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Abstract

The Easy Path Wavelet Transform (EPWT) [20] has recently been proposed by one
of the authors as a tool for sparse representations of bivariate functions from discrete
data, in particular from image data. The EPWT is a locally adaptive wavelet transform.
It works along pathways through the array of function values and it exploits the local
correlations of the given data in a simple appropriate manner. Using polyharmonic spline
interpolation, we show in this paper that the EPWT leads, for a suitable choice of the
pathways, to optimal N -term approximations for piecewise Hölder smooth functions with
singularities along curves.
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1 Introduction

During the last few years, there has been an increasing interest in efficient representations
of large high-dimensional data, especially for signals. In the one-dimensional case, wavelets
are particularly efficient to represent piecewise smooth signals with point singularities. In
higher dimensions, however, tensor product wavelet bases are no longer optimal for the
representation of piecewise smooth functions with discontinuities along curves.

Just very recently, more sophisticated methods were developed to design approximation
schemes for efficient representations of two-dimensional data, in particular for images,
where correlations along curves are essentially taken into account to capture the geometry
of the given data. Curvelets [2, 3], shearlets [10, 11] and directionlets [28] are examples
for non-adaptive highly redundant function frames with strong anisotropic directional
selectivity.

For piecewise Hölder smooth functions of second order with discontinuities along
C2-curves, Candès and Donoho [2] proved that a best approximation fN to a given function
f with N curvelets satisfies the asymptotic bound

‖f − fN‖2
2 ≤ C N−2 (log2N)3,
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whereas a (tensor product) wavelet expansion leads to asymptotically only O(N−1) [17].
Up to the (log2N)3 factor, this curvelet approximation result is asymptotically optimal
(see [7, Section 7.4]). A similar estimate has been achieved by Guo and Labate [10]
for shearlet frames. These results, however, are not adaptive with respect to the assumed
regularity of the target function, and so they cannot be applied to images of less regularity,
i.e., images which are not at least piecewise C2 with discontinuities along C2-curves.

In such relevant cases, one should rather adapt the approximation scheme to the image
geometry instead of fixing a basis or a frame beforehand to approximate f . During the last
few years, several different approaches were developed for doing so [1, 5, 6, 8, 9, 12, 15, 16,
18, 20, 21, 22, 24, 25, 27]. In [16], for instance, bandelet orthogonal bases and frames are
introduced to adapt to the geometric regularity of the image. Due to their construction,
the utilized bandelets are anisotropic wavelets that are warped along a geometrical flow
to generate orthonormal bases in different bands. LePennec and Mallat [16] showed that
their bandelet dictionary yields asymptotically optimal N -term approximations, even in
more general image models, where the edges may also be blurred.

Further examples for geometry-based image representations are the nonlinear edge-
adapted (EA) multiscale decompositions in [1, 12] (and references therein), being based
on ENO reconstructions. We remark that the resulting ENO-EA schemes lead to an
optimal N -term approximation, yielding ‖f − fN‖2

2 ≤ C N−2 for piecewise C2-functions
with discontinuities along C2-curves. Moreover, unlike previous non-adaptive schemes,
the ENO-EA multiresolution techniques provide optimal approximation results also for
BV -spaces and Lp spaces, see [1].

In [20], a new locally adaptive discrete wavelet transform for sparse image representa-
tions, termed Easy Path Wavelet Transform (EPWT), has been proposed by one of the
authors. The EPWT works along pathways through the array of function values, where it
essentially exploits the local correlations of image values in a simple appropriate manner.
We remark that the EPWT is not restricted to a regular (two-dimensional) grid of image
pixels, but it can be extended, in a more general setting, to scattered data approximation
in higher dimensions. In [21], the EPWT has been applied to data representations on the
sphere. In the implementation of the EPWT, one needs to work with suitable data struc-
tures to efficiently store the path vectors that need to be accessed during the performance
of the EPWT reconstruction. To reduce the resulting adaptivity costs, we have proposed
a hybrid method for smooth image approximations in [22], where an efficient edge repre-
sentation by the EPWT is combined with favorable properties of the biorthogonal tensor
product wavelet transform.

In this paper, we show that piecewise Hölder smooth bivariate functions with singular-
ities along smooth curves can optimally be represented by N -term approximations using
the EPWT. More precisely, we prove optimal N -term approximations of the form

‖f − fN‖2
2 ≤ C N−α (1.1)

for the application of the EPWT to piecewise Hölder smooth functions of order α > 0,
with allowing discontinuities along smooth curves of finite length.

With using piecewise constant functions for the approximation of a bivariate function
f , the EPWT yields an adaptive multiresolution analysis when relying on an adaptive
Haar wavelet basis (see [20, 23]). If, however, smoother wavelet bases are utilized in the
EPWT approach, such an interpretation is not obvious. In fact, while Haar wavelets
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admit a straight forward transfer from one-dimensional functions along pathways to bi-
variate Haar-like functions, we cannot rely on such simple connections between smooth
one-dimensional wavelets (used by the EPWT) and a bivariate approximation of the “low-
pass” function. Therefore, in this paper we will apply a suitable interpolation method, by
using polyharmonic spline kernels, to represent the arising bivariate “low-pass” functions
after each level of the EPWT. One key property of polyharmonic spline interpolation is
polynomial reproduction of arbitrary order, leading to a corresponding local approxima-
tion order [13]. We will come back to relevant approximation properties of polyharmonic
splines in Section 2.

This paper essentially generalizes our results in [23], where we proved optimal N -term
approximation of the EPWT for piecewise Hölder continuous functions of order α ∈ (0, 1].
In that paper, the proofs were mainly based on the adaptive multiresolution analysis
structure, which is only available for piecewise constant Haar wavelets.

The outline of this paper is as follows. In Section 2, we first introduce the utilized
function model and the EPWT algorithm. Then, in Section 3, we study the decay of
EPWT-wavelet coefficients, where we will consider the highest level of the EPWT in
detail. To achieve optimal decay results for the EPWT wavelet coefficients at the further
levels, we require specific side conditions for the path vectors in the EPWT algorithm.
These side conditions can be ensured by a suitable path vector construction as proposed in
Section 2. Similar conditions for the path vectors have been used already in [23]. Finally,
Section 4 is devoted to the proof of asymptotically optimal N -term error estimates of the
form (1.1) for piecewise Hölder smooth functions.

