a priori error estimates for problems with pointwise state constraints only in time are
considered.

In this paper we consider an optimal control problem for the heat equation with dis-
tributed control and pointwise control and state constraints. The optimization problem is
approximated using variational discretization proposed in [13] combined with linear finite
elements in space and the backward Euler scheme in time for the discretization of the
state equation. Based on an improved maximum error estimate for the state equation,
we derive L?-norm error estimates for both the control and the state, which seems to be
quasi-optimal for optimal control.

The rest of this paper is organized as follows. In Section 2 we present the state
constrained optimal control problem and the corresponding optimality conditions. In
Section 3 we establish the fully discrete approximation for the state equation and derive
uniform estimates for the discretization error of the state in Section 4. We obtain the a
priori error estimates for the optimal control problem in Section 5. We also present some
numerical experiments to confirm our theoretical findings.

2 Optimal control problem

We denote by H™(£2) the usual Sobolev space of integer order m > 0 with norm || - |/,.
Note that H°(Q) = L%*(Q2). Similarly, H"(I') denotes the Sovolev space of integer order



r >0 on I' with norm | - |.. We denote the L?inner products on L?(Q2) and L?(T") by
(v,w) = / vwdz, Y v,w € L*(Q)
Q

and

<wv,w >:/vwds, Y v,w € L*(T).
r

With Qr = Q x (0,T] let HS"(Qr) = L?(0,T; H5(Q)) N H™(0,T; L*(Q)) equipped with
the norm

1

) ,
o= ([ Wtz + [ oot I o)
0 Q

where || - [|,.j0,7) denotes the norm on H"([0,T]). Similarly, H*"(I'r) = L2(0,T; H(T')) N
H7(0,T; L*(T')), and the norm on H*"(T) will be denoted by | - |s,. In addition ¢ and C
denote generic positive constants.

The weak form of problem (1.2) reads: Find y € L*(0,T; H'(2))NC(0,T; L*()) such
that

[

{ (yi,v) + (Vy, V) + (y,v) = (Bu,v), te (0,T], Yve H(Q), 2.1)

y(z,0) = yo(z), x €.
We assume that the initial value yo € H%(Q) throughout the paper. We denote y = G(Bu)
the solution to problem (2.1). It is well-known that if Bu € L?(Qr), yo € H'(£2), problem
(1.2) admits a unique solution y = G(Bu) € W = L*(0,T; H*(Q)) N H(0,T; L*(Q)) —
C(0,T; H'(2)). Thanks to the control constraints given by (1.4), we have Bu € L>(Qr),

thus we have the improved regularity y € w2 ’I(QT) for all s < oo, where W2 ’I(QT) is
defined as

W2 Qr) == {y € L*(0, T; W>*(Q2)), y, € L*(0,T; L*())}.
Our optimal control problem reads:

: 1 @
min  J(y,u) = §||y - yd”%Q(QT) + §||UHQL2(QT)
s.t. y = G(Bu), and y(z,t) € Ky, u(z,t) € Ky.

(2.2)

Note that W2 (Qr) < C(€r), so the state constrained optimal control problem (2.2)
is well defined. Since J is quadratic and Ky and Ky are closed and convex, problem
(2.2) admits a unique soluton (y,u) € W2 (Qr) x Ky. To ensure existence of Lagrange
multipliers we assume the Slater condition:

Assumption 2.1. (Slater condition): We assume that yo < ¢ and there erists 4 €
L>(Qr) satisfying (1.4) such that the associated state § fulfills (1.5) strictly, which means
§(z,t) < ¢ holds for all (z,t) € Qr.