2 The EPWT and Polyharmonic Spline Interpolation

2.1 The Function Model

Suppose that F ∈ L2([0, 1)2) is a piecewise smooth bivariate function, being smooth over
a finite set of regions {Ωi}1≤i≤K , where each region Ωi has a sufficiently smooth Lipschitz
boundary ∂Ωi of finite length. Moreover, the set {Ωi}1≤i≤K is assumed to be a disjoint
partition of [0, 1)2, so that

K
⋃

i=1

Ωi = [0, 1)2,

where each closure Ωi is a connected subset of [0, 1]2, for i = 1, . . . ,K.
More precisely, we assume that F is Hölder smooth of order α > 0 in each region Ωi,

1 ≤ i ≤ K, so that any µ-th derivative of F on Ωi with |µ| = ⌊α⌋ satisfies an estimate of
the form

|F (µ)(x) − F (µ)(y)| ≤ C ‖x− y‖α−|µ|
2 for all x, y ∈ Ωi.

Note that this assumption for F is equivalent to the condition that for each x0 ∈ Ωi there
exists a bivariate polynomial qα of degree ⌊α⌋ (usually the Taylor polynomial of F of
degree ⌊α⌋ at x0 ∈ Ωi) satisfying

|F (x) − qα(x− x0)| ≤ C‖x− x0‖α
2 (2.1)

for every x ∈ Ωi in a neighborhood of x0, where the constant C > 0 does not depend on x
or x0. But F may be discontinuous across the boundaries between adjacent regions. Note
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that the Hölder space Cα(Ωi) of order α > 0, being equipped with the norm

‖F‖Cα(Ωi) := ‖F‖C⌊α⌋(Ωi)
+

∑

|µ|=m

sup
x 6=y

|F (µ)(x) − F (µ)(y)|
‖x− y‖α−m

2

coincides with the Besov space Bα
∞,∞(Ωi), when α is not an integer. Here, we use the

Cm(Ωi) norm

‖F‖Cm(Ωi) := sup
x∈Ωi

|F (x)| +
∑

|α|=m

sup
x∈Ωi

|∂αF (x)|,

see e.g. [4, chapter 3.2]. Now by uniform sampling, the bivariate function F is assumed
to be given by its function values taken at a finite rectangular grid. For a suitable integer
J > 1, let {F (2−Jn)}n∈I2J

be the given samples of F , where

I2J := {n = (n1, n2) : 0 ≤ n1 ≤ 2J − 1, 0 ≤ n2 ≤ 2J − 1},

and, moreover, let

Γ2J
i :=

{

n ∈ I2J :
n

2J
∈ Ωi

}

for 1 ≤ i ≤ K

be the index sets of grid points that are contained in the regions Ωi, for 1 ≤ i ≤ K.
Obviously,

K
⋃

i=1

Γ2J
i = I2J ,

and for the size #Γ2J
i of Γ2J

i we have #Γ2J
i ≤ #I2J = 22J for any 1 ≤ i ≤ K.

Next we compute a (piecewise) sufficiently smooth approximation to F from its given
samples. To this end, we apply polyharmonic spline interpolation to obtain an interpola-
tion to F of the form

F 2J(x) :=
K

∑

i=1





∑

n∈Γ2J
i

cin φm

(∥

∥

∥
x− n

2J

∥

∥

∥

2

)

+ pi
m(x)



χΩi
(x) for x ∈ [0, 1)2 (2.2)

satisfying the interpolation conditions

F 2J(n/2J) = F (n/2J) for all n ∈ I2J . (2.3)

Here, χΩi
is the characteristic function of Ωi, φm(r) = r2m log(r), for m := max(⌊α⌋, 2), is

a fixed polyharmonic spline kernel, and pi
m denotes a bivariate polynomial of degree at most

m. It is well-known that polyharmonic spline interpolation leads, on given interpolation
conditions (2.3), to a unique interpolant of the form (2.2). In particular, for the specific
choice of a polyharmonic spline kernel φm, the interpolation scheme achieves to reconstruct
polynomials of degree m. Consequently, the local approximation order of polyharmonic
spline interpolation is m + 1, see [13]. Further relevant details on polyharmonic spline
interpolation and their approximation properties can be found in [14, Section 3.8].
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From the embedding theorem for Besov spaces we obtain Bα
∞,∞(Ωi) ⊂ Bα

2,2(Ωi), see
e.g. [26] or [4, page 163]. Since Bα

2,2(Ωi) is equivalent to the Sobolev space Hα(Ωi),
see [4, 26], this allows us to use the estimate

‖F − F 2J‖L2(Ω) ≤ CF

K
∑

i=1

hα
Ωi
‖F‖Bα

2,2(Ωi) (2.4)

for the interpolation error in Sobolev spaces, as shown in [19], where the fill distance

hΩi
:= sup

x∈Ωi

inf
n∈Γ2J

i

‖x− n

2J
‖2 ≤ 2−J for 1 ≤ i ≤ K

measures the density of the interpolation points in Ωi.

Remark. Note that by the above representation (2.2), we apply polyharmonic spline
interpolation separately in each individual region Ωi. We prefer interpolation (rather than
any other projection method), since we essentially require to maintain the local Hölder
regularity around each lattice point in I2J . �

2.2 The EPWT Algorithm

Now let us briefly recall the EPWT algorithm from our previous work [20]. To this end,
let ϕ ∈ Cβ with β ≥ α be a sufficiently smooth, compactly supported, one-dimensional
scaling function, i.e., the integer translates of ϕ form a Riesz basis of the scaling space
V0 := closL2span {ϕ(· − k) : k ∈ Z}. Further, let ϕ̃ be a corresponding biorthogonal and
sufficiently smooth scaling function with compact support, and let ψ and ψ̃ be a corre-
sponding pair of compactly supported wavelet functions. We refer to [4, Chapter 2] for a
comprehensive survey on biorthogonal scaling functions and wavelet bases and summarize
only the notation needed for the biorthogonal wavelet transform. For j, k ∈ Z, we use the
notation

ϕj,k(t) := 2j/2 ϕ(2jt− k) and ψj,k(t) := 2j/2 ψ(2jt− k),

likewise for ϕ̃ and ψ̃. The functions ϕ, ϕ̃ and ψ, ψ̃ are assumed to satisfy the refinement
equations

ϕ(x) =
√

2
∑

n

hnϕ(2x− n) ψ(x) =
√

2
∑

n

qnϕ(2x− n)

ϕ̃(x) =
√

2
∑

n

h̃nϕ̃(2x− n) ψ̃(x) =
√

2
∑

n

q̃nϕ̃(2x− n)

with finite sequences of filter coefficients (hn)n∈Z, (h̃n)n∈Z and (qn)n∈Z, (q̃n)n∈Z. By
assumption, the polynomial reproduction property

∑

k

〈pm, ϕ̃j,k〉ϕj,k = pm for all j ∈ Z,

is satisfied for any polynomial pm of degree less than or equal m = max(⌊α⌋, 2), and so,

〈pm, ψ̃j,k〉 = 0 for all j, k ∈ Z.
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With these assumptions, {ψj,k : j, k ∈ Z} and {ψ̃j,k : j, k ∈ Z} form biorthogonal
Riesz bases of L2(R), i.e., for each function f ∈ L2(R), we have

f =
∑

j,k∈Z

〈f, ψj,k〉ψ̃j,k =
∑

j,k∈Z

〈f, ψ̃j,k〉ψj,k.

For any given univariate function f j , j ∈ Z, of the form f j(x) =
∑

n∈Z
cj(n)ϕj,n one

decomposition step of the discrete (biorthogonal) wavelet transform can be represented in
the form

f j(x) = f j−1(x) + gj−1(x),

where

f j−1(x) =
∑

n∈Z

cj−1(n)ϕj−1,n and gj−1(x) =
∑

n∈Z

dj−1(n)ψj−1,n

with

cj−1(n) = 〈f j , ϕ̃j−1,n〉 and dj−1(n) = 〈f j , ψ̃j−1,n〉. (2.5)

Conversely, one step of the inverse discrete wavelet transform yields for given functions
f j−1 and gj−1 the reconstruction

f j(x) =
∑

n∈Z

cj(n)ϕj,n with cj(n) = 〈f j−1, ϕ̃j,n〉 + 〈gj−1, ϕ̃j,n〉.

We recall that the EPWT is a wavelet transform that works along path vectors through
index subsets of I2J . For the characterization of suitable path vectors we first need to intro-
duce neighborhoods of indices. For any index n = (n1, n2) ∈ I2J , we define its neighborhood
by

N(n) := {m = (m1,m2) ∈ I2J \ {n} : ‖n−m‖2 ≤
√

2},

where ‖n−m‖2
2 = (n1 −m1)

2 + (n2 −m2)
2. Hence, an interior index, i.e., an index that

does not lie on the boundary of the index domain I2J , has eight neighbors.

Now the EPWT algorithm is performed as follows. For the application of the 2J-th

level of the EPWT we need to find a path vector p2J = (p2J(n))2
2J−1

n=0 through the index
set I2J . This path vector is a suitable permutation of all indices in I2J , which can be
determined by using the following strategy from [20]. Recall that I2J = ∪K

i=1Γ
2J
i , where

Γ2J
i corresponds to lattice points in Ωi. Start with one index p2J(0) in Γ2J

1 . Now, for a
given n-th component p2J(n) being contained in the index set Γ2J

i , for some i ∈ {1, . . . ,K},
we choose the next component p2J(n+ 1) of the path vector p2J , such that

p2J(n+ 1) ∈ (N(p2J(n)) ∩ Γ2J
i ) \ {p2J(0), . . . , p2J(n)},

i.e., p2J(n+1) should be a neighbor index of p2J(n), lying in the same index set Γ2J
i , that

has not been used in the path, yet.

In situations where (N(p2J(n))∩Γ2J
i )\{p2J(0), . . . p2J(n)} is an empty set, the path is

interrupted, and we need to start a new pathway by choosing the next index p2J(n+1) from
Γ2J

i \ {p2J(0), . . . , p2J(n)}. If, however, this set is also empty, we choose p2J(n + 1) from
the set of remaining indices I2J \ {p2J(0), . . . , p2J(n)}. For a more detailed description of
the path vector construction we refer to [20].
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In particular, for a suitably chosen path vector p2J , the number of interruptions can
be bounded by K̃ = C1K, where K is the number of regions, and where the constant
C1 does not depend on J , see [23]. The so obtained vector p2J is composed of connected
pathways, i.e., each pair of consecutive components in these pathways are neighboring.

Now, we consider the data vector

(

c2J(ℓ)
)22J−1

ℓ=0
:=

(

F 2J

(

p2J(ℓ)

2J

))22J−1

ℓ=0

and apply one level of a one-dimensional (periodic) wavelet transform to the function

values of F 2J along the path p2J . This yields the low-pass vector (c2J−1(ℓ))2
2J−1−1

ℓ=0 and

the vector of wavelet coefficients (d2J−1(ℓ))2
2J−1−1

ℓ=0 according to the formulae in (2.5). Due
to the piecewise smoothness of F 2J along the path vector p2J , it follows that most of the
wavelet coefficients in d2J−1 are small, where only the wavelet coefficients corresponding
to an interruption (from one region to another) may possess significant amplitudes.

The path vector p2J determines a new subset of indices

Γ2J−1 :=
{

p2J(2ℓ) : ℓ = 0, . . . , 22J−1 − 1
}

=
K
⋃

i=1

Γ2J−1
i ,

where Γ2J−1
i := {p2J(2ℓ) : p2J(2ℓ) ∈ Γ2J

i }.
As regards the next level of the EPWT, where j = 2J − 1, we first locate a second

connected path vector p2J−1 = (p2J−1(ℓ))2
2J−1−1

ℓ=0 through Γ2J−1, i.e., the entries of p2J−1

form a permutation of the indices in Γ2J−1. Similar as before, we require that p2J−1(n)
and p2J−1(n + 1) are neighbors lying in the same index set Γ2J−1

i . Here, p2J−1(n) and
p2J−1(n+ 1) are said to be neighbors, i.e., p2J−1(n+ 1) ∈ N(p2J−1(n)), iff

∥

∥p2J−1(n) − p2J−1(n+ 1)
∥

∥

2
≤ 2.