It then follows from e.g., [4], [9] and [20] that the first order optimality conditions for
optimal problem (2.2) are given by



Theorem 2.2. Assume that u € L>®(Qr) is the solution of problem (1.1) and let y be
the corresponding state given by (2.1). Let M(Qr) be the space of reqular Borel measures
on Qr, then there exists an adjoint state p € L4(0,T; W19 (Q)) for all q,0 € [1,2) with
% + g > d+ 1, d is the dimension of 2, and a Lagrange multiplier i € M(Qr) such that

Pt —Ap+p=y—yq+ po, inQr,
a_ — on ZTa (23)

is satisfied in the sense of distributions, and
/ (au+ B*p)(v —u) =20, Vv € Ky, (2.4)
Qr
w=0, ylx,t) <o, (x,t)€Qr, and / (¢ —y)du = 0. (2.5)
Qr

Here poy = /‘L|QT’ UTp i= ,u|rT and pr = H|Qx{T}'

It is worth noting that the weak form of (2.3) has to be understood in the sense that

T T ow T
/ /(wt—Aw+w)p+/ /p:/ /(y—yd)w—i—/ wdp, Yw € W, (2.6)
0 Ja o Jrdn 0 Jao Qr

where

W == {w e WnCO(Qr): w(-,0)=0in Q, w, — Aw +w € L¥(Qy), g:f: € L>=(I'1)}(2.7)

3 Finite element discretization of the state equation

Let Q" be a polygonal approximation to € with a boundary I', = 9Q". Let 7" be a
partitioning of Q" into disjoint regular n-simplices 7, so that Q" = U, e 7. For simplicity
we assume that € is a polygonal convex domain such that Q" = Q. Associated with 7"
is a finite dimensional subspace V" of C(Q"), such that x|, are polynomials of order 1 for
Vx € VP and 7 € T". Tt is easy to see that V* ¢ V = HY(Q).

Then the semi-discrete finite element approximation of (2.1) reads:

(%

ot ,th) + (Vyh,th) =+ (yhawh) = (Buawh)7 th € Vha te (OvT]a

(3.1)
yh(x70) = y(}]L(x)’ HS Qv

where y(t) € H'(0,T; V"), and y € V" is an approximation to yo.

We next consider the fully discrete approximation for above semidiscrete problem by
using the backward Euler scheme in time.

Let 0=ty <t < - <ty <ty=T,t; =ik, i=1,2-- ,Nand k= %. Let h
denote the mesh size for triangulation T".



The fully discrete approximation scheme for (3.1) now reads: Find Y} € Vh i =
1,2,---, N, such that

Vi - vt

( 2 7wh)+(va7L;7vwh)+(YIz7wh):(Bavwh)a thevha Z:L 7Na

(3.2)
YY(x) =y (x), z€9Q,

= _ 1 i
where Bu = Efti,l Bu.
Fori:=1,2,--- N, let

Yh|(ti71,ti] = ((t - tl—l)Yfi + (tl - t)Yfz_l)/k7

and for w € C(0,T;L*(2)), let w(x, )¢, 4] = wlw,t), W(x,t)|@ ,0 = wz, tiz1).
Then (3.2) can be formulated as: Find Y}, := G}, x(Bu) € V" such that

(%}Zl’wh) + (VY3 V) + (Y, wp) = (B, wp), Yy € V", (3.3)
yn(,0) = yg (), = €9,

where Tth|(ti717ti] = %(Yf: - Y}: )

4 FError estimates for the state equation

Let IIj, : C(Q) — V" denote the standard Lagrange interpolation operator. Interpolation
error estimates imply that for y € W™"(Q), r > 2(see, e.g., [5])

ly = pyllor + Plly — Tyl < CR™(|yllmr, 1<m <2, (4.1)

We choose y(})‘ = II,yo in (3.3). Let R; denote the Ritz projection operator defined as
(VRpy, Vop) + (Rpy,vn) = (Vy, Vop) + (y,vn), Vo, € VI (4.2)

Lemma 4.1. Let Ry be the Ritz projection operator defined above. Then there holds:
Iy = Buyllos < Crh inf iy = villsr, 7> 2 (4.3)

ly — Rryllo,co < Cllogh| inf |ly —vallo,c0- (4.4)
UhEVh

Proof. A result related to (4.3) is proved by Rannacher and Scott in [23] for Dirichlet
boundary conditions, but the arguments can be adapted to the present situation, we omit
the details here. The result of (4.4) can be found in [25]. O

Now we are in a position to estimate the error between the solutions of problem (2.1)
and (3.3). The following result is a standard consequence of error estimate for parabolic
equation(see, e.g., [11]).