Again, the number of path interruptions can be bounded by C1K, where C1 does not de-
pend on J . Then we apply one level of the one-dimensional wavelet transform to the per-

muted data vector (c2J−1(p2J−1(ℓ)))2
2J−1−1

ℓ=0 to obtain the low-pass vector (c2J−2(ℓ))2
2J−2−1

ℓ=0

and the vector (d2J−2(ℓ))2
2J−2−1

ℓ=0 of wavelet coefficients.
We continue by iteration over the remaining levels j + 1 for j = 2J − 3, . . . , 0, where

at any level j + 1 we first construct a path pj+1 = (pj+1(ℓ))2
j+1−1

ℓ=0 through the index set

Γj+1 := {pj+2(2ℓ) : ℓ = 0, . . . , 2j+1 − 1} =

K
⋃

i=0

Γj+1
i

with applying similar strategies as described above. Here, pj+1(n) and pj+1(n + 1) are
called neighbors, iff

∥

∥pj+1(n) − pj+1(n+ 1)
∥

∥

2
≤ D2J−(j+1)/2,

where D ≥
√

2 is a suitably determined constant (in the above description of p2J and
p2J−1 we have chosen D =

√
2). Then we apply the wavelet transform to the permuted

vector (cj+1(pj+1(ℓ))2
j+1−1

ℓ=0 , yielding cj and dj .
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(a) (b)

(c) (d)

Figure 1: Path construction. (a) level six, (b) level five, (c) level four, (d) level three.

Example. In this example, we explain the construction of the path vectors through
the remaining data points with the low-pass values by a toy example. To this end, let
[0, 1)2 be divided into only two regions, Ω1 and Ω2. The function F is assumed to be Hölder
smooth in each of these regions, but may be discontinuous across the curve separating the
two regions Ω1 and Ω2. In our toy example, we have J = 3, i.e., an 8 × 8 image with
64 data values. At the highest level of the EPWT, we choose a path p6 through in the
underlying index set I6 = Γ6

1 ∪ Γ6
2, such that each pair of consecutive components in the

path are neighbors. We first pick all indices in Γ6
1, before jumping to Γ6

2, see Figure 1(a).
For the path construction at the next level, we first determine the index set Γ5 = Γ5

1 ∪ Γ5
2

(containing only each second index of p6), see Figure 1(b), before we construct a path
according to the above description. Figures 1(c) and 1(d) show the index sets Γ4 and Γ3

along with their corresponding path vectors.

In this example, we have

‖p6(n+ 1) − p6(n)‖2 ≤
√

2 ≤ D, ‖p5(n+ 1) − p5(n)‖2 ≤ 2 ≤
√

2D,

‖p4(n+ 1) − p4(n)‖2 ≤
√

10 ≤ 2D, ‖p3(n+ 1) − p3(n)‖2 ≤
√

10 ≤
√

8D

(with one path interruption at each level for the jump from one region to the other), so
that the path construction satisfies the above requirements with D =

√
10/2 ≈ 1.5811.

This simple example also illustrates that the path construction leads at each level to index
sets Γj

i with quasi-uniformly distributed indices. Further details concerning the required
quasi-uniformity of the index distributions are explained in Section 3.2.
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Remark 1. Note that the components of the path vector pj lie in Γ2J with containing
2d integer entries. This is in contrast to the notation in [20]. Further, unlike in [20], we
do no longer consider index sets but define a neighborhood of pixels by the Euclidean
distance between corresponding indices. The constant D should be chosen rather small,
e.g. D ∈ (

√
2, 2), as in the previous example. We remark that the choice of a sufficiently

small constant D leads to a sequence of paths, where the distribution of the indices in Γj

is quasi-uniform at each level of the EPWT, see Section 3.2.

Remark 2. Considering the above strategy of the EPWT algorithm, it is heuristically
clear that we are able to reduce the number of significant wavelet coefficients to a multiple
of the number K of regions, where the target function F is smooth. Indeed, only when the
path skips from one region to another, a finite number of significant wavelet coefficients
will occur. This is in contrast to the usual tensor product wavelet transform, where
the number of significant wavelet coefficients is usually related to the total length of the
“smooth regions” boundaries and hence depends on the level j of the wavelet transform.

To show this fact also theoretically, we have proven in [23] that for piecewise Hölder
continuous functions of order α ∈ (0, 1], we obtain optimal convergence rates for N -term
approximations when using univariate Haar wavelets. However, our numerical experiments
show that the EPWT is much more effective when smoother wavelet bases are used, e.g. the
Daubechies wavelets with two vanishing moments or the 7 − 9 biorthogonal transform.

Therefore, the goal of this paper is to show that a higher Hölder smoothness of the
target function within the different regions leads to optimal N -term approximations, when
using the EPWT in combination with smooth wavelet bases. In this sense, the results of
this paper can be viewed as a generalization of our previous results in [23].

Remark 3. In contrast to the above procedure, where we have used the data vectors
(

cj(ℓ)
)2j−1

ℓ=0
=

(

F j(2−Jpj(ℓ)
)2j−1

ℓ=0
, we will consider slightly different data vectors cjp(ℓ) in the

theoretical estimates of Sections 3 and 4, where we will be using L2-projection operators
determined by the dual scaling and wavelet functions, ϕ̃ and ψ̃.

3 Decay of Wavelet Coefficients using the EPWT

Before we turn to the technical details, let us first sketch the basic ideas of the proof for
optimal N -term approximations by the EPWT.

As already explained in the previous section, we consider applying polyharmonic spline
interpolation, from given image values F (2−Jn), separately in the individual domains
Ωi, i = 1, . . . ,K. We assume that F is Hölder smooth of order α on each Ωi, and
that the polyharmonic spline interpolant F 2J in (2.2), being Hölder smooth of order at
least α, reconstructs bivariate polynomials of degree m = max(⌊α⌋, 2), thus yielding local
approximation order m+ 1.

At the 2J-th level of the EPWT, we define a path p2J through all indices of I2J such
that consecutive components of p2J are neighboring indices lying in the same index set
Γi. The path p2J can be constructed in a way such that only C1K “interruptions” occur.

Next, we consider a one-dimensional function f2J(t) =
∑22J−1

k=0 c2J
p (k)ϕ2J,k(t), t ∈ [0, 1)

that suitably approximates a smooth one-dimensional and scaled restriction of F resp. F 2J
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“along the path p2J” with

|F (2−Jp2J(ℓ)) − f2J(2−2Jℓ)| . 2−Jα,

and apply one level of a smooth wavelet transform to f2J .

Significant wavelet coefficients will only occur at a finite number of locations on the
interval [0, 1) that correspond to interruptions of the path. However, the number of such
interruptions does not depend on J but only on the number of regions, K. Therefore, with
the performance of one level of the (periodic) wavelet transform, we will find that most of
the wavelet coefficients of f2J = f2J−1 + g2J−1 occurring in the wavelet part g2J−1, are
small.

At the next levels of the EPWT, we consider the index sets Γj = ∪K
i=1Γ

j
i . By

construction, we have the inclusion Γj ⊂ Γj+1, for j = 1, . . . , 2J − 1, and, moreover,
#Γj = 2j . To obtain sufficiently accurate polyharmonic spline interpolations F j to F
with F j(2−Jn) = F (2−Jn) for n ∈ Γj , two specific conditions on the index sets Γj and the
path vectors pj need to be satisfied. We can briefly explain these two conditions, termed
region condition and diameter condition, as follows (for more details on these conditions
we refer to Subsection 3.2).

Firstly, the region condition requires that the path should prefer to traverse the indices
belonging to one region set Γj

i , before “jumping” to another region. In this way, the
region condition ensures that we can optimally exploit the smoothness of the function F
along the path. Secondly, the diameter condition requires a quasi-uniform distribution of
remaining pixels in each Γj

i , and so the diameter condition leads to a sufficiently accurate
polyharmonic spline interpolation F j at each level of the EPWT.

We remark that the two conditions can be satisfied by using the strategies for the path
construction as proposed in Subsection 2.2. This then allows us to estimate the EPWT
wavelet coefficients similarly as for one-dimensional piecewise smooth functions with a
finite number of singularities to finally obtain an optimal N -term approximation using
only the N most significant EPWT wavelet coefficients for the image reconstruction.

3.1 The Highest Level of the EPWT

Let us now explain the 2J-th level of the EPWT in detail. The performance of the further
levels of the EPWT and the corresponding estimates are then derived in a similar manner.

We consider a sufficiently smooth parametric curve p̃2J(t), t ∈ [0, 1), through the
plane interpolating the path p2J , i.e., with p̃2J(ℓ/22J) = 2−J p2J(ℓ), for ℓ = 0, . . . , 22J − 1,
and with the convention that p̃2J(t) ∈ Ωi, for t ∈ [ℓ/22J , (ℓ + 1)/22J ], if 2−J p2J(ℓ) and
2−J p2J(ℓ + 1) are in Ωi. Now, we regard the function f̃2J that is defined by the one-
dimensional restriction of F 2J along the curve p̃2J ,

f̃2J (t) = F 2J
(

p̃2J(t)
)

for t ∈ [0, 1).

For each interruption in the path vector p2J , originated within one region Ωi or by a jump
from one region to another, there are indices ℓ and ℓ+1, where p2J(ℓ) and p2J(ℓ+1) are not
neighbors or where there is a discontinuity between F 2J(2−J p2J(ℓ)) and F 2J(2−J p2J(ℓ+
1)). These interruptions correspond to small subintervals of [0, 1) of length 2−2J , where
the univariate function f̃2J may also have discontinuities. More precisely, an interruption
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between the path components p2J(ℓ) and p2J(ℓ + 1) generates such a “jump interval”
at [ℓ/22J , (ℓ + 1)/22J ]. For simplicity, we assume that we only have path interruptions
from one region to another. Note that this is only a mild restriction, since we may
otherwise decide to further subdivide a region into several smaller subregions according to
the regularity of F along the paths. Finally, we remark that for any convex region Ωi we
can show that there is at least one path without any interruptions, see [23].

Recall that the trace theorem for Hölder resp. Besov spaces (see [26]) implies that for
F 2J |Ωi

∈ Bα
∞,∞(Ωi), the (scaled) restriction f̃2J(t) along the curve p̃2J(t) is again Hölder

smooth of order α in each subinterval of [0, 1), determined by {t ∈ [0, 1) : p̃2J(t) ∈ Ωi}
with assuming that the corresponding path vector p2J has no interruptions. In particular,
we obtain for the N -th order modulus of smoothness the estimate

ωN (f̃2J , h)∞ := sup
|h̃|≤h

‖∆N
h̃
f̃2J‖∞ . (2Jh)α‖f̃2J‖Bα

∞,∞
(3.1)

within the subintervals, where f̃2J is smooth, i.e., for N = ⌊α+ 1⌋ and

Ti,h :=
{

t : p̃2J(t+ kh) ∈ Ωi, k = 0, . . . , N
}

,

see [4]. Observe that the factor 2Jα in (3.1) is due to the scaling of f̃2J on [0, 1] while the
length of the complete curve p̃2J is c 2J , where the constant c does not depend on J .

Next, we consider the L2-projection f2J := P2J f̃
2J of f̃2J onto the scaling space

V 2J := closL2[0,1)span{ϕ2J,n : n = 0, . . . , 22J − 1},

where ϕ is assumed to be a sufficiently smooth scaling function, see Section 2.2. Then,

f2J = P2J f̃
2J :=

∑22J−1
n=0 〈f2J , ϕ̃2J,n〉ϕ2J,n also satisfies a Hölder smoothness condition of

order α. Along the lines of [4, Theorem 3.3.3], we now have in the subintervals Ti,2−2J

‖f̃2J − f2J‖L∞(T
i,2−2J ) = ‖f̃2J − P2J f̃

2J‖L∞(T
i,2−2J )

. ωN (f̃2J , 2−2J)∞ . (2−J)α‖f̃2J‖Bα
∞,∞

. (3.2)

In particular,

|f̃2J(2−2Jℓ) − f2J(2−2Jℓ)| = |F 2J(2−Jp2J(ℓ)) − f2J(2−2Jℓ)| . 2−Jα.