Theorem 4.2. Let Bu € L*(Qr), y € H>'(Qr) be the solution of problem (2.1), and
Y, € VP be the solution of problem (3.8), then we have

1y = Yallz20.r502(0)) < C(B* + E)|lyll21- (4.5)



To estimate the error of optimal control problem we need the maximum norm estimate
for state equation. Following the idea of [21] we need to introduce the weighted-norm
technique. Let

p(z) = (v — 22 + w?)2, Vo eq,

where z € 2 and w = ch|log h|, then it follows from [21](see, e.g, Lemma 4.3) that
/ p(x)Mde < C((m —2)w™ )™ for m > 2. (4.6)
Q

Theorem 4.3. Let Bu € L®(Qr), y € W2 (Qr) be the solution of problem (2.1), and
Yy, € VP be the solution of problem (3.8). Then

max [[y(-,tn) = Vi oo, < Cs?|log b2 (B*~*° + k' 72/) Jy|2,1,s. (4.7)

1<n<N
Proof. The proof follows [21]. We present a sketch for the convenience of the reader.
Note that

Y0 = V(o) = T 0) = Vi) + () - YY) (4.8)

holds for all ¢,,—1 <t <tp, 1 <n < N. For y(-,t) — Y," we have the splitting

y(,t) =Y = y(,t) = Rpy" + Rpy" = Yy

— gn _ nn
where
1 /tn
=N
= - y(-,t)dt
k tn—1
Then
ly(-t) = Yi'lloo,2 < W t) = R oo, + I1RRY" — Y3 llco,02- (4.9)

Note that(see [21])
W2 Qr) = C* 5175 (Qr)
with m =2+d =4 < s < 0o as s approaches co. Then from (4.1) and (4.4) we deduce
[y( ) = Bag"llce < lly(58) = 0" o2 + 17" = Baf"[loo0

L[t
< [ 10— o) loendt + Clloghllg" - Tag oo

tn—1

_2 _4
< O(KY™5 +Ch? s\logh|)|]yHW3,1(QT). (4.10)

It remains to estimate ||Rpy"™ — Y} ||oo,0. Suppose that z € € is the point where ||Rpy" —
Y ||so,0 achieves maximal value. Inverse estimates give

1Brg" = Yi'lloon < ChTHIRAY" = Vi o



< Chl(/ /)2)5(/(/71?7”)2)é
Q Q
Wi 1 n
< o, (411)

Integration of (2.1) from t;_1 to t; yields

Wy [ @ [ = /(Bu ),

ti1 ti—1
so that using (3.2) we have for all v € V*

(' =01 v) + k(Vn', Vv) + k(n', v)
= (Vi =Y/ v) + k(VY), Vo) + k(Y v)

ti

(Rl — 7)) / " (RWVy, Vo) — / (Ruyv),

ti—1 ti—1
t; ) ) ti ti
- / (Bu,v) — (Ru(g' —5").0) - / (RuVy, Vo) - / (Ruyv),
ti—1 ti—1 ti—1
. . t; t;
- -yt [ o+ [ )
ti—1 ti—1
. . 123 t;
C(Ru(@ — 7)) — / (RuVy, Vo) — / (Ruy.v)
ti_1 ti—1
= (=& ). (4.12)