In the next step, we decompose the function f2J =
∑

ℓ

c2J
p (ℓ)ϕ2J,ℓ with c2J

p (ℓ) := 〈f2J , ϕ̃2J,ℓ〉

into the low-pass part f2J−1 and the high-pass part g2J−1. Applying one level of the one-

dimensional wavelet transform to the data set (c2J
p (ℓ))2

2J−1
ℓ=0 , we obtain the decomposition

f2J = f2J−1 + g2J−1 with

f2J−1 =

22J−1−1
∑

n=0

c2J−1
p (n)ϕ2J−1,n and g2J−1 =

22J−1−1
∑

n=0

d2J−1
p (n)ψ2J−1,n,

where c2J−1
p (n) := 〈f2J , ϕ̃2J−1,n〉 and d2J−1

p (n) := 〈f2J , ψ̃2J−1,n〉. From the Hölder

smoothness of f2J in Ti := {t ∈ [0, 1) : p̃2J(t) ∈ Ωi}, we find for t ∈ Ti the represen-
tation

f2J(t) = qα(t− t0) +R(t− t0)
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for t0 ∈ {2−2Jk : k = 0, . . . , 22J − 1}∩ Ti and |t− t0| ≤ 2−2J , where qα denotes the Taylor
polynomial of degree ⌊α⌋ of f2J at t0, and where the remainder R satisfies |R(t − t0)| ≤
cϕ2−Jα. Hence, if supp(ψ̃2J−1,n) ∈ Ti for some i, the wavelet coefficients satisfy

|d2J−1
p (n)| = |〈qα(· − t0) +R(· − t0), ψ̃2J−1,n〉| = |〈R(· − t0), ψ̃2J−1,n〉|

≤ cϕ 2−Jα ‖ψ̃2J−1,n‖1 = c̃ϕ 2(−J+1/2)(α+1),

where we have used ‖ψ̃2J−1,n‖1 = 2−J+1/2‖ψ̃‖1.
Now let Λ2J−1 be the set of all n ∈ {0, . . . , 22J−1 − 1}, where the above estimate for

d2J−1(n) is satisfied. Then, the number of the remaining wavelet coefficients 22J−1 −
#Λ2J−1 corresponds to the number of discontinuities of f̃2J and is hence bounded by CK,
where K is the number of regions in the original image F , and where the constant C does
not depend on J .

Now, we consider the low-pass function f2J−1 and reconstruct a bivariate function
F 2J−1 as follows. Taking only the path components of p2J with even indices, we put

Γ2J−1
i := {p2J(2n) : n = 0, . . . , 22J−1 − 1, 2−Jp2J(2n) ∈ Ωi}

for each i = 1, . . . ,K and Γ2J−1 := ∪K
i=1Γ

2J−1
i . We compute the polyharmonic spline

interpolant

F 2J−1(x) :=
K

∑

i=1







∑

y∈Γ2J−1
i

ciy φm

(∥

∥

∥
x− y

2J

∥

∥

∥

2

)

+ pi
m(x)






χΩi

(x),

satisfying the interpolation conditions

F 2J−1

(

p2J(2n)

2J

)

= f2J−1(2−2J+1n) for all n = 0, . . . , 22J−1 − 1.

Therefore,
∣

∣

∣

∣

F 2J

(

p2J(2n)

2J

)

− F 2J−1

(

p2J(2n)

2J

)∣

∣

∣

∣

= |f̃2J(2−2J+1n) − f2J−1(2−2J+1n)|

= |f̃2J(2−2J+1n) − P2J−1f̃
2J(2−2J+1n)|

. 2(−J+1)α = Dα(2−J+1/2)α,

where D =
√

2, and where the last inequality again follows analogously as in (3.2) since
f2J−1 is the orthogonal projection of f̃2J to

V 2J−1 := closL2[0,1)span{ϕ2J−1,n : n = 0, . . . 22J−1 − 1}.

The last inequality implies that F 2J−1 is still a good approximation for F , since the
interpolation points have changed only slightly. However, only half of the interpolation
points are left, which are irregularly distributed in [0, 1)2. Moreover, we have

max
x∈Ωi

min
y∈Γ2J−1

i

|x− 2−Jy| ≤ 2−J+1 = D 2−J+1/2 and min
y1,y2∈Γ2J−1

i

|y1 − y2| ≥ 2−J .

Together with (2.4) we observe

‖F 2J − F 2J−1‖L2(Ωi) . (2−J+1/2)α for all i = 1, . . . ,K.
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3.2 Conditions for the Path Vectors

Before we proceed with the error estimates for the further levels of the EPWT algorithm,
we need to fix two specific side conditions for the path vectors that are required for our
error analysis. The two side conditions are termed (a) region condition and (b) diameter
condition, as stated below.

Similar conditions have already been applied to the N -term estimates in [23]. The
region condition ensures that at each level of the EPWT, the path vector should be chosen
in a way such that all indices belonging to one region Ωi, i ∈ {1, . . . ,K}, should be taken
first before jumping to another region, and that one should have only a small number
of index pairs pj(ℓ), pj(ℓ + 1) belonging to different regions Γj

i and Γj
k. The diameter

condition ensures that the remaining indices in Γj are quasi-uniformly distributed, such
that there is a constant D, not depending on J or j, satisfying

max
x∈Ωi

min
y∈Γj

‖x− 2−Jy‖2 ≤ D2−j/2.

Let us introduce the two conditions more explicitly.

(a) Region condition. At each level j of the EPWT, the path pj is chosen, such that it
contains only at most C1K interruptions caused by pairs of components, pj(ℓ) and
pj(ℓ+ 1), which are no neighbors or are not belonging to the same index set Γj

i .

(b) Diameter condition. At each level of the EPWT, we require for almost all com-
ponents of the path the bound

‖pj(ℓ) − pj(ℓ+ 1)‖2 ≤ D 2J−j/2, (3.3)

where D is independent of J and j, and where the number of components of pj

which are not satisfying the diameter condition, is bounded by a constant C2 not
depending on J or j.