Let Z € V", i=1,2,...,n be the solution of following backward fully discrete problem
(ZF7Y = Z8 wy) + K(VZ7Y, V) + k(Z7 wy) = 0, Yy, € V, (4.13)
with Z" = ¢, 1 <n < N. Now let v = Z*~1 in (4.12), summing from 1 to n we find
(".Q) = (€ O+ Y (€. 27 = Z) + (V) — 0, 2°), (4.14)
i=1
where we have used (4.13) and the fact that n° € V", Setting ¢ = P,(p~?n") in (4.14),

where Py, : L?(Q2) — V" is the L2-projection operator, we obtain

n
o™ 0" 5.0 = (€% Pulp™n™) + D (€, 27 = Z) + (V) — 50, 2°).
=1

0.0 < C|lp'v]jo.o holds for all ¢ € R we have

&, Pu(pn™) < e ' oellePule*n™) o0
< e~ ' loallp™ 0"

Since ||p' Pyv

0,0-

Thus

n
I 0" l5e < Cllp '€ I3 +C Y I~ Ellogllo(Z = Z)oe
i=1



+C|lp™ (Mayo — yo)lo.2llpZ°l0.0- (4.15)

Now we need a priori estimates for Z:~! — Z¢ and Z in weighted norms. It has been proved
in [10] and [21], that if there exists C* > 1 such that w = C*h|logh| and k > C*h?|log h|?
then

— “ i— i 1
10200+ (™1 ) ta—isallp(Z " = Z) 3 )2
i=1
< Clloghlllpcllog < Clloghlllp™' 5" o,0- (4.16)

The following estimates can also be found in, e.g., [21]:

_ Y 1 _2_ _1 i l
<k2t Ll Rt < O S I ) (417)
= =1
14 _1 i l
lp~'e" log < Csh™ <k kZHE 16,5,0) (4.18)

where Holder’s inequality and property (4.6) are used. Then the interpolation error esti-
mate (4.1) and estimate (4.3) for the Ritz-projection lead to

_ 1.5 4
1o~ (Mago — wo)llo.e < Cs20> 2yl 2 0, (4.19)
as well as

1

kz 1€°15,50)% < Cs(h® + E)llyll 210, (4.20)

@

From (4.15)-(4.20) we then have that

_ _4 1
I s < Cs?lloghl(h + K= H)llgllyi - (121)
With (4.11) and (4.21) we conclude that

_1
1RAG" = Vi llso2 < C5%log A (h*~= + k! Iyllyy2 (4.22)

Q)
Combining (4.10) and (4.22) we get the proof for y(-,t) — Y;", while an estimate for
y(-,t) — th“1 can be derived similarly. This completes the proof of the theorem. O

Remark 4.4. A uniform error estimate for the discretized error of equation (2.1) and
(3.2) is derived in [8] under the condition that the right hand side and hence the time
derivative of the solution is only square integrable in time. Here the right hand side is
uniformly bounded w.r.t. space and time, which guarantees an improved regularity of the
solution and thus an improved error estimate.



5 Error estimates for optimal control problem

In this section we consider the finite element approximation to optimal control problem
(1.1)-(1.2).

We consider the variational discretization approach proposed in [8] and [13]. Then the
fully discrete optimization problem reads

N T
1 , a
min Jp(u) = —k Yl—2+/ /u2, 5.1
i ) =33k [ =g+ [ 65.1)
subject to . v
Yé—Y;Tl i i —
(B ) + (VY V) + (Vi wn) = (Ba,wn),

vwh S Vh7 1= 17 T 7N7 y}?,(x) = tho(l'), T e Q (52)

Vi<, i=1,---,N.

Let @ denote the control satisfying Assumption 2.1, i.e., there exists § > 0 such that the
corresponding state § = G(Bu) satisfies

§j=G(Bi)<d—0 inQr. (5.3)

It follows from Theorem 4.2 that there exists hy > 0 such that Y} := Ghr(Ba) € Vvh
satisfies

) 5
Vi(e)<é—5<é, 1<n<N, 1<j<J 0<h<h. (5.4)

Thus the pair (1, Yh) is a discrete feasible Slater point for problem (5.1) as h approaches
0.

As a minimization problem for a quadratic functional over a closed convex set, the
discrete optimization problem (5.1)-(5.2) admits a unique solution Uy, € K. Furthermore,
it follows from [4] again that the discrete Slater condition (5.4) guarantees the existence
of a discrete co-state P,i_l eV i=1,2,---, N and discrete Lagrange multiplier ué- e R,
i=1,---,N, j=1,---,J, such that the triplet (Y}, P{"",U}) € Vh x VI x Ky, i =
1,2,---, N, satisfies the following optimality conditions:

VA : :
(T?wh)—i_(vyfszh) = (BU}ZLawh)a (55)
vwhevhu 7’:1) 7N7 Y}?(SU):H}L:UU(IE), era
Pt - p —1 —1 - ~
(T7Qh) + (VQh,VP;L_ )+ (thp;;_ ) = (le - gda‘]h) + Z:uzq}b(;v])v
o7 (5.6)
vth‘/h7 ’L:N7 717; Pf]LV:Z,u'évdtju erv
j=1
/@WZ+BW%4XW—I¢Mx>OﬂWhEKwi:1J,~,N. (5.7)
Q

9



N J
Yy <6, and DY (6= Ya()u; = 0. (58)

i=1 j=1

Again the optimality conditions (5.5)-(5.7) can be formulated as

0Y; A . R
(aith’wh) + (VYha vwh) + (Yhawh) = (BUhvwh)’ vu)h € Vh? 1= 17 t aN7 (59)
Yh(x70) = tho(l'), T € Qa
OP, . . o I
(5 " an) + (Yan, VP + (gn, Pr) = (Vi — G an) + Y phan(x)), (5.10)

Jj=1

Vg €V, i=N,oo 1 Py(a,T) = Zuﬁvazj,

/(aUh + B*Ph)(vh — Uh)da: >0, Yopb € Ky, i1=1,2,--- , N. (5.11)
Q

It is easy to show that
i L i1
Uy, :PKU(aB Ph )7

where P, is the projection operator over control set Kyy. Here uj, € M(Qr) is given by

/ Fdun _Zfoj, ik, Y € C(Qr). (5.12)

=1 j=1

As a first result for (5.1)-(5.2) we prove that the sequence of optimal controls, states
and measures up are uniformly bounded.

Lemma 5.1. Let (Y,,Up) € VP x Ky be the solutions of problem (5.1)-(5.2), P, € V"
and pp, € M(Q7) be the corresponding adjoint state and measure, respectively. Then there
exists hg > 0 such that

N g
U 205200y + 1Yal T2 msracay + D0 D1y <O for all 0 < h < ho.
=1 j—1

Proof. The proof follows [8]. From (5.4) and (5.8) we obtain

s I N N J ’ B .
522%« < DD =Yl =D (Vilay) — Yo (ag))
i=1 j=1 i=1 j=1 i=1 j=1

N
= Y (B = PLYE Y RV(Y - Y), VBT

+h(PITL Y ) — k(Y — g0, Y — Y3

10



N
= Y (BN =Y - (T = Y) +R(VY - V), VR

i=1
+k(P}Z7;_1’ Yfz - ?fZ) - k(Y}f — Yd, Yfi - Yfi) - (Pf{,Va YhN - YhN)
N J

= D k(BU;, - @), ) = k(Y = ga, Yy = Vi) + > i (VY = Vi) (=)
i=1 j=1
N . . . . . . . J

< Yo MaULa - U+ [ (-0 + YT+ Vi~ Vi) + 23 i
i=1 Q j=1

| X _ 0 ‘ s I
< —izkHYﬁHaQ—52"1‘”@2”3,9*‘122%"‘@ (5.13)
=1 i=1 i=1 j=1
where we have used (5.5) and (5.6). This completes the proof of the Lemma. O

Now we are in a position to give the main result of this paper. We use a proof technique
developed in Chap. 3 of [14] which only relies on uniform a priori error estimates of the
state approximation.