The two conditions, (a) and (b), are already ensured by the proposed path construction
in Subsection 2.2. Particularly, the diameter condition ensures a quasi-uniform distribution
of the indices in Γj .

3.3 The Further Levels of the EPWT

Let us now explain the further levels of the EPWT. These are performed by following
along the lines of the 2J-th level. We start with the polyharmonic spline interpolant

F j+1(x) :=
K

∑

i=1







∑

y∈Γj+1
i

ciy φm

(∥

∥

∥
x− y

2J

∥

∥

∥

2

)

+ pi
m(x)






χΩi

(x)

satisfying the interpolation conditions

F j+1

(

pj+2(2n)

2J

)

= f j+1(2−(j+1)n) for all n = 0, . . . , 2j+1 − 1.
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We first fix a suitable path vector pj+1 passing through the set

Γj+1 = {pj+2(2n) : n = 0, . . . , 2j+1 − 1}

with corresponding data values {F j+1
(

pj+2(2n)
2J

)

: n = 0, . . . , 2j+1 − 1}, such that the

region condition and the diameter condition in Section 3.2 are satisfied.

Next, we consider a sufficiently smooth parametric curve p̃j+1(t), t ∈ [0, 1), through
the plane interpolating pj+1, i.e., with p̃j+1(2−j−1ℓ) = 2−J pj+1(ℓ) for ℓ = 0, . . . , 2j+1 − 1,
such that p̃j+1(t) ∈ Ωi for t ∈ [2−(j+1)ℓ, 2−(j+1)(ℓ+ 1)], if 2−Jpj+1(ℓ) and 2−Jpj+1(ℓ+ 1)
are in the same region Ωi.

Then we determine the one-dimensional restriction of F j+1 along p̃j+1,

f̃ j+1(t) := F j+1
(

p̃j+1(t)
)

t ∈ [0, 1).

As in the above discussion concerning the 2J-th level, the piecewise Hölder smoothness
of f̃ j+1(t) ensures that

ωN (f̃ j+1, h)∞ ≤ c̃ (2Jh)α for Ti,h := {t : p̃j+1(t+ kh) ∈ Ωi, k = 0, . . . , N}.

Considering the L2-projection

f j+1 = Pj+1f̃
j+1 :=

2j+1−1
∑

n=0

cj+1
p (n)ϕj+1,n

with cj+1
p (n) := 〈f̃ j+1, ϕ̃j+1,n〉 of f̃ j+1 onto the scaling space

V j+1 := closL2[0,1)span{ϕj+1,n : n = 0, . . . , 2j+1 − 1},

where ϕ is assumed to be a smooth scaling function as in Subsection 3.1, we have

‖f̃ j+1 − f j+1‖L∞(T
i,2−(j+1)) = ‖f̃ j+1 − Pj+1f̃

j+1‖L∞(T
i,2−(j+1))

. wN (f̃ j+1, 2−J−(j+1)/2) . 2−(j+1)α/2,

where we have used the diameter condition (3.3), so that

‖pj+1(ℓ) − pj+1(ℓ+ 1)‖2 ≤ D 2J−(j+1)/2.

We use the decomposition

f j+1 =
∑

ℓ

cj+1
p (ℓ)ϕj+1,ℓ

= f j + gj =
∑

n

cjp(n)ϕj,n +
∑

n

dj
p(n)ψj,n.

Then the Hölder smoothness of f j+1 in the intervals Ti yields the Taylor expansion

f j+1(t) = qα(t− t0) +R(t− t0) with |R(t− t0)| ≤ cϕD
α 2−(j+1)α/2
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for t, t0 ∈ Ti, and this gives the following estimate for the wavelet coefficients corresponding
to the region Ωi:

|dj
p(n)| = |〈R(t− t0), ψ̃j,n〉| ≤ cϕD

α 2−(j+1)α/2 2−j/2 ‖ψ̃‖1 ≤ cϕD
α 2−j(α+1)/2.

Again, let Λj be the set of indices n from {0, . . . , 2j − 1}, where dj
p(n) satisfies the above

estimate. Then the number of wavelet coefficients 2j − #Λj which are not satisfying this
estimate (since supp ψ̃j,n 6⊂ Ti for some i) is bounded by a constant independent of J
and j.

Finally, we obtain the polyharmonic spline interpolant

F j(x) :=
K

∑

i=1







∑

y∈Γj
i

ciy φm

(∥

∥

∥
x− y

2J

∥

∥

∥

2

)

+ pi
m(x)






χΩi

(x),

where Γj
i := {pj+1(2n) : n = 0, . . . , 2j − 1, 2−J pj+1(2n) ∈ Ωi}, Γj := ∪K

i=1Γ
j
i , through the

interpolation conditions

F j

(

pj+1(2n)

2J

)

= f j(2−jn) for all n = 0, . . . , 2j − 1.

Hence, we obtain the estimate
∣

∣

∣

∣

F j+1

(

pj+1(2n)

2J

)

− F j

(

pj+1(2n)

2J

)∣

∣

∣

∣

= |f̃ j+1(2−jn) − Pj f̃
j+1(2−jn)| . 2−(j+1)α/2.

Particularly,

∣

∣

∣

∣

F 2J

(

pj+1(2n)

2J

)

− F j

(

pj+1(2n)

2J

)∣

∣

∣

∣

≤
2J−1
∑

ν=j

∣

∣

∣

∣

F ν+1

(

pj+1(2n)

2J

)

− F ν

(

pj+1(2n)

2J

)∣

∣

∣

∣

.

2J−1
∑

ν=j

2−(ν+1)α/2 ≤ 2−(j+1)α/2

1 − 2−α/2
. (3.4)

Let us summarize the above findings on the decay of the EPWT wavelet coefficients
in the following theorem.

Theorem 3.1 For j = 2J −1, . . . , 0, let dj
p(ℓ) = 〈f j+1, ψ̃j,ℓ〉, ℓ = 0, . . . , 2j −1, denote the

wavelet coefficients that are obtained by applying the EPWT algorithm to F (according to
Subsection 2.2), where we assume that F ∈ L2([0, 1)2) is piecewise Hölder smooth of order

α as prescribed in Subsection 2.1. Further assume that the path vectors (pj+1(ℓ))2
j+1−1

ℓ=0 ,
j = 2J−1, . . . , 0, in the EPWT algorithm satisfy the region condition (a) and the diameter
condition (b) of Subsection 3.2. Then, for all j = 2J − 1, . . . , 0 and ℓ ∈ Λj, the estimate

|dj
p(ℓ)| ≤ C Dα 2−j(α+1)/2 (3.5)

holds, where D > 1 is the constant of the diameter condition (3.3), α is the Hölder
exponent of F , and C depends on the utilized wavelet basis and on the Hölder constant
in (2.1). Furthermore, for all ℓ ∈ {0, . . . , 2j − 1} \ Λj, we obtain the estimate

|dj
p(ℓ))| ≤ C ′ 2−j/2 (3.6)

with some constant C ′ being independent of J and j.
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Proof. The proof of (3.5) follows directly from the above considerations. Likewise,
for all ℓ ∈ {0, . . . , 2j − 1} \ Λj , i.e., for index sets that do not satisfy the diameter or the
region condition, we observe at least

|dj
p(ℓ)| ≤ C ′ 2−j/2 = C ′ 2−j/2

since we can assume that F j is bounded, and hence the above estimate (3.5) holds for
α = 0. Hence (3.6) follows. �

4 N-term Approximation with the EPWT

Consider now the vector of all EPWT wavelet coefficients

dp = ((d2J−1
p )T , . . . , d0

p, d
−1
p )T

with dj
p = (dj

p(ℓ))
2j−1
ℓ=0 for j = 0, . . . , 2J − 1, and with the mean value

d−1
p = d−1

p (0) := f0(0) = 2−2J
∑

n∈IJ

F 2J(2−Jn),

together with the side information on the path vectors in each iteration step

p = ((p2J)T , . . . , (p1)T )T ∈ R
2(22J−1).

With this information the image F 2J
rec is uniquely recovered, where F 2J

rec is the polyharmonic
spline interpolation satisfying

F 2J
rec

(

2−Jp2J(n)
)

= f2J(2−2Jn), n = 0, . . . , 22J − 1.

Indeed, reconsidering the (j + 1)-th level of the EPWT procedure, we observe that the
scaling coefficients cjp(n) = 〈f̃ j+1, ϕ̃j,n〉 and the wavelet coefficients dj

p = 〈f̃ j+1, ψ̃j,n〉
determine f j and gj , and hence f j+1 uniquely. Further, the polyharmonic spline interpo-
lation F j+1 is entirely determined by the function values f̃ j+1(2−(j+1)n).

By the choice of the wavelet basis, it further follows for n = 0, . . . , 2j+1 − 1 that

|F j+1(2−Jpj+1(n)) − F j+1
rec (2−Jpj+1(n))| = |f̃ j+1(2−(j+1)n) − f j+1(2−(j+1)n)|

= |f̃ j+1(2−(j+1)n) − P j+1f̃ j+1(2−(j+1)n)|
. 2−(j+1)α/2,

i.e., F j+1
rec is uniquely determined by f j+1(2−(j+1)n), n = 0, . . . , 2j+1 − 1 and the side

information about the path pj+1.
In order to find a sparse approximation of the digital image F resp. F 2J , we apply

a shrinkage procedure to the EPWT wavelet coefficients dj
p(ℓ), using the hard threshold

function

sσ(x) =

{

x |x| ≥ σ,
0 |x| < σ,

for some σ > 0.

We now study the error of a sparse representation using only the N wavelet coefficients
with largest absolute value for an approximative reconstruction of F 2J . For convenience,
let S2J

N be the set of indices (j, ℓ) of the N wavelet coefficients with largest absolute value.
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Moreover, let F 2J
N,rec denote the polyharmonic spline interpolation determined by the

scaling function f2J
N =

∑

n c
2J
p,N (n)ϕ2J,n using only the N wavelet coefficients with largest

absolute value, satisfying the interpolation conditions

F 2J
N,rec

(

p2J(n)

2J

)

= f2J
N (2−2Jn) for n = 0, . . . , 22J − 1.

While the wavelet basis used above is not orthonormal but stable, we can still estimate
the distance of F 2J and F 2J

N,rec by

ǫN = ‖F 2J − F 2J
N,rec‖2

L2(Ω) .
∑

(j,ℓ) 6∈S2J
N

|dj
p(ℓ)|2.

This estimate is a direct consequence of Theorem 3.1 and (3.4). Indeed, at each level of
the EPWT, we observe that

‖F j+1 − F j
rec‖L2(Ω) ≤ ‖F j+1 − F j‖L2(Ω) + ‖F j − F j

rec‖L2(Ω)

.





2j−1
∑

n=0

|dj
p(n)|2





1/2

. 2−(j+1)α/2,

where the number of wavelet coefficients satisfying (3.5) is 2j −C1K +C2, and where the
constants C1 and C2 do not depend on J or j, see Section 3.2.

Now we obtain the main result of this paper, showing the optimal N -term approxima-
tion of the EPWT algorithm.

Theorem 4.1 Let F 2J
N be the N -term approximation of F 2J as constructed above, and let

the assumptions of Theorem 3.1 be satisfied. Then the estimate

ǫN = ‖F 2J − F 2J
N ‖2

2 ≤ C̃ N−α (4.1)

holds for all J ∈ N, where the constant C̃ <∞ does not depend on J .

Proof. The proof can be carried out by following along the lines of the proof of
Theorem 3.3 in [23]. �

Let us finally conclude by stating the following corollary.

Corollary 4.2 Let F ∈ L2([0, 1)2) be piecewise Hölder continuous (as assumed in Sub-
section 2.1). Then, for any ǫ > 0 there exists an integer J(ǫ), such that for all J ≥ J(ǫ)
the N -term estimate

‖F − F 2J
N ‖2

L2 < C̃N−α + ǫ

holds, where C̃ is the constant in (4.1).

Proof. The proof follows directly from Theorem 4.1 and (2.4). �
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[21] G. Plonka and D. Roşca, Easy path wavelet transform on triangulations of the sphere,
Mathematical Geosciences 42(7) (2010), 839–855.
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