Theorem 5.2. Let (y,u) € W2 (Qr) x L=(Q7) and (Yy,,Up) € V' x Ky be the solutions
to problem (2.2) and (5.1)-(5.2). Then we have the following a priori error estimate

Lo
lu = UnllZ20.miz20)) + 19 = YalZe,myn2()) < Cs?[log h*(h*75 +k17%). (5.14)

Proof. From (2.4) and (5.11) we have
/ (cu+ B*p)(v —u) 20, Yve Ky
Qp

and

/ (aUh + B*Ph)(vh — Uh)dx >0, Y, € Ky.

Qp
Adding these inequalities gives
2 g s
afu— UhHL2(0,T;L2(Q)) < /0 (p — Pn, B{Up — u)). (5.15)

In the following we need to introduce some auxiliary problems. Let y* = G(BU,) €
I/VS2 ’1(QT) be the variational solution of

yf — Ayh + yh = BU}, in Qrp,

h
%" _ o onry, (5.16)
on
yh(O) =9y inQ
i.e.
3yh h h 1
(ﬁ?v) + (vy ,V'U) + (y ,U) = (BUh7v)7 Vv e H (Q)

11



with y"(-,0) = yo, and let Y;(u) € V" be the solution of

{ (P )+ (T¥h(a) V) + () wn) = (Bion), Vo € V%,

ot
Yy, (u)(z,0) = yl(z), © € Q.

Note that Y}, and Yj(u) are the fully discrete approximations to y” and y, respectively.

Then from (2.1) and (5.16) we have y" —y € WNC(Qr), (y" —y): — AW —y)+ (" —y) =
h

B(Up —u) € L=(Q7), (y" —y)(x,0) =0 and w =0. Thus y" —y € W§°. Now (2.6)

implies that

T T h _
[ wswi-wy = [V agt -6 -0

T
= / (v —ya,y" —y) + / (y" — y)dp. (5.18)
0 Qr
Similarly, from (5.10) and (5.16) we have
T . T a Yh) . . R . R R .
/ (P Bu—Up)) = / O = Y0) oy o (T (u) = ¥4), VBy) + (Vi () — Y, B)
0 0
T
= [ e Yilw) - Vi) + /Q (Yi(u) — Yi)dp, (5.19)
0 T
Thus

allu = Unll72(07:12(0))

T
/0 (y—yd,yh—y)Jr/QT(yh—y)du

N

T
T / (Y — ya, Ya(u) — Yi) + /Q (Yi () — Yi)dyan
0
T T ’
= /O(Q—Qdayh—yh)+/0 (Y —Ya,Yn —v)
T T
+/ (Yh—yd,Yh<u>—y>+/ (V= yary — 3)
0 0
T / (v — y)dp + / (Ya(u) — Ya)dun
Qr Qr
T T
=y~ Vil raeny + [ s =)+ [ (0~ Vi) —)

+/S_2T(yh _y)d/Hr/QT(Yh(u) ~ Yi)dun.

['herefore we have
CVHU L HQZ, ;L2 (Q2 H Y HQZ, ;L2 (Q2

T T
< / (y — va,y" — Y2) +/ (Y — ya, Ya(u) — y)
0 0

12



[ = dat [ @ - Yid

QT QT
C(lly" = Yallr2,rsr20)) + 1Ya(w) = vl r20,;22(0))
[ = dat [ (G - Yid

QT QT

N

< C(h2+k)+/

(yh —y)du —l—/ (Y (uw) — Yi)dun, (5.20)
Qr

Qr
where we have used Theorem 4.1. From (2.5) we have
/ (" —y)du = / (v" — ¢+ ¢ —y)du
Q Qr
= [ "oy
Q

Since p > 0, with (y")* = max(y" — ¢,0) we have

/Q (y" — ¢)dp < /QT(thdu-

Note that for t,,_1 <t < t,

(") @0l < 1" @) = ) @)+ ") T (@) = () ()]
< () =y (@) + [y (@) - V()]
< O [ WO~ Ot + 1) - Vo)
< O loghP (K% + CH* 9y 210, (5:21)
where we have used Theorem 4.2. Similarly, from (5.8) and Theorem 4.2 we have
| W) =Yiddi = [ (i) =ty = 6+ 0= Vi
< /Q (Yn(u) = y)dpn
< ClYn(w) = yllze @) lnl mr)
< Cs*log (K™% + Ch* %) yllyy2a - (5.22)
Combining (5.20), (5.21) and (5.22) we prove the claim.
O

In [8], the authors obtain the convergence order of O(|log h\i(h% + ki)) in 2d and
O(hi + h_iki)) in 3d for problems with state constraints pointwise in space and time
where controls only act in time as in (1.3). In [19], the authors obtain the convergence
order of O(log(%)%(k% + h)) for problems with state constraints pointwise in time and
distributed control. In this paper for some ¢ > 0 we obtain the convergence order of
O(h'=¢ + héfs), which appears to be quasi-optimal for problems with state constraints
pointwise in space and time and distributed control.
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6 Numerical Examples

In this section we will carry out some numerical experiments to confirm our theoretical
findings. We consider the following parabolic optimal control problem:

min J(y,u) = %Hy - de%Q(QT) + %Hu - ud”%z(QT)

subject to
ye—Ay+y=[f+u inQr,
oy
pre
y(0) =y inQ,

0 on FT,

with box type control constraint

ue Ky :={ueL*Qr): a<u(zt)<b (z,t)€Qr}
and state constraint

ye Ky :={ye L*Qr): y(z,t) < o(z,t), (x,t) € Qr}.

For constructing an example with exact solution we allow additional data f and ug.
The numerical solution of the optimal control problem is performed with the method
proposed in [12] and [17], which goes back to an idea of Pierre and Sokolowsky([22]).

Example 6.1. Let Qp = [0,1]? x [0,1], a = 1. Here we set a = —2 and b = 2. Following
the ideas of [8] we set

y(xz,t) = cos(may) cos(mas) - sin(nt), ¢(z,t) = max(0.7,y(z, 1)),
while control and adjoint state are given by
u(z,t) =t(t — 1) cos(mzy) cos(mxa) (6.1)
and
p(z,t) = cos(mxy) cos(mxa)t(1 — t).

Note that the control constraint is not active in this example, but u € L (Qr) which is the
crucial ingredient for our analysis. In this example we have a reqular multiplier associated
to the state constraint, namely

wu(x,t) = max(y — 0.7,0).

A simple calculation shows

ya(z,t) = y(a,t)+ p(x,t) + (1 — 2t) cos(mxy) cos(mas)
+t(1 — t)(—2n2 cos(mxy) cos(may) — cos(may) cos(mx)),
and
ug(z,t) = wu(x,t)+p(z,t) =0,
f(z,t) = mcos(nt) cos(mry) cos(maa) + 272 cos(may) cos(mag) sin(nt) + y(t, p) — u(z, t).

14



To confirm our theoretical results we test the convergence order with respect to space
and time discretization. We choose the time step At = O(h?) where h denotes the mesh
size of space triangulation. The results are listed in Table 6.1.

Table 6.1. Error of control u and state y for example 6.1 .

h N | |lu—upllz2@p) | order | |ly — ynllr2(@,) | order
\/5/4 8 | 0.032272253305 \ 0.056604772253 \
ﬁ/6 18 | 0.015478395776 | 1.8121 | 0.027718367216 | 1.7609
\/5/8 32 | 0.009257272003 | 1.7868 | 0.016383380301 | 1.8278
\/5/10 50 | 0.006339627571 | 1.6966 | 0.010770666548 | 1.8797
\/§/12 72 |1 0.004790681261 | 1.5366 | 0.007613893931 | 1.9024
\/5/14 98 | 0.003886436096 | 1.3570 | 0.005657242145 | 1.9269
\@/16 128 | 0.003332771780 | 1.1510 | 0.004370258689 | 1.9330

It can be seen that the convergence orders for the optimal control v and the state y are
better than the expected, which may be caused by the fact that the multiplier associated
to the state constraints is continuous.
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